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Abstract. The problem of global state observation is fundamental to
distributed systems. All interactions in distributed systems can be ana-
lyzed in terms of the building block formed by the pairwise interactions
of intervals between two processes. Considering causality-based pairwise
interactions by which two intervals at different processes may interact
with each other, there are 40 possible orthogonal interactions. This pa-
per examines the problem: “If a global state of interest to an application
is specified in terms of the pairwise interaction types between each pair
of processes, how can such a global state be detected?” A solution iden-
tifies a global state in which the relation specified for each process pair
is satisfied. This paper formulates the specific conditions on the exact
communication structures to determine which of the intervals being ex-
amined at any time may never satisfy the stipulated relation for that
pair of processes, and therefore that interval must be deleted.

1 Introduction

The problem of global state observation is fundamental to distributed systems, as
identified by Chandy and Lamport’s seminal paper on recording global states [6].
It has been observed that all causality-based interactions in distributed systems
can be analyzed in terms of the building block formed by the pairwise interactions
of intervals between two processes [11]. A detailed analysis of the causality-
based pairwise interactions by which two processes may interact with each other
identified 29 (40) causality-based orthogonal interactions, denoted as �, between
two processes under the dense (and nondense) time model, respectively [11]. This
paper examines the state detection problem: “If a global state of interest to an
application is specified in terms of the pairwise interaction types between each
pair of processes, how can such a global state be detected?”

Central to the pairwise interactions studied in this paper is the notion of
time intervals at each process. A time interval at a process is the local duration
in which the process “interacts”, or in which some local property of interest is
true. The semantics of the interval are application-dependent [8, 9, 11, 12, 15, 18];
application areas such as sensor networks, distributed debugging, deadlock char-
acterization [16], predicate detection [3, 4, 5], checkpointing [7, 10], and industrial
process control model such intervals.

The above state detection problem was formulated as the following problem
DOOR for the Detection of Orthogonal Relations [1, 12].
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Problem DOOR. Given a relation ri,j from � for each pair of processes i and
j, devise a distributed on-line algorithm to identify the intervals, if they
exist, one from each process, such that each relation ri,j is satisfied by the
(i, j) process pair.

A solution satisfying the set of relations {ri,j(∀i, j)} identifies a global state
of the system [6, 14]. We showed [3] that this problem generalizes the global
predicate detection problem [4, 5], and further that the solution to this problem
is not more expensive than existing solutions to global predicate detection.

Devising an efficient on-line algorithm to solve problem DOOR is a challenging
problem because of the overhead of having to track the intervals at different pro-
cesses. Three solutions have been proposed to this problem so far. A distributed
on-line algorithm to solve this problem was outlined in [1]. This algorithm uses
O(n · min(np, 4mn)) number of messages with a message size of O(n), where
n is the number of processes, m is the maximum number of messages sent by
any process, and p is the maximum number of intervals at any process. Another
distributed algorithm requiring fewer messages, but at the cost of somewhat
larger messages, was given in [2]. This algorithm uses O(min(np, 4mn)) number
of messages with a message size of O(n2). For both the algorithms, the total
space complexity across all the processes is min(4n2p − 2np, 10n2m), and the
average time complexity at a process is O(min(np, 4mn)). A centralized on-line
algorithm run at a server P0 was given in [3]. For this algorithm, M = maxi-
mum queue length at P0, p ≥ M as all the intervals may not be sent to P0. The
performance of the algorithms is summarized in Table 1.

Summary of Results and Contributions. The algorithms in [1, 2, 3] to solve
DOOR were presented without any formal discussion or analysis of the theoret-
ical basis, and without any correctness proofs. This paper makes the following
contributions.

1. To devise any efficient solution, this paper formulates specific conditions on
the structure of the exact causal communication patterns to determine which

Table 1. Comparison of space, message and time complexities
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of two intervals being examined from processes i and j may never satisfy ri,j ,
and therefore that interval(s) must be deleted. This result is embodied as:
– a basic principle that we prove in Theorem 1 – the main result, and
– Lemma 4, a useful lemma derived from the above theorem, and used

by the algorithms in [1, 2, 3], that can be used to efficiently manage the
distributed data structures.

