
Detection of Orthogonal Interval Relations

Punit Chandra and Ajay D. Kshemkalyani

Dept. of Computer Science, Univ. of Illinois at Chicago
Chicago, IL 60607, USA

{pchandra,ajayk}@cs.uic.edu

Abstract. The complete set � of orthogonal temporal interactions be-
tween pairs of intervals, formulated by Kshemkalyani, allows the detailed
specification of the manner in which intervals can be related to one an-
other in a distributed execution. This paper presents a distributed algo-
rithm to detect whether pre-specified interaction types between intervals
at different processes hold. Specifically, for each pair of processes i and j,
given a relation ri,j from the set of orthogonal relations �, this paper
presents a distributed (on-line) algorithm to determine the intervals, if
they exist, one from each process, such that each relation ri,j is satis-
fied for that (i, j) process pair. The algorithm uses O(nmin(np, 4mn))
messages of size O(n) each, where n is the number of processes, m is the
maximum number of messages sent by any process, and p is the maxi-
mum number of intervals at any process. The average time complexity
per process is O(min(np, 4mn)), and the total space complexity across
all the processes is min(4pn2 − 2np, 10mn2).

1 Introduction

Monitoring, synchronization and coordination, debugging, and industrial process
control in a distributed system inherently identify local durations at processes
when certain application-specific local predicates defined on local variables are
true. To design and develop such applications to their fullest, we require a way to
specify how durations at different processes are related to one another, and also
a way to detect whether specified relationships hold in an execution. The for-
malism and axiom system formulated by Kshemkalyani [5] identified a complete
orthogonal set � of 40 fine-grained temporal interactions (or relationships) be-
tween intervals to specify how durations at different processes are related to one
another. This gives flexibility and power to monitor, synchronize, and control
distributed executions. Given a specific orthogonal relation that needs to hold
between each pair of processes in a distributed execution, this paper presents
a distributed (on-line) algorithm to detect the earliest intervals, one on each pro-
cess, such that the specified relation between each pair of intervals is satisfied.

The pairwise interaction between processes is an important way of informa-
tion exchange even in many large-scale distributed systems. Examples of such
systems are sensor networks, ad-hoc mobile networks, mobile agent systems,
and on-line collaborative motion planning and navigation systems. The various

S. Sahni et al. (Eds.) HiPC 2002, LNCS 2552, pp. 323–333, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



324 Punit Chandra and Ajay D. Kshemkalyani

participating nodes can compute a dynamic global function (e.g., the classical
distance-vector routing or AODV) or a dynamic local function such as the ve-
locity of a mobile agent participating in a cooperative endeavor. Dynamic and
on-line computation of local functions are used for centroidal Voronoi tessella-
tions with applications to problems as diverse as image compression, quadrature,
finite difference methods, distribution of resources, cellular biology, statistics,
and the territorial behavior of animals [3].

To capture the pairwise interaction between processes, intervals at each pro-
cess are identified to be the durations during which some application-specific
local predicate is true. We introduce and address the following problem DOOR
for the Detection of Orthogonal Relations.

Problem DOOR: Given a relation ri,j from � for each pair of processes i
and j, determine in an on-line, distributed manner the intervals, if they
exist, one from each process, such that each relation ri,j is satisfied by the
(i, j) pair.

The algorithm we propose uses O(nmin(np, 4mn)) messages of size O(n) each,
where n is the number of processes, m is the maximum number of messages sent
by any process, and p is the maximum number of intervals at any process. The
average time complexity per process is O(min(np, 4mn)), and the total space
complexity across all the processes is min(4pn2 − 2np, 10mn2).

A solution satisfying the set of relations {ri,j(∀i, j)} identifies a global state
of the system [2]. Note that a solution may exist in an execution only if the set
of specified relations, one for each process pair, that need to hold, satisfies the
axioms given in [5].

Section 2 gives the system model and preliminaries. Section 3 gives the theory
used to determine when two given intervals at different processes can never be
part of a solution set, and thus one of them can be discarded. Section 4 gives
the data structures and local processing for tracking intervals at each process,
and gives some tests used to determine the interaction type between a pair of
intervals. Section 5 presents the distributed algorithm to solve problem DOOR.
Section 6 gives concluding remarks.

