
OPCAM: Optimal Algorithms Implementing Causal
Memories in Shared Memory Systems

Min Shen
University of Illinois at Chicago

mshen6@uic.edu

Ajay D. Kshemkalyani
University of Illinois at Chicago

ajay@uic.edu

Ta-yuan Hsu
University of Illinois at Chicago

thsu4@uic.edu

ABSTRACT
Data replication is commonly used for fault tolerance in reli-
able distributed systems. In this paper, we propose three op-
timal protocols for causal consistency in distributed shared
memory systems. Our proposed optimal protocols are de-
signed for partial replication across the distributed shared
memory. Complete replication is a special case of our proto-
cols and we also give the optimal implementation of causal
consistency for the complete replication case. Algorithm
Full-Track is optimal in the sense that it can update the lo-
cal copy as soon as possible while respecting causal consis-
tency. Algorithm Opt-Track is further optimal in the sense
that the size of the local logs maintained and the amount of
control information piggybacked on the update messages is
minimal. Algorithm Opt-Track-CRP is a special case of al-
gorithm Opt-Track for the full replication case. It is highly
scalable, and significantly more efficient than the Baldoni et
al. protocol for the complete replication case.

Categories and Subject Descriptors
C.2.4 [Distributed systems]: Distributed applications

General Terms
Theory, Design, Performance

Keywords
causal consistency, distributed shared memory, causality,
replication

1. INTRODUCTION
Data replication is a common technique used for fault tol-

erance in reliable distributed systems. Besides providing
fault tolerance, it also reduces access latency in the cloud.
With data replication, consistency of data in the distributed
shared memory becomes a core issue. There exists a spec-
trum of consistency models in distributed shared memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICDCN ’15, January 04 - 07 2015, Goa, India
Copyright 2015 ACM 978-1-4503-2928-6/15/01 ...$15.00.
http://dx.doi.org/10.1145/2684464.2684483.

systems [11]: linearizability (the strongest), sequential con-
sistency, causal consistency, pipelined RAM, slow memory,
and eventual consistency (the weakest). These consistency
models represent a trade-off between cost and convenient
semantics for the application programmer.

In this paper, we propose a suite of optimal protocols,
OPCAM, for causal consistency in distributed shared mem-
ory systems. Causal memory was proposed by Ahamad et
al. [1]. Later, Baldoni et al. gave an improved imple-
mentation of causal memory [2]. Their implementation is
optimal in the sense that the protocol can update the lo-
cal copy as soon as possible, while respecting causal consis-
tency. Recently, consistency models have received attention
in the context of cloud computing with data centers and geo-
replicated storage, with product designs from industry, e.g.,
Google, Amazon, Microsoft, LinkedIn, and Facebook. The
CAP Theorem by Brewer [8] states that for a replicated,
distributed data store, it is possible to provide at most two
of the three features: Consistency of replicas, Availability of
writes, and Partition tolerance. In the face of this theorem,
most systems such as Amazon’s Dynamo [7] chose to imple-
ment eventual consistency [4], which states that eventually,
all copies of each data item converge to the same value. Be-
sides the above three features, two other desirable features
of large-scale distributed data stores are: low Latency and
high Scalability [12]. Causal consistency is the strongest
form of consistency that satisfies low Latency, defined as
the latency less than the maximum wide-area delay between
replicas. Causal consistency has been implemented by Lloyd
et al. [12], Mahajan et al. [13], Belaramani et al. [3], and
Petersen et al. [14]. However, these implementations are
not optimal in terms of the control information they use,
and they do not even achieve optimality in the sense defined
by Baldoni et al.. Further, with the exception of Lloyd et
al., they do not provide scalability as they use a form of log
serialization and exchange to implement causal consistency.
Even further, all the works, including Baldoni et al., assume
Complete Replication and Propagation (CRP) based pro-
tocols. These protocols assume full replication and do not
consider the case of partial replication.

Our proposed optimal protocols for causal consistency are
designed for partial replication across the distributed shared
memory. Complete replication is a special case of our proto-
cols and we also give the optimal implementation of causal
consistency for the complete replication case. We argue that
partial replication is more natural for some applications.
Consider the following example. A user A’s data is repli-
cated in a shared memory system across multiple data cen-

ters located in different regions. Since user A’s connections
are mostly located in the Chicago region and the US West
coast, the majority of views of user A’s data will be coming
from those two regions. In such a case, it is an overkill to
replicate user A’s data in data centers outside these two re-
gions, and partial replication has very small impact on the
overall latency in this scenario. With p replicas placed at
some p of the total of n data centers, each Write operation
that would have triggered an update broadcast to the n data
centers now becomes a multicast to just p of the n data cen-
ters. This is a direct savings in the number of messages and
p is a tunable parameter.

