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Abstract. The vector clock is a fundamental tool for tracking causality
in parallel and distributed applications. Unfortunately, it does not scale
well to large systems because each process needs to maintain a vector of
size n, where n is the total number of processes in the system. To address
this problem, the encoded vector clock (EVC) was recently proposed. The
EVC is based on the encoding of the vector clock using prime numbers
and uses a single number to represent vector time. The EVC has all the
properties of the vector clock and yet uses a single number to represent
global time. However, the single number EVC tends to grow fast and
may soon exceed the size of the traditional vector clock. In this paper,
we evaluate the growth rate of the size of the EVC using a simulation
model. The simulations show that the EVC grows relatively fast, and the
growth rate depends on the mix of internal events and communication
events. To overcome this drawback, the EVC can be used in conjunction
with several scalability techniques that can allow the use of the EVC in
practical applications. We then present a case study of detecting memory
consistency errors in MPI one-sided applications using EVC.

Keywords: Causality · Vector clock · Prime numbers · Encoding
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1 Introduction

The ordering of events and states is a basic operation in the analysis of parallel
and distributed executions. It is used in parallel applications such as dynamic
race detection in multithreaded programs. It is used in distributed applications
such as checkpointing and rollback recovery, mutual exclusion, debugging, and
replication-based data stores. For example, in replication-based data stores, the
ordering of reads and updates to a shared object is required to determine the
object’s most recent value. Logical clocks have been proposed to order events
without the need for tightly synchronized physical clocks. These logical clocks
order events based on the causality relation on events, defined by Lamport [13].
The ordering of events based on the causality relation is also required for enforc-
ing causal consistency in data stores. Thus, tracking causality and evaluating
causality between different events and between different states of a distributed
execution is an important problem.
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The simplest form of logical clocks, proposed by Lamport [13], uses a scalar
clock at each process in the system. If two events are related by causality, their
scalar clock values are so ordered. However, the causality relation between events
cannot be inferred from the values of the scalar clocks of events. To overcome
this drawback, vector clocks have been proposed [5,14]. The vector clock is a fun-
damental tool for tracking causality in distributed applications. Unfortunately,
vector clocks do not scale well to large systems because each process needs to
maintain a vector of size n, where n is the total number of processes in the
system. To address this problem, the encoding of the vector clock using prime
numbers to use a single number to represent vector time was proposed [9]. This
encoding preserves the properties of the vector clock by maintaining only a single
number – a big integer – at each process. The tick, merge, and comparison oper-
ations on the encoded vector clock (EVC) were proposed in [9]. This result also
showed how to timestamp global states and how to perform operations – namely,
the union, intersection, common causal past computation, and comparison – on
the global states using the EVC. All these operations on the EVCs of events
and on the EVCs of global states have equal or lower time complexity than the
corresponding operations on traditional vector clocks in the uniform cost model.
As the EVC values are big integers, the time complexities of the operations on
EVCs are also expressed in the logarithmic cost model. However, these complex-
ities are incomparable with the complexities of operations on traditional vector
clocks in the uniform cost model.

Contributions: Although the EVC is a single big integer rather than a vector
of integers, the drawback of the EVC is that it appears to grow fast. In this
paper, using a simulation model, we evaluate the growth rate of the size of the
EVC. Assuming that the integer data type used by programming languages is
represented in 32 bits, we compute the number of events in the execution until
the EVC size reaches 32n, as a function of n. We also study via simulations, how
many system events it takes until the size of the single big integer number EVC
at some process becomes 32n. We do this by computing the size of the EVC
as a function of the number of events in the execution, for a fixed n. We also
show that the growth rate of the EVC depends on the ratio of internal events
to communication events, and analyze this dependency. Our simulation results
confirm the intuition that the single number EVC grows fast.

To overcome the drawback that the EVC grows quite fast, we can use four
techniques. These are: ticking the clock only at application-relevant events, the
use of detection regions within which the EVC is tracked, resetting the EVC in
the system when the size of the EVC at some process reaches a threshold such as
32n or when a global synchronization is performed, and using logarithms of the
EVC rather than the EVC itself. A judicious use of these scalability techniques
can control the size of the EVC, and can be used to guarantee that the size of
the EVC never exceeds the size of the traditional vector clock.