2 System Model and Preliminaries

We assume an asynchronous distributed system in which n processes communi-
cate by reliable message passing. Without loss of generality, we assume FIFO
message delivery on the channels. A poset event structure model (E,≺), where ≺
is an irreflexive partial ordering representing the causality relation on the event
set E, is used to model the distributed system execution. E is partitioned into
local executions at each process. Ei is the linearly ordered set of events executed
by process Pi. An event e executed by Pi is denoted ei. The causality relation
on E is the transitive closure of the local ordering relation on each Ei and the
ordering imposed by message send events and message receive events [8]. This
execution model is analogous to that in [5, 6, 9].



Detection of Orthogonal Interval Relations 325

Table 1. Dependent relations for interactions between intervals are given in the
first two columns [5]. Tests for the relations are given in the third column [7]

Relation r Expression for r(X,Y ) Test for r(X,Y )

R1 ∀x ∈ X∀y ∈ Y, x ≺ y V −
y [x] > V +

x [x]

R2 ∀x ∈ X∃y ∈ Y, x ≺ y V +
y [x] > V +

x [x]

R3 ∃x ∈ X∀y ∈ Y, x ≺ y V −
y [x] > V −

x [x]

R4 ∃x ∈ X∃y ∈ Y, x ≺ y V +
y [x] > V −

x [x]

S1 ∃x ∈ X∀y ∈ Y, x 	
 y
∧
y 	
 x if V −

y [y] 	< V −
x [y]

∧
V +

y [x] 	> V +
x [x]

then (∃x0 ∈ X: V −
y [y] 	≤ V x0

x [y]∧
V x0

x [x] 	≤ V +
y [x]) else false

S2 ∃x1, x2 ∈ X∃y ∈ Y, x1 ≺ y ≺ x2 if V +
y [x] > V −

x [x]
∧
V −

y [y] < V +
x [y]

then (∃y0 ∈ Y : V +
x [y] 	< V y0

y [y]∧
V y0

y [x] 	< V −
x [x]) else false

We assume vector clocks are available [4, 10]. The vector clock V has the
property that e ≺ f ⇐⇒ V (e) < V (f). The durations of interest at each process
are the durations during which the local predicate is true. Such a duration, also
termed as an interval, at process Pi is identified by the corresponding events
within Ei.

Kshemkalyani showed in [5] that there are 29 or 40 possible mutually orthog-
onal ways in which any two durations can be related to each other, depending on
whether the dense or the nondense time model is assumed. Informally speaking,
with dense time, ∀x, y in interval A, x ≺ y =⇒ ∃z ∈ A | x ≺ z ≺ y. The
orthogonal interaction types were identified by first using the six relations given
in the first two columns of Table 1. Relations R1 (strong precedence), R2 (par-
tially strong precedence), R3 (partially weak precedence), R4 (weak precedence)
defined causality conditions whereas S1 and S2 defined coupling conditions.

Assuming that time is dense, it was shown in [5] that there are 29 possible
interaction types between a pair of intervals, as given in the upper part of Table 2.
The twenty-nine interaction types are specified using boolean vectors. The six
relations R1-R4 and S1-S2 form a boolean vector of length 12, (six bits for
r(X,Y ) and six bits for r(Y,X)). The nondense time model is significant because
clocks which measure dense linear time use a nondense linear scale in practice.
This model is also significant because actions at each node in a distributed system
are a linear sequence of discrete events. This model permits 11 interaction types
between a pair of intervals, defined in the lower part of Table 2, in addition
to the 29 identified before. The interaction types are in pairs of inverses. For
illustrations of these interactions and explanation of the table, the reader is
requested to refer to [5]. The set of 40 relations is denoted as �.

Given a set of orthogonal relations, one between each pair of processes, that
need to be detected, each of the 29 (40) possible independent relations in the
dense (nondense) model of time can be tested for using the bit-patterns for the
dependent relations, as given in Table 2. The tests for the relations R1, R2, R3,



326 Punit Chandra and Ajay D. Kshemkalyani

Table 2. The 40 independent relations in � [5]. The upper part of the table
gives the 29 relations assuming dense time. The lower part of the table gives 11
additional relations if nondense time is assumed

Interaction Relation r(X,Y ) Relation r(Y,X)
Type R1 R2 R3 R4 S1 S2 R1 R2 R3 R4 S1 S2