The on-line algorithms [1, 2, 3] to solve problem DOOR indirectly used
Lemma 4, but did not explain the principle or indicate how it was de-
rived. This paper derives and explains the critical principle (Theorem 1)
from scratch. Any future algorithms to solve DOOR will also have to be
based on this principle.

2. Global state observation [6] and predicate detection [4, 5] are fundamental
problems. The result provides an understanding of interval-based global state
observation and predicate detection, in terms of the causal communication
structure in an execution [15].

3. The process of devising this principle (Theorem 1) which guarantees that at
least one of any pair of intervals being examined at any time can be deleted
(Lemma 4), gives a deeper insight into the nature of reasoning with the
structure of causality in a distributed execution. Schwarz and Mattern have
identified this as an important problem [19].

Section 2 reviews the background. Section 3 gives the theory used to determine
which of two given intervals at different processes can never be part of a solution
set, thus allowing at least one of them to be deleted. Section 4 gives concluding
remarks.

2 System Model and Background

We assume an asynchronous distributed system in which n processes commu-
nicate by reliable message passing over logical FIFO channels [11, 18]. A poset
event structure (E, ≺), where ≺ is an irreflexive partial ordering representing
the causality or the “happens before” relation [17] on the event set E, is used
as the model for the execution. E is partitioned into local executions at each
process. Each Ei is a linearly ordered set of events executed by process Pi. An
event e executed by Pi is denoted ei. The set of processes is denoted by N .

A cut C is a subset of E such that if ei ∈ C then (∀e′i) e′i ≺ ei =⇒ e′i ∈ C. A
consistent cut is a downward-closed subset of E and denotes an execution prefix.
For event e, there are two special consistent cuts ↓ e and e ↑, defined next.

Definition 1. Cut ↓ e is the maximal set of events {e′ |e′ ≺ e} that happen
before e. Cut e ↑ is the set of all events {e′ |e′ 	
 e}

⋃
{ei, i = 1, . . . , |N | | ei 


e
∧

(∀e′i ≺ ei, e
′
i 	
 e)} up to and including the earliest events at each process

for which e happens before the events.

The system state after the events in a cut is a global state [6]; if the cut is consis-
tent, the corresponding system state is a consistent global state. The durations
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Table 2. Dependent relations for interactions between intervals [11]

Relation r Expression for r(X,Y )
R1 ∀x ∈ X∀y ∈ Y, x ≺ y

R2 ∀x ∈ X∃y ∈ Y, x ≺ y

R3 ∃x ∈ X∀y ∈ Y, x ≺ y

R4 ∃x ∈ X∃y ∈ Y, x ≺ y

S1 ∃x ∈ X∀y ∈ Y, x �� y
�

y �� x

S2 ∃x1, x2 ∈ X∃y ∈ Y, x1 ≺ y ≺ x2

Table 3. The 40 orthogonal relations in � [11]. The upper part gives the 29 relations
assuming dense time. The lower part gives 11 additional relations for nondense time.

Interaction Relation r(X, Y ) Relation r(Y, X)
Type R1 R2 R3 R4 S1 S2 R1 R2 R3 R4 S1 S2

IA(= IQ−1) 1 1 1 1 0 0 0 0 0 0 0 0
IB(= IR−1) 0 1 1 1 0 0 0 0 0 0 0 0
IC(= IV −1) 0 0 1 1 1 0 0 0 0 0 0 0
ID(= IX−1) 0 0 1 1 1 1 0 1 0 1 0 0
ID′(= IU−1) 0 0 1 1 0 1 0 1 0 1 0 1
IE(= IW −1) 0 0 1 1 1 1 0 0 0 1 0 0
IE′(= IT −1) 0 0 1 1 0 1 0 0 0 1 0 1
IF (= IS−1) 0 1 1 1 0 1 0 0 0 1 0 1
IG(= IG−1) 0 0 0 0 1 0 0 0 0 0 1 0
IH(= IK−1) 0 0 0 1 1 0 0 0 0 0 1 0
II(= IJ−1) 0 1 0 1 0 0 0 0 0 0 1 0
IL(= IO−1) 0 0 0 1 1 1 0 1 0 1 0 0
IL′(= IP −1) 0 0 0 1 0 1 0 1 0 1 0 1
IM(= IM−1) 0 0 0 1 1 0 0 0 0 1 1 0
IN(= IM ′−1) 0 0 0 1 1 1 0 0 0 1 0 0
IN ′(= IN ′−1) 0 0 0 1 0 1 0 0 0 1 0 1