Outline: In Sect. 2, we give the system model and present preliminaries. In
Sect. 3, we give the simulation results on the growth of the EVC. Section 4 gives
scalability techniques for the EVC. In Sect. 5, we discuss the application of the
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scalability techniques in a case study of detecting memory consistency errors in
MPI one-sided applications using EVC. We give concluding remarks in Sect. 6.

2 System Model and Preliminaries

2.1 System Model

A distributed system is modeled as an undirected graph (P,L), where P is the
set of processes and L is the set of communication links connecting them. Let
n = |P |. Between any two processes, there may be at most one logical channel
over which the two processes communicate asynchronously. A logical channel
from Pi to Pj is formed by paths over links in L. We do not assume FIFO logical
channels; thus the messages may be delivered out of order.

The execution of process Pi produces a sequence of events Ei =
〈e0i , e1i , e2i , · · · 〉, where eki is the kth event at process Pi. An event at a process
can be an internal event, a message send event, or a message receive event. Let
E =

⋃
i∈P {e | e ∈ Ei} denote the set of events in a distributed execution. The

causal precedence relation between events induces an irreflexive partial order on
E. This relation is defined as Lamport’s “happened before” relation [13], and
denoted as →. An execution of a distributed system is thus denoted by the tuple
(E,→). Lamport designed the scalar clock, which is a function C that assigns
integer timestamps to events such that if e → f , then C(e) < C(f). However,
the drawback of scalar clocks is that C(e) < C(f) does not imply that e → f .

2.2 Vector Clocks

Mattern [14] and Fidge [5] designed the vector clock which assigns a vector V
to each event such that: e → f ⇐⇒ V (e) < V (f). This is called the strong clock
consistency condition. Thus, the vector clock overcomes the drawback of the
scalar clock. Each process Pi maintains a vector clock V . Events are timestamped
by the current clock value. The vector clocks, initialized to the 0-vector, are
updated by the following rules.

1. Before an internal event happens at process Pi, V [i] = V [i] + 1 (local tick).
2. Before process Pi sends a message, it first executes V [i] = V [i]+1 (local tick),

then it sends the message piggybacked with V .
3. When process Pi receives a message piggybacked with timestamp U , it exe-

cutes
∀k ∈ [1 . . . n], V [k] = max(V [k], U [k]) (merge);
V [i] = V [i] + 1 (local tick)
before delivering the message.

The vector clock is a fundamental tool to characterize causality in distributed
executions [10,17]. Charron-Bost has shown that to capture the partial order
(E,→), the size of the vector clock is the dimension of the partial order [2], which
is bounded by the size of the system, n. Thus, each process needs to maintain a
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vector of size n to represent the local vector clock. Unfortunately, this does not
scale well to large systems. Several works in the literature attempted to reduce
the size of vector clocks [11,12,15,19–21], they had to make some compromises
in accuracy or alter the system model, and in the worst-case, were as lengthy as
vector clocks. To address this problem, the encoding of the vector clock using
prime numbers to use a single number to represent vector time was proposed [9].

1. Initialize ti = 1.
2. Before an internal event happens at process Pi,

ti = ti ∗ pi (local tick).
3. Before process Pi sends a message, it first executes ti = ti ∗ pi (local tick),

then it sends the message piggybacked with ti.
4. When process Pi receives a message piggybacked with timestamp s, it exe-

cutes
ti = LCM(s, ti) (merge);
ti = ti ∗ pi (local tick)
before delivering the message.

Fig. 1. Operation of EVC ti at process Pi [9].
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Fig. 2. Illustration of using EVC. The vector timestamps and EVC timestamps are
shown above and below each timeline, respectively. In real scenarios, only the EVC is
stored and transmitted.