Contributions
1. We present an optimal algorithm Full-Track imple-

menting causal memory in a partially replicated shared
memory system. The optimality achieved is in the
sense defined by Baldoni et al., viz., the ability of the
protocol to update the local copy as soon as possible
while respecting causal consistency.

2. Algorithm Full-Track can be made optimal in terms of
the size of the local logs maintained and the amount of
control information piggybacked on the update mes-
sages. The resulting algorithm, Opt-Track, for par-
tially replicated shared memory systems is thus opti-
mal not only in the sense of Baldoni et al. but also
in the amount of control information used in local logs
and on update messages by achieving minimality.

3. As a special case of Algorithm Opt-Track, we present
algorithm Opt-Track-CRP that is optimal in a fully
replicated shared memory system. This algorithm is
optimal not only in the sense of Baldoni et al. but also
in the amount of control information used in local logs
and on update messages, which is much less than for
algorithm Opt-Track, making it highly scalable. The
algorithm is significantly more efficient than the Bal-
doni et al. protocol for the full replication case.

2. SYSTEM MODEL
The system model used in this paper is based on those

proposed by Ahamad et al. [1] and Baldoni et al. [2]. We
consider such a system which consists of n application pro-
cesses ap1, ap2, . . . , apn interacting through a shared mem-
ory Q composed of q variables x1, x2, . . . , xq. Each applica-
tion process api can perform either a read or a write opera-
tion on any of the q variables. A read operation performed
by api on variable xj which returns value v is denoted as
ri(xj)v. Similarly, a write operation performed by api on
variable xj which writes the value u is denoted as wi(xj)u.
Each variable has an initial value ⊥.

By performing a series of read and write operations, an
application process api generates a local history hi. If a
local operation o1 precedes another operation o2, we say o1
precedes o2 under program order, denoted as o1 ≺po o2. The
set of local histories hi from all n application processes form
the global history H. Operations performed at distinct pro-
cesses can also be related using the read-from order, denoted
as ≺ro. Two operations o1 and o2 from distinct processes
api and apj resp. have the relationship o1 ≺ro o2 if there are
variable x and value v such that o1 = w(x)v and o2 = r(x)v,
meaning that read operation o2 retrieves the value written
by the write operation o1. It is shown in [1] that

• for any operation o2, there is at most one operation o1
such that o1 ≺ro o2;

• if o2 = r(x)v for some x and there is no operation o1
such that o1 ≺ro o2, then v =⊥, meaning that a read
with no preceding write must read the initial value.

With both the program order and read-from order, the
causality order, denoted as ≺co, can be defined on the set
of operations OH in a history H. The causality order is the
transitive closure of the union of local histories’ program
order and the read-from order. Formally, for two operations
o1 and o2 in OH , o1 ≺co o2 if and only if one of the following
conditions holds:

1. ∃api s.t. o1 ≺po o2 (program order)

2. ∃api, apj s.t. o1 and o2 are performed by api and apj
respectively, and o1 ≺ro o2 (read-from order)

3. ∃o3 ∈ OH s.t. o1 ≺co o3 and o3 ≺co o2 (transitive clo-
sure)

Essentially, the causality order defines a partial order on the
set of operations OH . For a shared memory to be causal
memory, all the write operations that can be related by the
causality order have to be seen by all application process in
the same order defined by the causality order.

The shared memory abstraction and its causal consistency
model is implemented on top of the underlying distributed
message passing system which also consists of n sites, with
each site si hosting an application process api. Since we
assume a non-fully replicated system, each site holds only a
subset of variables xh ∈ Q. For application process api, we
denote the subset of variables kept on the site si as Xi. If
the replication factor of the shared memory system is p and
the variables are evenly replicated on all the sites, then the
average size of Xi is pq

n
.

To facilitate the read and write operations in the shared
memory abstraction, the underlying message passing sys-
tem provides several primitives to enable the communica-
tion between different sites. The read and write operations
performed by the application processes also generate certain
events in the underlying message passing system.