IA(= IQ−1) 1 1 1 1 0 0 0 0 0 0 0 0

IB(= IR−1) 0 1 1 1 0 0 0 0 0 0 0 0

IC(= IV −1) 0 0 1 1 1 0 0 0 0 0 0 0

ID(= IX−1) 0 0 1 1 1 1 0 1 0 1 0 0

ID′(= IU−1) 0 0 1 1 0 1 0 1 0 1 0 1

IE(= IW−1) 0 0 1 1 1 1 0 0 0 1 0 0

IE′(= IT−1) 0 0 1 1 0 1 0 0 0 1 0 1

IF (= IS−1) 0 1 1 1 0 1 0 0 0 1 0 1

IG(= IG−1) 0 0 0 0 1 0 0 0 0 0 1 0

IH(= IK−1) 0 0 0 1 1 0 0 0 0 0 1 0

II(= IJ−1) 0 1 0 1 0 0 0 0 0 0 1 0

IL(= IO−1) 0 0 0 1 1 1 0 1 0 1 0 0

IL′(= IP−1) 0 0 0 1 0 1 0 1 0 1 0 1

IM(= IM−1) 0 0 0 1 1 0 0 0 0 1 1 0

IN(= IM ′−1) 0 0 0 1 1 1 0 0 0 1 0 0

IN ′(= IN ′−1) 0 0 0 1 0 1 0 0 0 1 0 1

ID′′(= (IUX)−1) 0 0 1 1 0 1 0 1 0 1 0 0

IE′′(= (ITW )−1) 0 0 1 1 0 1 0 0 0 1 0 0

IL′′(= (IOP )−1) 0 0 0 1 0 1 0 1 0 1 0 0

IM ′′(= (IMN)−1) 0 0 0 1 0 0 0 0 0 1 1 0

IN ′′(= (IMN ′)−1) 0 0 0 1 0 1 0 0 0 1 0 0

IMN ′′(= (IMN ′′)−1) 0 0 0 1 0 0 0 0 0 1 0 0

R4, S1, and S2 in terms of vector timestamps are given in the third column
of Table 1 [7]. V −

i and V +
i denote the vector timestamp at process Pi at the

start of an interval and at the end of an interval, respectively. V x
i denotes the

vector timestamp of event xi at process Pi. The tests in Table 1 can be run by
each process in a distributed manner. Each process Pi, 1 ≤ i ≤ n, maintains
information about the timestamps of the start and end of its local intervals, and
certain other local information, in a local queue Qi. The n processes collectively
run a token-based algorithm to process the information in the local queues and
solve problem DOOR.

We note some assumptions and terminology. (1) There are a maximum of p
intervals at any process. (2) Interval X occurs at Pi and interval Y occurs at Pj .
(3) For any two intervals X and X ′ that occur at the same process, if R1(X,X ′),
then we say that X is a predecessor of X ′ and X ′ is a successor of X .



Detection of Orthogonal Interval Relations 327

1. When an internal event or send event occurs at process Pi, Vi[i] = Vi[i] + 1.
2. Every message contains the vector clock and Interval Clock of its send event.
3. When process Pi receives a message msg, then ∀ j do,

if (j == i) then Vi[i] = Vi[i] + 1,
else Vi[j] = max(Vi[j], msg.V [j]).

4. When an interval starts at Pi (local predicate φi becomes true), Ii[i] = Vi[i].
5. When process Pi receives a message msg, then ∀ j do,

Ii[j] = max(Ii[j], msg.I [j])

Fig. 1. The vector clock Vi and Interval Clock Ii at process Pi

3 Conditions for Satisfying Given Interaction Types

A critical aspect of any distributed algorithm to solve problem DOOR is to
design an efficient way to prune the intervals from the queues of the n processes.
This section gives the condition for pruning an interval and the property which
makes efficient pruning possible. We introduce the notion of prohibition function
S(ri,j) and relation ✁ which give the condition for pruning of intervals. We also
show that if the given relationship between a pair of intervals does not hold,
then at least one of the intervals is deleted. This property makes the pruning
and hence the algorithm efficient. Theorem 1 identifies this basic property.

For each ri,j ∈ �, we define S(ri,j) as the set of all relations R such that if
R(X,Y ) is true, then ri,j(X,Y ′) can never be true for some successor Y ′ of Y .
S(ri,j) is the set of relations that prohibit ri,j from being true in the future.