2.3 Encoded Vector Clock

Instead of using a vector of size n, [9] proposed that the vector can be encoded
into a single number using n distinct prime numbers. The encoding of vector
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clocks using primes was used for detecting locality-aware conjunctive predicates
in large-scale systems [18]. Each process Pi is associated with a unique prime
number pi. A vector clock containing n elements, V = [v1, v2, · · · , vn], can be
encoded by n distinct prime numbers p1, p2, · · · , pn as:

Enc(V ) = pv1
1 ∗ pv2

2 ∗ · · · ∗ pvn
n .

However, only being able to encode a vector clock into a single number is
insufficient to track causal relations. The EVC technique was developed [9] to
show how to implement the basic operations of a vector clock, namely, local tick,
merge, and compare. The encoded vector clock ti (initialized to 1) is operated
at process Pi as shown in Fig. 1. To manipulate the EVC, each process needs to
know only its own prime and not the primes of other processes.

– For a local tick, ti is multiplied by pi.
– For a merge of timestamps ti and s, the LCM(ti, s) = ti∗s

GCD(ti,s)
is computed.

Merging two EVCs requires computing the LCM, which does not require
factorization.

The operations using EVC are illustrated in Fig. 2 using an example execution
over three processes.

3 Simulations

For n processes in the system and fi events at each process Pi, the maximum
EVC timestamp across all processes is at least as large as O(

∏n
i=1 p

fi
i ). This is

because at each event (send, receive, or internal) at Pi, the EVC gets multiplied
by pi, and in addition, at receive events, an LCM computation over two EVCs
may significantly increase the EVC. From this observation, we can see that EVC
timestamps grow fast. We ran simulations to test the growth rate of EVCs.
The simulations were done in Rust and used the GMP library. We simulated
distributed executions with a random communication pattern. As parameters,
we used the number of processes, n, and the probability of a send (versus internal)
event, denoted prs. The destination of a message from a send event was chosen
at random. We timestamped events using EVCs, and measured the size of the
EVC in bits. We used the first n prime numbers for the n processes.

We define the overflow process to be that process which is earliest to have
its EVC size exceed 32n bits. The size 32n was chosen for comparison because
this is the constant size used by traditional vector clocks, assuming each integer
in the vector clock is represented by 4 bytes.

3.1 Simulation Results

Number of Events Until EVC Size Becomes 32n as a Function of n:
Figure 3 shows the number of events executed in the system until the EVC size
reaches 32n bits at the overflow process, as a function of n. We varied n from 10
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Fig. 3. Number of events needed for EVC to reach a size of 32n as a function of the
number of processes n in the system.

to 100, and plotted the average of 10 runs for each setting, assuming that prs,
the probability of send events (versus internal events), was 0.6. The plot turns
out to be almost a straight line.

For the range of n tested (10–100), typically 21 to 25 events were executed
at some process before the EVC size exceeded 32n at the overflow process.
As this number in the interval [21, 25] appears small, we conduct a worst-
case strawman analysis to show that this number is reasonable. As prs = 0.6,
probability(send event) = probability(receive event) = 0.6/1.6. We can approxi-
mate this as assuming that every third event is a receive event. Now consider, for
example, n = 60. The simulation uses the 60 lowest prime numbers, and a signif-
icant number of them need 8 bits for representation. At each event, we multiply
ti by pi, so the size of the EVC increases by 8 bits. In addition, at every third
event (a receive event), the size of the EVC can double in the worst case due to
the LCM operation. (Doubling of the size of the EVC due to LCM computation
is more likely in the initial part of the execution because the LCM is likely to
be computed over relative prime numbers.) So the worst-case progression of the
size of the EVC in bits at a process Pi can be approximated as:

8, 16, 32 and 40 (event e3i ), 48, 56, 112 and 120 (event e6i ),
128, 136, 272 and 280 (event e9i ), 288, 296, 592 and 600 (event e12i ),

608, 616, 1232 and 1240 (event e15i ), 1248, 1256, 2512 and 2520 (event e18i ).
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At the 18th event at Pi, the EVC size exceeds 60 × 32 = 1920 bits. As per the
simulation, the overflow happens at the 1250/60th event, which is the 21st event,
at the overflow process, so this worst-case analysis is reasonably accurate.

This analysis indicates that receive events cause the EVC to grow very fast
due to the LCM computation.