ID′′(= (IUX)−1) 0 0 1 1 0 1 0 1 0 1 0 0
IE′′(= (ITW )−1) 0 0 1 1 0 1 0 0 0 1 0 0
IL′′(= (IOP )−1) 0 0 0 1 0 1 0 1 0 1 0 0

IM ′′(= (IMN)−1) 0 0 0 1 0 0 0 0 0 1 1 0
IN ′′(= (IMN ′)−1) 0 0 0 1 0 1 0 0 0 1 0 0

IMN ′′(= (IMN ′′)−1) 0 0 0 1 0 0 0 0 0 1 0 0

of interest at each process are the durations during which the process interacts,
or during which the local application-specific predicate is true. Such a duration,
also termed as an interval, at process Pi is identified by the corresponding events
within Ei. Each interval can be viewed as defining an event of higher granular-
ity at that process, as far as the local predicate of interest is concerned. Such
higher-level events, one from each process, can be used to identify a global state
[8, 13]. Intervals are denoted by capitals such as X . An interval X at Pi is also
denoted by Xi.

It has been shown that there are 29 or 40 possible mutually orthogonal ways
in which any two durations can be related to each other, depending on whether
the dense or the nondense time model is assumed [11]. Informally speaking, with
dense time, ∀x, y in interval A, x ≺ y =⇒ ∃z ∈ A | x ≺ z ≺ y. These orthogonal
interaction types were identified by first using the six relations given in the
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Fig. 1. Interaction types between intervals under the dense time model [11]

first two columns of Table 2. Relations R1 (strong precedence), R2 (partially
strong precedence), R3 (partially weak precedence), R4 (weak precedence) define
causality conditions whereas S1 and S2 define coupling conditions.

– (Dense time:) The 29 possible interaction types between a pair of intervals
are given in the upper part of Table 3. The interaction types are specified
using boolean vectors. The six relations R1-R4 and S1-S2 form a boolean
vector of length 12, (six bits for r(X, Y ) and six bits for r(Y, X)). Of the
29 interactions, there are 13 pairs of inverses, while three are inverses of
themselves. The interaction types are illustrated in Figure 1, where interval
X is shown by a rectangle. Interval Y , indicated using horizontal lines, is
in different positions relative to X . Each position of Y is labeled by an
interaction type, IA through IX . The different types of interactions are
identified by the various positions of Y relative to X . Five positions of Y
have two labels each – the distinction between them is given in [11].

– (Nondense time:) The nondense time model which captures the reality that
event sequences and real clocks are discrete permits 11 interaction types
between a pair of intervals, defined in the lower part of Table 3, in addition
to the 29 identified before. Of these, there are five pairs of inverses, while
one is its own inverse. Illustrations are given in [11].

The set of 40 orthogonal relations is denoted as �.

Example specification of DOOR. Consider a system of three processes Pi,
Pj , and Pk. The application wants to detect a global state in which the following
relations are pairwise satisfied: (i) IQ(Xi, Yj) and IA(Yj , Xi), (ii) IG(Yj , Zk) and
IG(Zk, Yj), and (iii) IA(Zk, Xi) and IQ(Xi, Zk).

Each of the 40 orthogonal relations in � can be tested for using the bit-
patterns for the dependent relations, as given in Table 3. The tests for the
relations R1 – R4, S1, and S2 using vector timestamps are given in [1, 2, 3, 12].
During an execution, the information about intervals at Pi is recorded in queue
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Qi. The intervals from the queues are examined pairwise across queues to check
if the relation ri,j specified for Pi and Pj holds. In the algorithms in [1, 2], the
tests are collectively run in different distributed ways to solve DOOR, whereas
in the algorithm in [3], they are run at a central server.

To understand the principle for designing these [1, 2, 3] and more efficient
algorithms to process the queued intervals, we show our main result (Theorem 1)
about when two given intervals may potentially satisfy a given interaction type
we want to detect. This theorem in the form of Lemma 4 is used in practice by
the algorithms [1, 2, 3] to solve DOOR.