Definition 1. Prohibition Function S : � → 2� is defined to be S(ri,j) =
{R ∈ � | R �= ri,j∧ if R(X,Y ) is true then ri,j(X,Y ′) is false for all Y ′ that
succeed Y }.

Two relations R′ and R′′ in � are related by ✁ if the occurrence of R′(X,Y )
does not prohibit R′′(X,Y ′) for some successor Y ′ of Y .

Definition 2. ✁ is a relation on �×� such that R′ ✁ R′′ if (1) R′ �= R′′, and
(2) if R′(X,Y ) is true then R′′(X,Y ′) can be true for some Y ′ that succeeds Y .

For example, IC ✁ IB because (1) IC �= IB and, (2) if IC(X,Y ) is true,
then there is a possibility that IB(X,Y ′) is also true, where Y ′ succeeds Y .

Theorem 1. For R′, R′′ ∈ �, if R′ ✁ R′′ then R′−1 �✁R′′−1. (Proof is in [1].)

Taking the same example, IC ✁ IB ⇒ IV (= IC−1) �✁IR(= IB−1), which
is indeed true. Note that R′ �= R′′ in the definition of relation ✁ is necessary;
otherwise R′ ✁ R′ leads to R′−1 �✁R′−1, a contradiction.

Lemma 1. If R ∈ S(ri,j) then R �✁ri,j else if (R �∈ S(ri,j) and R �= ri,j) then
R ✁ ri,j .



328 Punit Chandra and Ajay D. Kshemkalyani

type Event Interval = record type Log = record
interval id : integer; start: array[1..n] of integer;
local event: integer; end: array[1..n] of integer;

end p log: array[1..n] of Process Log;
end

type Process Log = record
event interval queue: queue of Event Interval;

end

Fig. 2. The Event Interval, Log, and Process Log data structures at Pi (1 ≤ i ≤
n)

Proof. If R ∈ S(ri,j), using Definition 1, it can be inferred that ri,j is false
for all Y ′ that succeed Y . This does not satisfy the second part of Definition 2.
Hence R �✁ri,j . If R �∈ S(ri,j) and R �= ri,j , it follows that ri,j can be true for
some Y ′ that succeeds Y . This satisfies Definition 2 and hence R ✁ ri,j . ��

S(ri,j) for each of the interaction types in � is given in [1]. The following
lemmas are used to show the correctness of the algorithm in Figure 6.

Lemma 2. If the relationship R(X,Y ) between intervals X and Y (belonging
to processes Pi and Pj , resp.) is contained in the set S(ri,j), then interval X can
be removed from the queue Qi.

Proof. From the definition of S(ri,j), we get that ri,j(X,Y ′) cannot exist,
where Y ′ is any successor interval of Y . Hence interval X can never be a part of
the solution and can be deleted from the queue. ��
Lemma 3. If the relationship between a pair of intervals X and Y (belonging to
processes Pi and Pj respectively) is not equal to ri,j, then interval X or interval Y
is removed from its queue Qi or Qj, respectively.

Proof. We use contradiction. Assume relation R(X,Y ) (�= ri,j(X,Y )) is true
for intervals X and Y . From Lemma 2, the only time neither X nor Y will be
deleted is when R �∈ S(ri,j) and R−1 �∈ S(rj,i). From Lemma 1, it can be inferred
that R ✁ ri,j and R−1 ✁ rj,i. As r−1

i,j = rj,i, we get R ✁ ri,j and R−1 ✁ r−1
i,j . This

is a contradiction as by Theorem 1, R ✁ ri,j ⇒ R−1 �✁r−1
i,j . Hence R ∈ S(ri,j)

or R−1 ∈ S(rj,i), and thus at least one of the intervals gets deleted. ��

4 Tracking Intervals and Evaluating Relations

This section gives the operations and data structures to track intervals at each
process. These are used by our algorithm given in the next section.

Each process Pi, where 1 ≤ i ≤ n, maintains the following data structures.
(1) Vi : array[1..n] of integer. This is the V ector Clock [4, 10]. (2) Ii : array[1..n]
of integer. This is the Interval Clock which tracks the latest intervals at processes.