Fig. 4. Scatter-plot of the size of EVC in bits as a function of the number of events in
the system. n = 30.

Size of EVC as a Function of Number of Events: In our next experiment,
we measured the size of the EVC in bits as a function of the number of events
executed in the system. Figures 4, 5, and 6, show the scatter-plots for a system
with n = 30, 60, 100 processes, respectively. For these executions, prs, the prob-
ability of send event (versus internal event) was chosen as 0.5. In these plots,
the number of events on the X-axis is such that the size of the EVC in bits is
always less than that of the traditional vector clocks. The Y-axis shows the size
of the EVC in bits until the size equals 32n. The maximum size 32n was chosen
because this is the constant size used by traditional vector clocks, assuming each
integer in the vector clock is represented by 4 bytes.

Consider for example, Fig. 5, which uses parameters n = 60 and prs = 0.5.
There were about 1800 events in the systemwide execution (or an average of
1800/60 = 30 events at a process) until the EVC size reached 1920 (= 60 × 32)
bits at the overflow process.

Number of Events Until EVC Size Becomes 32n as a Function of Ratio
of Event Types: We also varied the percentage of internal events (where the
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Fig. 5. Scatter-plot of the size of EVC in bits as a function of the number of events in
the system. n = 60.

Fig. 6. Scatter-plot of the size of EVC in bits as a function of the number of events in
the system. n = 100.
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Fig. 7. Total number of events until EVC size reaches 32n bits, for different n and
different percentages of internal events.

total number of events included send, receive, and internal events), and varied n,
and observed the total number of events in the system until the EVC size reaches
32n bits at the overflow process. The observations are plotted in Fig. 7. For a
given n, as the percentage of internal events increased, symbolizing an increas-
ingly smaller proportion of receive events (and hence fewer LCM computations),
the rate of increase of the total number of events until the EVC size reached 32n
bits kept increasing. In particular, when probability(internal event) > 0.8, there
was a more noticable rate of increase of the total number of events (until the
EVC size reached 32n bits at the overflow process). This shows that as the pro-
portion of send events and corresponding receive events decreases progressively,
particularly below 10%, due to the fewer resulting LCM computations at receive
events, the EVC grows much less rapidly, thereby resulting in a much larger
number of system events until the EVC size reaches 32n bits. This corroborates
the earlier observation that receive events cause the EVC to grow very fast due
to the LCM computation.

Consider, for example, the value for n = 60, probability(internal event) = 0.9
which implies that probability(receive event) = 0.05. We again conduct a straw-
man analysis. We assume the prime numbers take up to 8 bits representation.
As before, let us assume each LCM computation causes the EVC size (in bits)
to double because the execution has just begun and the LCM is likely to be
computed over relative prime numbers. Then, the receive event occurs every 20
events, at which time the EVC size increases by a factor of 2. So the worst-case
progression of the size of the EVC in bits at a process Pi can be approximated
as:
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8, · · · 152, 304 and 312 (event e20i ),
320, · · · 464, 928 and 936 (event e40i ),

944, · · · 1088, 2176 and 2184 (event e60i ).

At the 60th event at Pi, or equivalently at around the 60× 60 = 3600th event in
the execution, the EVC size exceeds 60 × 32 = 1920 bits. As per the simulation
graph (Fig. 7), the overflow happens at around the 6000th event in the execution,
and this can be justified by applying a correction to the worst-case strawman
analysis. Note that in the simulation, there is a delay for the message transmis-
sion. Hence, in the small initial window (before steady state) that the results
in Fig. 7 depict, actually probability(receive event) < 0.05 and hence there are
more than 20 non-receive events per receive event. Hence, there are more than
60 events at the overflow process Pi and hence more than 3600 events in the
system until overflow occurs. This supports the simulation result of 6000 events.

4 Scalability

As seen in Sect. 3, the EVC timestamps grow fast and eventually they will exceed
the size of vector clocks. However, we can use several strategies to alleviate this
problem and control the maximum size of the EVC. In particular, these strategies
can be used to guarantee that the EVC size is always less than the vector clock
size.