3 The Elimination Conditions

Devising an efficient on-line algorithm to solve problem DOOR is a challenge
because of the overhead of having to track the intervals at different processes.
To devise any efficient solution, we formulate a basic principle that can be used to
efficiently manage the distributed data structures. Specifically, we use the notion
of a “prohibition” function [1, 2, 3] to show the main principle – Theorem 1 – and
thereby Lemma 4 which is the condition for pruning of intervals from queues.
We show that if the given relationship between a pair of processes does not
hold for a pair of intervals being tested, then at least one of the intervals is
deleted.

For any two intervals X and X ′ that occur at the same process, if R1(X, X ′),
then we say that X is a predecessor of X ′ and X ′ is a successor of X . We assume
interval X occurs at Pi and interval Y occurs at Pj . Intuitively, for each ri,j ∈ �,
a prohibition function H(ri,j) is the set of all relations R such that if R(X, Y )
is true, then ri,j(X, Y ′) can never be true for some successor Y ′ of Y . H(ri,j) is
the set of relations that prohibit ri,j from being true in the future.

Definition 2. Prohibition function H : � → 2� is defined as H(ri,j) = {R ∈
� | if R(X, Y ) is true then ri,j(X, Y ′) is false for all Y ′ that succeed Y }.

Two relations R′ and R′′ in � are related by the allows relation � if the occur-
rence of R′(X, Y ) does not prohibit R′′(X, Y ′) for some successor Y ′ of Y .

Definition 3. The “allows” relation � is a relation on �×� such that R′ � R′′

if the following holds: if R′(X, Y ) is true then R′′(X, Y ′) can be true for some
Y ′ that succeeds Y .

Lemma 1. If R ∈ H(ri,j) then R 	� ri,j else if R 	∈ H(ri,j) then R � ri,j.

Proof. If R ∈ H(ri,j), using Definition 2, it can be inferred that ri,j is false
for all Y ′ that succeed Y . This does not satisfy Definition 3. Hence R 	� ri,j . If
R 	∈ H(ri,j), it follows that ri,j can be true for some Y ′ that succeeds Y . This
satisfies Definition 3 and hence R � ri,j . �

Given that R′(A, B) � R′′(A, B′), where R′ and R′′ are orthogonal relations
from �, the following lemma shows some relationships between interval pairs
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A, B and A, B′ in terms of the dependent set of causality relations R1 − R4.
These relationships will be useful to show a critical relationship between R′−1

and R′′−1 (Theorem 1) that allows efficient pruning of intervals on the queues
in any algorithm to solve Problem DOOR.

Lemma 2. If R′ � R′′, R′(A, B) and R′′(A, B′), where R′, R′′ ∈ �, then the
statements in Table 5 are true.

Proof. As R′ � R′′ and R′(A, B) is true, we can safely assume that there can
exist an interval B′ that succeeds B and such that R′′(A, B′) is true. Now con-
sider axioms AL2, AL4, AL5 and AL6 given in Table 4. Applying the following
transformations gives statements T1 to T4 of Table 5, respectively.

1. Substitute A, B, B′ for X, Y, Z, respectively, in Table 4.
2. As B′ succeeds B, hence substitute true for R1(B, B′), R2(B, B′), R3(B, B′),

and R4(B, B′).

Consider axioms AL1, AL2, AL3 and AL4 given in Table 4. Applying the fol-
lowing transformations gives statements T5 to T8, of Table 5, respectively.

1. Substitute B, B′, and A for X, Y, and Z, respectively in Table 4.
2. As B′ succeeds B, hence substitute true for R1(B, B′), R2(B, B′), R3(B, B′),

and R4(B, B′). �

We now show an important result between any two relations in � that satisfy
the “allows” relation, and the existence of the “allows” relation between their

Table 4. Axioms for the causality relations of Table 2 [11]. R stands for “R is false”.