Detection of Orthogonal Interval Relations 329

Start of an interval:
Logi.start = V −

i . //Store the timestamp V −
i of the starting of the interval.

On receiving a message during an interval: //Store the local component of

if (change in Ii) then //vector clock and interval id which caused
for each k such that Ii[k] was changed //the change in Ii

insert (Ii[k], Vi[i]) in Logi.p log[k].event interval queue
End of interval:

Logi.end = V +
i //Store the timestamp V +

i of the end of the interval.
if (a receive or send occurs between start of previous interval and end of
present interval) then

Enqueue Logi on to the local queue Qi.

Fig. 3. The scheme for constructing Log at Pi (1 ≤ i ≤ n)

Ii[j] is the timestamp Vj [j] when φj last became true, as known to Pi. (3) Logi:
contains the information about an interval, needed to compare it with other
intervals. Figure 1 shows how to update the vector clock and Interval Clock.

To maintain Logi, the data structures are defined in Figure 2. The Log con-
sists of vector timestamps start and end for the start and end of an interval,
respectively. It also contains an array of Process Log, where each Process Log is
a queue of type Event Interval. Event Interval consists of a tuple composed of
interval id and local event. Let local event be the local component of the clock
value of a receive event at which the kth component of Interval Clock gets up-
dated — then the tuple composed of the local event and the kth component of
Interval Clock is added into the Process Log queue which forms the kth com-
ponent of p log. Logi is constructed and stored on the local queue Qi using the
protocol shown in Figure 3. Note that not all the intervals are stored in the local
queue. The Log corresponding to an interval is stored only if the relationship
between the interval and all other intervals (at other processes) is different from
the relationship which its predecessor interval had with all the other intervals
(at other processes). In other words, if two or more successive intervals on the
same process have the same relationship with all other intervals, then Log cor-
responding to only one of them needs to be stored on the queue. Two successive
intervals Y and Y ′ on process Pj will have the same relationship if no message
is sent or received by Pj between the start of Y and the end of Y ′.

The Log is used to determine the relationship between two intervals. The
tests in Table 1 are used to find which of R1, R2, R3, R4, S1, and S2 are true.
Figure 4 shows how to implement the tests for S1(Y,X) and S2(X,Y ) using the
Log data structure.



330 Punit Chandra and Ajay D. Kshemkalyani

S2(X, Y ):

1. // Eliminate from Log of interval Y (on Pj), all receives of messages
//which were sent by i before the start of interval X (on Pi).
(1a) for each event interval ∈ Logj .p log[i].event interval queue
(1b) if (event interval.interval id < Logi.start[i]) then
(1c) remove event interval

2. // Select from the pruned Log, the earliest message sent from X to Y .
(2a) temp = ∞
(2b) if (Logj .start[i] ≥ Logi.start[i]) then temp = Logj .start[j]
(2c) else
(2d) for each event interval ∈ Logj .p log[i].event interval queue
(2e) temp = min(temp, event interval.local event)

3. if (Logi.end[j] ≥ temp) then S2(X, Y ) is true.

S1(Y,X):

1. Same as step 1 of scheme to determine S2(X,Y ).
2. Same as step 2 of scheme to determine S2(X,Y ).
3. if (Logi.end[j] < temp) and (temp > Logj .start[j]) then S1(Y,X) is true.

Fig. 4. Implementing the tests for S1(X,Y ) and S2(Y,X)

5 A Distributed Algorithm

5.1 Algorithm DOOR

To solve problem DOOR, defined in Section 1, recall that the given relations
{ri,j | 1 ≤ i, j ≤ n and ri,j ∈ �} need to satisfy the axioms on �, given in [5].
Thus, it is possible for a solution to exist in some execution.

Algorithm Overview: The algorithm uses a token-based approach. Intuitively,
the process Pi which has the token triggers at each other process Pj , the com-
parison of the interval at the head of Pi’s queue with the interval at the head
of Pj ’s queue. The comparison may result in either the interval at the head
of Pi’s queue or Pj ’s queue being deleted – the corresponding queue index gets
inserted in updatedQueues, which is a part of the token at Pi. Once such a com-
parison is done with all other process queues, the token is then sent to some Pj

whose index j is in updatedQueues. This allows comparison of the new interval
at the head of Pj ’s queue with the interval at the head of the queue of each other
process. A solution is found when updatedQueue becomes empty.