4.1 Relevant Events

It suffices if the local clock does not tick at every event but only at events that are
relevant to the application. Thus, the EVC does not grow so fast. This strategy
is used in the context of predicate detection [18]. The local clock ticks only when
the variables in the predicate alter the truth value of the predicate. As another
example, the local clock ticks only at synchronization events in MPI application
programs [4]; see the case study in Sect. 5.

4.2 Detection Regions

In large-scale systems, the application requiring a vector clock may be confined to
only a subset of m processes, where m < n. An example of this is locality-aware
predicate detection [18]. The subset of m processes forms a detection region.
Processes within the detection region maintain a single number for the EVC.
Additionally, for processes outside the detection region, we can cut down the
storage cost and make the solution more practical for large-scale systems. When
a process Pj outside the region first receives a message piggybacked with an
EVC timestamp, it simply stores this single number. Although Pj will not tick
the EVC locally since there is no corresponding component in the vector clock
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for Pj , it may still receive multiple messages. Each time this happens, Pj simply
executes the merge operation by calculating the LCM of two numbers. (Pj needs
to store the EVC and to do the merge because it may later send messages back
into the detection region, directly or transitively.)

4.3 Resetting EVC

We can adapt the clock resetting technique [22] to solve the problem when the
clock overflows. This technique divides the execution of a distributed system
into multiple phases. Each time the clock overflows at any process, the reset-
ting algorithm terminates the current phase by sending control messages while
ensuring there is no computation message sending from the current phase to the
next phase, nor from the next phase to the current phase. The reset protocol
involves a period of send inhibition of messages, and the local clock gets reset in
a strongly consistent (i.e., transitless) global state [1,8]. The use of clock reset-
ting also may require that the phase number be maintained along with the EVC,
to enable (if required) the timestamp comparison of events in different phases.

It is up to the application to determine when the EVC overflows. If we say
that the clock overflows when the size of the EVC equals 32n bits at some
process, then we can guarantee that the size of EVC is always less than that of
traditional vector clocks.

We can also reset the EVCs globally when there is a naturally occuring
global system state in which all previous events are ordered (as per the “hap-
pened before” relation −→) before all subsequent events. For example, such
global synchronization occurs at a global barrier or fence instruction in MPI
programs [7]; see the case study in Sect. 5. The system state immediately after
a global synchronization is a transitless global state.

4.4 Using Logarithms of EVC

As the EVC technique uses exponentiation, logarithms can be used to store
and transmit the EVCs. This can result in a significant reduction in the size of
EVCs. We note that since logarithms involve finite-precision arithmetic, their
use is subject to the introduction of errors due to the limited precision. This
may potentially affect the outcome of the test of comparison of a pair of EVC
timestamps in determining causality between the corresponding events.

5 Case Study

We review a case study of detecting memory consistency errors in MPI one-sided
applications using EVC [4]. MPI one-sided communication, also known as MPI
remote memory access, does not require sends to be matched with correspond-
ing receive instructions [7]. Only one process takes part in the data movement
(using unilateral instructions such as MPI Put and MPI Get rather than match-
ing pairs of MPI Send and MPI Receive). It decouples data transfer between
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processes from synchronization between the processes. This eliminates overhead
from unneeded synchronization and allows for greater concurrency. This also
eliminates message matching and buffering overheads that are incurred in tradi-
tional two-sided communication, leading to significant reduction in communica-
tion costs. These advantages of one-sided communication come at a cost – the
programs are more prone to synchronization bugs, such as memory consistency
errors.