Axiom Label r1(X, Y )
�

r2(Y, Z) =⇒ r(X,Z)
AL1 R1(X, Y )

�
R2(Y, Z) =⇒ R2(X, Z)

AL2 R1(X, Y )
�

R3(Y, Z) =⇒ R1(X, Z)
AL3 R1(X, Y )

�
R4(Y, Z) =⇒ R2(X, Z)

AL4 R2(X, Y )
�

R1(Y, Z) =⇒ R1(X, Z)
AL5 R3(X, Y )

�
R1(Y, Z) =⇒ R3(X, Z)

AL6 R4(X, Y )
�

R1(Y, Z) =⇒ R3(X, Z)
AL7 R2(X, Y )

�
R3(Y, Z) =⇒ true

AL8 R2(X, Y )
�

R4(Y, Z) =⇒ true

AL9 R3(X, Y )
�

R2(Y, Z) =⇒ R4(X, Z)
AL10 R4(X, Y )

�
R2(Y, Z) =⇒ R4(X, Z)

AL11 R3(X, Y )
�

R4(Y, Z) =⇒ R4(X, Z)
AL12 R4(X, Y )

�
R3(Y, Z) =⇒ true

AL13 R1(X, Y ) =⇒ S1(X, Y )
�

S2(X, Y )
�

R4(Y,X)
�

S1(Y, X)
�

S2(Y, X)
AL14 R2(X, Y ) =⇒ S1(X, Y )

�
R2(Y, X)

AL15 R3(X, Y ) =⇒ R3(Y, X)
�

S1(Y,X)
AL16 R4(X, Y ) =⇒ R1(Y, X)
AL17 S1(X, Y ) =⇒ R2(X, Y )

�
R3(Y, X)

�
S2(Y, X)

AL18 S2(X, Y ) =⇒ R1(X, Y )
�

R4(X, Y )
�

R1(Y,X)
�

R4(Y, X)
�

S1(Y, X)
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Table 5. Given R′ � R′′, R′(A, B) and R′′(A,B′), for R′, R′′ ∈ �, statements between
interval pairs A,B and A, B′ using the dependent relations R1 − R4

Statement Label Statements
T1 R1(A,B) =⇒ R1(A,B′)
T2 R2(A,B) =⇒ R1(A,B′)
T3 R3(A,B) =⇒ R3(A,B′)
T4 R4(A,B) =⇒ R3(A,B′)
T5 R1(B′, A) =⇒ R1(B, A)
T6 R2(B′, A) =⇒ R2(B, A)
T7 R3(B′, A) =⇒ R1(B, A)
T8 R4(B′, A) =⇒ R2(B, A)

(a)

R’(X,Y),  R"(X,Y’), and hence, R’ allows R"

−1
R"

R"
R"

R’R’

R’

−1−1

X’

Y

X

(b)

R’

 −1   −1

 −1

Theorem shows it cannot. Hence, R’     does not allow R"

−1−1
From (a) we have  R’      (Y,X), R"      (Y’,X). But can R"      (Y,X’) hold? 

Y’

−1
R"

(a)

(b)

Y’Y

X

Fig. 2. Illustration of Theorem 1

respective inverses. Specifically, if R′ allows R′′ (and R′ 	= R′′), then Theorem 1
shows that R′−1 necessarily does not allow relation R′′−1. This theorem is il-
lustrated in Figure 2. This theorem is used in deriving Lemma 4 which will
be practically used in deriving solutions to problem DOOR, and to prove the
correctness of such solutions.

Theorem 1. For R′, R′′ ∈ � and R′ 	= R′′, if R′ � R′′ then R′−1 	� R′′−1

Proof. We prove by contradiction. The assumption using which we show a
contradiction is the following.

R′(X, Y ) is true, R′(X, Y ) � R′′(X, Y ′) and R′−1(Y, X) � R′′−1(Y, X ′)
(1)

As T1 to T8 must hold for both R′(X, Y ) � R′′(X, Y ′) and R′−1(Y, X) �

R′′−1(Y, X ′) we get two sets of constraints for intervals X, X ′, Y , and Y ′ in
terms of the dependent causality relations R1 to R4.

Consider R′(X, Y ) � R′′(X, Y ′). Instantiating A by X , B by Y , and B′ by
Y ′ in T1-T8, we have the following set of constraints that need to be satisfied.
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C1: R1(X, Y ) ⇒ R1(X, Y ′) C5: R1(Y ′, X) ⇒ R1(Y, X)
C2: R2(X, Y ) ⇒ R1(X, Y ′) C6: R2(Y ′, X) ⇒ R2(Y, X)
C3: R3(X, Y ) ⇒ R3(X, Y ′) C7: R3(Y ′, X) ⇒ R1(Y, X)
C4: R4(X, Y ) ⇒ R3(X, Y ′) C8: R4(Y ′, X) ⇒ R2(Y, X)

Now consider R′−1(Y, X) � R′′−1(Y, X ′). Instantiating A by Y , B by X , and
B′ by X ′ in T1-T8, we have the following set of constraints that need to be
satisfied.