The Algorithm: Besides the token (T ), two kinds of messages are exchanged
between processes – REQUEST (REQ) and REPLY (REP ). The data struc-
tures are given in Figure 5. The proposed algorithm is given in Figure 6. Each
procedure is executed atomically. The token is used such that only the token-
holder process can send REQs and receive REP s. The process (Pi) having the



Detection of Orthogonal Interval Relations 331

type REQ = message
log : Log; //Contains the Log of the interval at the queue

end //head of the process sending the REQ
type REP = message

updated: set of integer; //Contains the indices of queues updated after a test
end
type T = token

updatedQueues: set of integer; //Contains the indices of all the updated queues
end

Fig. 5. The REQ, REP, and Token data structures

token broadcasts a REQ to all other processes (line 3b). The Log corresponding
to the interval at the head of the queue Qi is piggybacked on the REQ (line
3a). On receiving a REQ from Pi, each process Pj compares the piggybacked
interval X with the interval Y at the head of its queue Qj (line 4d). According to
Lemma 3, the comparison between intervals on processes Pi and Pj can result in
three cases. (1) ri,j is satisfied. (2) ri,j is not satisfied and interval X can be re-
moved from the queue Qi. (3) ri,j is not satisfied and interval Y can be removed
from the queue Qj . In the third case, the interval at the head of Qj is dequeued
and process index j is stored in REP.updated (lines 4g, 4h). In the second case,
the process index i is stored in REP.updated (line 4e). Note that both cases
(2) and (3) can occur after a comparison. Pj then sends REP to Pi. The REP
carries the indices of the queues, if any, which got updated after the comparison.
Once process Pi receives a REP from all other processes, it stores the indices of
all the updated queues in set updatedQueues which is a part of the token cur-
rently at Pi. Process Pi then checks if its index i is contained in updatedQueues.
If so, it deletes the interval at the head of Qi (line 8f). A solution is detected
when updatedQueues becomes empty. If updatedQueues is non-empty, then the
token is sent to a randomly selected process from updatedQueues (line 8g).

5.2 Complexity Analysis

The complexity is analyzed in terms of the maximum number of messages sent
per process (m) and the maximum number of intervals per process (p).

– Space overhead:
• Worst case space overhead per process is min(4np−2p, 4mn2+2mn−2m).
• Total space overhead across all processes is min(4pn2 − 2np, 10mn2).

– Average time complexity (per process) is O(min(np, 4mn)).
– Total number of messages sent is O(nmin(np, 4mn)). Total message space

overhead is O(n2 min(np, 4mn)).

The details of the complexity analysis are given in [1].
Note that in case of broadcast media, the number of REQs sent for each Log

is one because REQs are broadcast by sending one message (line 3b). The mes-
sage space complexity reduces to O(nmin(np, 4mn)), although the total number
of messages sent stays at O(nmin(np, 4mn)).



332 Punit Chandra and Ajay D. Kshemkalyani

(1) Initial state for process Pi (2) Initial state of the token

(1a) Qi is empty (2a) T.updatedQueues = {1, 2...n}
(2b) A randomly elected process Pi holds the token.

(3) SendReq : Procedure called by process Pi to send REQ message

(3a) REQ.log = Logi at the head of the local queue
(3b) Broadcast request REQ to all processes

(4) SendReply : Procedure called by process Pj to send a REP message to Pi

(4a) REP.updated = φ
(4b) Y =head of local queue Qj

(4c) X=REQ.log
(4d) Determine R(X, Y ) using the tests given in Table 1 and Figure 4
(4e) if (R(X, Y ) ∈ S(ri,j)) then REP.updated = REP.updated ∪ {i}
(4f) if (R(Y,X) ∈ S(rj,i)) then
(4g) REP.updated = REP.updated ∪ {j}
(4h) Dequeue Y from local queue Qj

(4i) Send reply REP to Pi

(5) RcvToken : On receiving a token T at Pi

(5a) Remove index i from T.updatedQueues
(5b) if (Qi is nonempty) then SendReq

(6) IntQue : When an interval gets queued on Qi at Pi

(6a) if (number of elements in queue Qi is 1) and (Pi has the token) then SendReq
(6b) else
(6c) if (number of elements in queue Qi is 1) and (Pi has a pending request) then
(6d) REQ is not pending
(6e) SendReply