In simple terms, a memory consistency error is a write to a location (through
a local store instruction or through a remotely issued MPI Put) that is con-
current with another write or a read (through a local load instruction or a
locally or remotely issued MPI Get) to the same memory location at the same
process [3]. We elaborate on “is concurrent with” semi-formally. The hb−→ “hap-
pened before” relation between events a and b is the transitive closure of the
union of the program order and synchronization order. The program order at a
process specifies that a previous instruction is executed before a later instruc-
tion. The synchronization order across processes orders events by the order in
which synchronization instructions are executed (e.g., MPI Send at a source pro-
cess completes before MPI Receive at the destination process). The consistency
order co−→ on events a and b guarantees that the memory effects of a are visible
before b [7]. This order is necessary because synchronization instructions such
as MPI Win lock/unlock order memory accesses but do not synchronize pro-
cesses. For example, if a is nonblocking, and a and b both access overlapping
buffers, there is no consistency order because of a potential race condition due
to a being nonblocking. Now, the cohb−→ relation on events is the transitive closure
of the intersection of the co−→ and hb−→ relations [7]. If the cohb−→ does not hold
between a pair of events, that pair of events is concurrent under cohb−→. Thus, two
memory operations are concurrent if there are no co−→ and hb−→ between them.
If there are two concurrent events accessing the same memory location and at
least one of them is an update operation (whether local or remote), then there is
a memory consistency error in an MPI one-sided program execution. Note that
a memory consistency error may be of two types: either within an epoch at the
same process, or across processes.

Although MPI one-sided communication calls may cause memory consistency
errors with other such calls or load/store operations, not every pair of operations
will cause such errors. This is because MPI applications use synchronization calls
(such as MPI Barrier and MPI Win fence) to enforce co−→ and/or hb−→ between
two operations. Only when two operations fall within a concurrent program
region may memory consistency errors arise. A concurrent program region is
defined as a group of program regions across multiple (all) processes, that can
be executed concurrently without co−→ and hb−→ ordering relations, i.e., program
regions that are not ordered by cohb−→ [3]. Each program region is formed of one or
multiple epochs, where an epoch is formed by a pair of one-sided synchronization
calls.
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MC-Checker [3] is a tool for identifying memory consistency errors. Using
trace files, it generates a dynamic data access DAG whose nodes are the events
and edges represent the “happened before” relation. The DAG represents a set
of concurrent regions. A concurrent region begins and ends with a global syn-
chronization operation (such as MPI Barrier and MPI Win fence). In the gen-
eral case, the set of concurrent regions forms a partial order. However, the set
of concurrent regions is totally ordered, assuming a single MPI communicator.
Each concurrent region is modeled as a graph: the set of nodes are the events
in MPI one-sided programs and the edges are the cohb−→ relation. Each concurrent
region is (independently) analyzed to detect memory consistency errors – such
an error exists between each pair of conflicting operations that are not ordered by
cohb−→. MC-Checker detects conflicting operations within each epoch of a program
region, and across processes within the concurrent region.

Typically, two-sided communication is used along with one-sided commu-
nication in high-performance computing applications. In order to detect mem-
ory consistency errors, transitive dependencies between processes, such as those
induced by send and receive operations by several different processes, need to be
captured. MC-Checker [3] suffers the drawback that it does not take into account
such transitive dependencies, because capturing such dependencies would require
building a complete DAG of dependencies between events for analysis, which
would require maintaining vector clocks. However, vector clocks do not scale
and they impose high overheads; as a result MC-Checker did not use vector
clocks and this led to the introduction of false positives in reporting memory
consistency errors.

The MC-CChecker tool [4] overcame this drawback by using the EVC,
thereby eliminating the false positives reported by MC-Checker while still main-
taining low overheads. As the cohb−→ relation is specified only on synchronization
events within and across processes (these are the relevant events), the EVC
scheme also needs to timestamp only such events. MC-CChecker adapted the
EVC rules of Fig. 1 [9] to MPI one-sided communication system as follows [4].

R1. For two consecutive synchronization events, if exi
cohb−→ ex+1

i , then tx+1
i =

txi ∗ pi.
R2. If exi is fence (or barrier) and eyj is the corresponding fence (or barrier),

then a message m from exi to eyj is timestamped tm = txi . On receipt at Pj ,
tyj = LCM(tm, tyj ).

R3/R4/R5. If exi is post/complete/send and eyj is the corresponding
start/wait/receive, then a message m from exi to eyj is timestamped tm =
txi ; and then a local tick is executed at Pi. On receipt at Pj , t

y
j = LCM(tm, tyj ).