C9: R1(Y, X) ⇒ R1(Y, X ′) C13: R1(X ′, Y ) ⇒ R1(X, Y )
C10: R2(Y, X) ⇒ R1(Y, X ′) C14: R2(X ′, Y ) ⇒ R2(X, Y )
C11: R3(Y, X) ⇒ R3(Y, X ′) C15: R3(X ′, Y ) ⇒ R1(X, Y )
C12: R4(Y, X) ⇒ R3(Y, X ′) C16: R4(X ′, Y ) ⇒ R2(X, Y )

From Equation 1, it can be seen that the interval pairs (Y ′, X) and (Y, X ′)
both are related by the orthogonal relation R′′−1. Hence r(Y ′, X) ⇔ r(Y, X ′),
where r is any of the six dependent relations given in Table 2. Thus replacing
r(Y, X ′) by r(Y ′, X) in C9 to C12, we have the following constraints.

C17: R1(Y, X) ⇒ R1(Y ′, X) C19: R3(Y, X) ⇒ R3(Y ′, X)
C18: R2(Y, X) ⇒ R1(Y ′, X) C20: R4(Y, X) ⇒ R3(Y ′, X)

From Equation 1, it can also be seen in a similar way that the interval pairs
(X, Y ′) and (X ′, Y ) both are related by the orthogonal relation R′′. Hence
r(X, Y ′) ⇔ r(X ′, Y ), where r is any of the six dependent relations given in
Table 2. Thus replacing r(X ′, Y ) by r(X, Y ′) in C13 to C16, we have the follow-
ing constraints.

C21: R1(X, Y ′) ⇒ R1(X, Y ) C23: R3(X, Y ′) ⇒ R1(X, Y )
C22: R2(X, Y ′) ⇒ R2(X, Y ) C24: R4(X, Y ′) ⇒ R2(X, Y )

The two constraint sets (C1)-(C8) and (C17)-(C24) given above can be com-
bined to obtain restrictions on the type of interactions (given in Table 3) that
R′(X, Y ) can belong to. Combining constraints C1 to C4 with constraints C21
to C24 gives

R1(X, Y ) ∨ R2(X, Y ) ∨ R3(X, Y ) ∨ R4(X, Y ) ⇒ R1(X, Y )

Note from the definitions in Table 2 that R1(X, Y ) ⇒ R2(X, Y ) ∧ R3(X, Y ) ∧
R4(X, Y ). Thus,

R1(X, Y ) ∨ R2(X, Y ) ∨ R3(X, Y ) ∨ R4(X, Y ) ⇒
R1(X, Y ) ∧ R2(X, Y ) ∧ R3(X, Y ) ∧ R4(X, Y ) (2)

The above implication implies that either relations R1(X, Y ), R2(X, Y ),
R3(X, Y ), and R4(X, Y ) are all true or all false.

Using a similar approach, combining constraints C17 to C20 with constraints
C5 to C8 gives

R1(Y, X) ∨ R2(Y, X) ∨ R3(Y, X) ∨ R4(Y, X) ⇒
R1(Y, X) ∧ R2(Y, X) ∧ R3(Y, X) ∧ R4(Y, X) (3)
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This means either relations R1(Y, X), R2(Y, X), R3(Y, X), and R4(Y, X), are
all true or all false.

Implications (2) and (3) restrict the interaction type (given in Table 3) to
which R′(X, Y ) can belong. We now examine all the restricted cases to which
R′(X, Y ) can belong, i.e., when R1(X, Y ) to R4(X, Y ) are all true, and when
R1(X, Y ) to R4(X, Y ) are all false, and show that R′(X, Y ) can not exist; which
is a contradiction to Equation (1).

Case 1. R1(X, Y ), R2(X, Y ), R3(X, Y ), and R4(X, Y ) are all true.