(7) RcvReq : On receiving a REQ at Pi

(7a) if (Qi is nonempty) then SendReply
(7b) else REQ is pending

(8) RcvReply : On receiving a reply from Pi

(8a) T.updatedQueues = T.updatedQueues ∪ REP.updated
(8b) if (reply received from all processes) then
(8c) if (T.updatedQueues is empty) then
(8d) Solution detected. Heads of the queues identify the intervals.
(8e) else
(8f) if (i ∈ T.updatedQueues) then dequeue the head from Qi

(8g) Send token to Pk where k is randomly selected from T.updatedQueues

Fig. 6. Distributed algorithm to solve problem DOOR

5.3 Optimizations

The following two modifications to the algorithm increase the pruning and de-
crease the number of messages sent. However, the order of space, time, and
message complexities remains the same for both modifications.

– When procedure SendReply is executed by Pj in response to Pi’s REQ,
instead of comparing the interval at the head of Qj with Pi’s interval (pig-
gybacked on REQ), multiple comparisons can be done. Each time the com-
parison results in the interval at the head of Qj being deleted, the next
interval on Qj is compared with the piggybacked interval. A REP is sent
back only when either the comparison results in a relation equal to ri,j or
the relationship is such that the interval at the head of Qi (the piggybacked
interval) has to be deleted. Thus each REQ can result in multiple intervals
being pruned from the queue of the process receiving the REQ.



Detection of Orthogonal Interval Relations 333

– In procedure RcvReply (lines 8f-8g), if T.updatedQueues contains the in-
dex i, it means the interval at the head of queue Qi needs to be deleted and
that the token will be sent to process Pi again in the future. Hence, if index i
is contained in T.updatedQueues, not only is the interval at the head of Qi

deleted but also the next token-holder is selected as Pi. This saves the extra
message required to resend the token to Pi later.

6 Concluding Remarks

Pairwise temporal interactions in a distributed execution provide a valuable way
to specify and model synchronization conditions and information interchange.
This paper presented an on-line distributed algorithm to detect whether there
exists a set of intervals, one at each process, such that a given set of pairwise
temporal interactions, one for each process pair, holds for the set of intervals
identified. Future work can be to explore how the orthogonal interaction types
can formalize and simplify the exchange patterns for various applications.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. CCR-9875617.

References

[1] P. Chandra, A.D. Kshemkalyani, Detection of orthogonal interval relations, Tech.
Report UIC-ECE-02-06, Univ. of Illinois at Chicago, May 2002. 327, 328, 331

[2] K.M. Chandy, L. Lamport, Distributed snapshots: Determining global states of
distributed systems, ACM Transactions on Computer Systems, 3(1): 63-75, 1985.
324

[3] Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessellations: applications
and algorithms, SIAM Review, 41(4): 637-676, 1999. 324

[4] C. J. Fidge, Timestamps in message-passing systems that preserve partial order-
ing, Australian Computer Science Communications, 10(1): 56-66, February 1988.
325, 328

[5] A.D. Kshemkalyani, Temporal interactions of intervals in distributed systems,
Journal of Computer and System Sciences, 52(2): 287-298, April 1996. 323, 324,
325, 326, 330

[6] A.D. Kshemkalyani, A framework for viewing atomic events in distributed com-
putations, Theoretical Computer Science, 196(1-2), 45-70, April 1998. 324

[7] A.D. Kshemkalyani, A fine-grained modality classification for global predicates,
Tech. Report UIC-EECS-00-10, Univ. of Illinois at Chicago, 2000. 325, 326

[8] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, 558-565, 21(7), July 1978. 324

[9] L. Lamport, On interprocess communication, Part I: Basic formalism; Part II:
Algorithms, Distributed Computing, 1:77-85 and 1:86-101, 1986. 324

[10] F. Mattern, Virtual time and global states of distributed systems, Parallel and
Distributed Algorithms, North-Holland, 215-226, 1989. 325, 328


	Detection of Orthogonal Interval Relations
	Introduction
	System Model and Preliminaries
	Conditions for Satisfying Given Interaction Types
	Tracking Intervals and Evaluating Relations
	A Distributed Algorithm
	Algorithm DOOR
	Complexity Analysis
	Optimizations

	Concluding Remarks
	Acknowledgements
	References