For simplicity, it is assumed that post cohb−→ start and complete
cohb−→ wait. Only

synchronization operations are timestamped as the goal is to represent an area
(termed as a separate region) formed between two consecutive synchronization
operations, including the former but excluding the latter; the timestamps of
all events within the separate region equal the timestamp of the representing
(former) synchronization event’s timestamp.
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Along the lines of the test in [9], exi
cohb−→ eyj if and only if txi divides tyj .

The two events are concurrent under cohb−→ if and only if the EVC timestamp
of neither event divides that of the other. MC-CChecker considers concurrent
regions like MC-Checker, but using EVC timestamped information built after
analyzing the trace files. MC-CChecker loads concurrent regions one by one from
trace files. Once MC-CChecker loads one concurrent region, it detects memory
consistency errors within each epoch similar to MC-Checker. However, for errors
across processes, it examines the concurrency of each pair of separate regions for
each concurrent region. If two separate regions are executed concurrently, MC-
CChecker checks the accessed memory of each pair of operations belonging to
the two separate regions to flag memory consistency errors (if the two operations
are concurrent under cohb−→, conflict, and access the same location).

Experiments run on HPC platforms using three different MPI applications
showed that MC-CChecker used low processing time and memory usage, when
checked for up to 128 processes. The scalability study compared MC-CChecker
using EVC and using traditional vector clocks, for systems ranging from 512
up to 8192 processes. The study showed that with EVC, execution time and
memory usage are linear (with respect to n), whereas with traditional vector
clocks, both execution time and memory usage were significantly higher and
increased in much larger proportion.

In this case study, the relevant events were the synchronization events; only
these were timestamped by MC-CChecker using EVCs. Further, each concurrent
region contained a program region from a different process. All the concurrent
regions were totally ordered, assuming a single MPI communicator. (Without
this assumption, the concurrent regions form a partial order.) The boundary
between two adjacent concurrent regions was implemented by global synchro-
nization calls such as MPI Barrier and MPI Win fence. The start of each con-
current region corresponded to a global synchronization where there was no con-
currency between events in the previous concurrent region and in the following
one. Each concurrent region was a unit of computation [1,8], and the boundary
between two adjacent/consecutive concurrent regions corresponded to a global
transitless state. MC-CChecker safely reset the EVC of each process to 1 at the
start of each concurrent region. Using the combination of these two techniques,
viz., tick at relevant event, and reset at the start of each concurrent region, the
size of the EVCs at the processes remained small and grew linearly (with n), as
the MC-CChecker scalability study showed.

6 Conclusions

Vector clocks are important in distributed and parallel systems, but are not very
scalable because they have a space complexity of O(n). The encoding of the vec-
tor clock using prime numbers, to use a single number to represent vector time,
has the potential to save on the space overheads of vector clocks. A drawback of
EVCs is that they grow fast and soon overflow, i.e., exceeding the space used by
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traditional vector clocks soon occurs. To understand this growth phenomenon,
we showed the results of simulations to examine how fast the EVC grows. The
simulations confirm that the EVC grows relatively fast, and the growth rate also
depends on the ratio of internal events to communication events. In particular,
receive events which use an LCM computation cause the size of the EVC to grow
more significantly.

Scalability approaches for the EVC to deal with the overflow problem can be
used. These include ticking the clock only at application-relevant events and only
at processes where such events occur, and resetting the EVC throughout the sys-
tem at a transitless global state when it overflows at some process or at a global
synchronization. A judicious use of these scalability approaches can control the
size of the EVC and can be used to guarantee that the size of the EVC never
exceeds the size of the traditional vector clock. We considered a case study of
using EVC for detecting memory consistency errors in MPI applications that use
one-sided communication. Using the combination of two scalability approaches,
viz., ticking at relevant event, and resetting at the start of each concurrent
region, the size of the EVCs at the processes remained small, grew linearly, and
was significantly much less than that using traditional vector clocks.

The EVC timestamps in the case study were assigned after analyzing the pro-
gram traces. It would be interesting to determine whether they can be assigned
in an on-line manner efficiently. Another future direction is to examine whether
the EVCs can be used instead of traditional vector clocks in tools for dynamic
race detection in multithreaded programs, such as DJIT+ [16] and FastTrack [6].
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