From constraints C1 to C4, we get

R1(X, Y ′), R2(X, Y ′), R3(X, Y ′), R4(X, Y ′) are true. (4)

Using axioms AL13 to AL16 we get R1(Y, X), R2(Y, X), R3(Y, X), R4(Y, X),
S1(X, Y ), S2(X, Y ), S1(Y, X), S2(Y, X) are all false. Now substituting X, Y ′

for X , Y in axioms AL13 to AL16, we get

R1(Y ′, X), R2(Y ′, X), R3(Y ′, X), R4(Y ′, X), S1(X, Y ′), S2(X, Y ′),
S1(Y ′, X), S2(Y ′, X) are false. (5)

Using Table 3, the only possible combination by which to instantiate R′ and
R′′ so that they satisfy Equations (4) and (5) is IA. Thus, we have R′(X, Y ) =
R′′(X, Y ′) = IA. As R′ 	= R′′ by the theorem statement, this case cannot exist.

Case 2. R1(X, Y ), R2(X, Y ), R3(X, Y ) and R4(X, Y ) are all false.

This case has two subcases.

1. R1(Y, X), R2(Y, X), R3(Y, X), and R4(Y, X) are all true. From constraints
C17 to C20, we get

R1(Y ′, X), R2(Y ′, X), R3(Y ′, X), R4(Y ′, X) are true. (6)

Substituting Y, X for X , Y in axiom AL13 we get S1(X, Y ), S2(X, Y ),
S1(Y, X), S2(Y, X), are all false. Now substituting Y ′, X for X , Y in axioms
AL13 to AL16, we get

R1(X, Y ′), R2(X, Y ′), R3(X, Y ′), R4(X, Y ′), S1(X, Y ′), S2(X, Y ′),
S1(Y ′, X), S2(Y ′, X) are false. (7)

Using Table 3, the only possible combination by which to instantiate R′

and R′′ so that they satisfy Equations (6) and (7) is IQ. Thus, we have
R′(X, Y ) = R′′(X, Y ′) = IQ. As R′ 	= R′′ by the theorem statement, this
case cannot exist.

2. R1(Y, X), R2(Y, X), R3(Y, X), and R4(Y, X) are all false. From constraints
C5 to C8, we get

R1(Y ′, X), R2(Y ′, X), R3(Y ′, X), R4(Y ′, X) are false. (8)
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Table 6. H(ri,j) for the 40 independent relations in �. The upper part gives function
H for dense time. The lower part gives the function H for the 11 additional relations
for non-dense time.

Interaction H(ri,j) H(rj,i)
Type ri,j

IA (= IQ−1) φ � − {IQ}
IB (= IR−1) {IA, IB, IF, II, IP, IO, IU, IX, IUX, IOP } � − {IQ}
IC (= IV −1) {IA, IB, IF, II, IP, IO, IU, IX, IUX, IOP } � − {IQ}
ID (= IX−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
ID′ (= IU−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IE (= IW−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IE′ (= IT −1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IF (= IS−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IG (= IG−1) � − {IQ, IR, IJ, IV, IK, IG} � − {IQ, IR, IJ, IV, IK, IG}
IH (= IK−1) � − {IQ, IR, IJ, IV, IK, IG} � − {IQ, IR, IJ}
II (= IJ−1) � − {IQ, IR, IJ, IV, IK, IG} � − {IQ, IR, IJ}
IL (= IO−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IL′ (= IP −1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IM (= IM−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IN (= IM′−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IN′ (= IN′−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}

ID′′ (= (IUX)−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IE′′ (= (IT W )−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IL′′ (= (IOP )−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}

IM′′ (= (IMN)−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IN′′ (= (IMN′)−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}

IMN′′ (= (IMN′′)−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}

Now substituting Y ′, X for X , Y in axioms AL13 to AL16, we get

R1(X, Y ′), R2(X, Y ′), R3(X, Y ′), R4(X, Y ′) are false. (9)

Using Table 3, the only possible combination by which to instantiate R′ and
R′′ so that they satisfy Equations (8)-(9) is IG. Thus, we have R′(X, Y ) =
R′′(X, Y ′) = IG. As R′ 	= R′′ by the theorem statement, this case cannot
exist.

Hence there cannot exist a case where R′(X, Y ) � R′′(X, Y ′) and R′−1(Y, X)
� R′′−1(Y ′, X). This contradicts the assumption in Equation 1, proving the
theorem. �

Example. IC � IB ⇒ IV (= IC−1) 	� IR(= IB−1), which is indeed true. Note
that R′ 	= R′′ in the statement of Theorem 1 is necessary; otherwise R′ � R′

leads to R′−1 	� R′−1 from the theorem, a contradiction.

Table 6 gives S(ri,j) for each of the 40 interaction types in �. The table is
constructed by analyzing each interaction pair in �. The following two lemmas
are necessary to show the correctness of the algorithm in [1, 2, 3] and of any other
algorithm to solve problem DOOR.

Lemma 3. If the relationship R(X, Y ) between intervals X and Y (belonging
to process Pi and Pj, resp.) is contained in the set H(ri,j), and ri,j 	= R, then
interval X can be removed from the queue Qi.
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Proof. From the definition of H(ri,j), we get that ri,j(X, Y ′) cannot exist, where
Y ′ is any successor interval of Y . Further, as ri,j 	= R, we have that interval X
can never be a part of the solution and can be deleted from the queue. �

The following final result, although simple in form, is based on the crucial The-
orem 1 and shows that both R 	∈ H(ri,j) and R−1 	∈ H(rj,i) cannot hold when
R 	= ri,j . Hence, by Lemma 3, if R(Xi, Yj) 	= ri,j then at least one of the intervals
Xi and Yj being tested must be deleted.

Lemma 4. If the relationship between a pair of intervals X and Y (belonging to
processes Pi and Pj respectively) is not equal to ri,j, then interval X or interval
Y is removed from its queue Qi or Qj, respectively.

Proof. We use contradiction. Assume relation R(X, Y ) (	= ri,j(X, Y )) is true for
intervals X and Y . From Lemma 3, the only time neither X nor Y will be deleted
is when R 	∈ H(ri,j) and R−1 	∈ H(rj,i). From Lemma 1, it can be inferred that
R � ri,j and R−1 � rj,i. As r−1

i,j = rj,i, we get R � ri,j and R−1 � r−1
i,j . This

is a contradiction as by Theorem 1, R � ri,j ⇒ R−1 	� r−1
i,j . Hence R ∈ H(ri,j)

or R−1 ∈ H(rj,i), and thus at least one of the intervals will be deleted. �
Observe with reference to Table 6 that it is possible that both intervals being
compared need to be deleted, e.g., when ri,j = IC and R(X, Y ) = IU .

Significance of Theorem 1 and Lemma 4. Lemma 4 embodies a principle
that underlies all solutions to problem DOOR. The algorithms given in [1, 2] use
this result of Lemma 4 to efficiently manage and prune the local interval queues
to solve problem DOOR in a distributed manner. Essentially, they examine the
intervals in the queues, a pair of intervals from different processes, at a time.
Lemma 4 guarantees that in each such test, at least one or both intervals being
examined are deleted, unless ri,j(Xi, Yj) is satisfied by that pair of intervals Xi

and Yj . The algorithms differ in the manner in which they construct the queues,
and in how they process the intervals and the queues. The algorithm in [3] also
relies on this result of Lemma 4 to process the interval information at a central
server P0 in an on-line manner. More efficient solutions to problem DOOR that
may arise in the future will also have to use these results.

4 Conclusions

Causality-based pairwise temporal interactions between intervals in a distributed
execution provide a valuable way to specify and model synchronization condi-
tions and information interchange. This paper examined the underlying theory
to solve the problem (problem DOOR) of how to devise algorithms to identify a
set of intervals, one from each process, such that a given set of pairwise temporal
interactions, one for each process pair, holds for the set of intervals identified.
Devising an efficient on-line algorithm to solve problem DOOR is a challenge be-
cause of the overhead of having to track the intervals at different processes. For
any two intervals being examined from processes Pi and Pj , this paper formu-
lated and proved the underlying principle which identifies which (or both) of the
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intervals can be safely deleted if the intervals do not satisfy ri,j . This principle
can be used by any algorithm, such as those in [1, 2, 3] or any newer algorithms,
to efficiently manage the local interval queues to solve problem DOOR.

Problem DOOR is important because it generalizes the global state observa-
tion and the predicate detection problems; further, solutions to problem DOOR
which provide a much richer palette of information about the causality structure
in the application execution (see [3]), cost about the same as the solutions to
traditional forms of global predicate detection. The process of formulating the
underlying principle of determining which intervals can be discarded as never
forming a part of a solution that satisfies a specification of DOOR, also gave a
deeper insight into the structure of causality in a distributed execution, and the
global state observation and predicate detection problems.
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