To implement the causal memory in the shared memory
abstraction, each time an update message m corresponding
to a write operation wj(xh)v is received at site si, a new
thread is spawned to check when to locally apply the up-
date. The condition that the update is ready to be applied
locally is called activation predicate in [2]. This predicate,
A(mwj(xh)v, e), is initially set to false and becomes true
only when the update mwj(xh)v can be applied after the oc-
currence of local event e. The thread handling the local
application of the update will be blocked until the activa-
tion predicate becomes true, at which time the thread writes
value v to variable xh’s local replica. The key to implement
the causal memory is the activation predicate.

Baldoni et al. designed an optimal activation predicate in
[2]. Their activation predicate cleanly represents the causal
memory’s requirement: a write operation shall not be seen
by an application process before any causally preceding write
operations. It is optimal because the moment this activa-
tion predicate becomes true is the earliest instant that the
corresponding update can be applied.

3. ALGORITHMS
The algorithm implementing causal memories given in [2]

is for a fully-replicated system. However, it might not al-
ways be possible to assume full replication, as the incurred
cost might be too high. It is thus important to design algo-
rithms that implement causal memories even in a non-fully
replicated system.

Several algorithms that aim at achieving a causal message
ordering have been previously proposed [15, 9, 10]. Differ-
ent from the algorithms proposed in [2], these algorithms
are for message passing systems where application processes
communicate with each other via sending and receiving mes-
sages. Putting aside this difference, none of these causal
message ordering algorithms assume messages being broad-
cast each time application processes communicate with each
other. This is similar to non-fully replicated shared mem-
ory systems, where an individual application process writ-
ing a variable does not write to all sites in the system. In
both cases, the changes in one application process do not
get propagated to the entire system. Thus, we take inspi-
ration from these causal message ordering algorithms and
design two algorithms implementing causal memories in a
non-fully replicated shared memory system, both of which
adopt the optimal activation predicate.

The first algorithm, Algorithm Full-Track, is adapted from
the causal message ordering algorithm proposed by Raynal
et al. [15]. Since the system is non-fully replicated, each
application process performing a write operation will only
write to a subset of all the sites in the system. The tracking
of the writes required to implement the optimal activation
predicate conceptually uses the notion of the matrix clock
that is traditionally used for tracking logical time.

Algorithm Full-Track achieves optimality in terms of the
activation predicate. However, in other aspects, it can still
be further optimized. We notice that, each message corre-
sponding to a write operation piggybacks an O(n2) matrix,
and the same storage cost is also incurred at each site si.
Kshemkalyani and Singhal proposed an optimal algorithm
based on necessary and sufficient conditions [9, 10] that aim
at reducing the message size and storage cost for causal mes-
sage ordering algorithms in message passing systems (here-
after referred to as the KS algorithm). The ideas behind the
KS algorithm exploit the transitive dependency of causal de-
liveries of messages. In the KS algorithm, each site keeps a
record of the most recently received message from each other
site. The list of destinations of the message are also kept in
each record (the KS algorithm assumes multicast communi-
cation). With each outgoing message, these records are also
piggybacked. The KS algorithm achieves another optimal-
ity in the sense that no redundant destination information is
recorded. Although the KS algorithm is for message passing
systems, its idea of deleting unnecessary dependency infor-
mation still applies to shared memory systems. We adapt
the KS algorithm to a non-fully replicated shared memory
system to implement causal memory there. The resulting
algorithm is Algorithm Opt-Track.

Algorithm Opt-Track can be directly applied to fully-repli-
cated shared memory systems. However, due to the full
replication case, several optimizations can be applied, in-
cluding that there is no need to keep a list of the destina-
tion information with each write operation. In this way, we
bring the cost of representing a write operation from poten-
tially O(n) down to O(1). This improves the algorithm’s

scalability when the shared memory is fully replicated. The
resulting algorithm is Algorithm Opt-Track-CRP.

Four metrics are used in the complexity analysis (See Ta-
ble 1):

• message count: count of the total number of messages
generated by the algorithm.

• message size: the total size of all the messages gener-
ated by the algorithm. It can be formalized as

∑
i(#

type i messages * size of type i messages).

• space complexity: the space complexity at each site si
for storing the various local logs.

• time complexity: the time complexity at each site si
for performing the write and read operations.

The following parameters are used in the analysis:

• n: number of sites in the system

• q: number of variables in the shared memory system

• p: replication factor, i.e., the number of sites at which
each variable is replicated

• w: number of write operations performed in the shared
memory system

• r: number of read operations performed in the shared
memory system

• d: number of write operations stored in local log (used
only in the analysis of Opt-Track-CRP)

Although the total message size complexity of the Opt-
Track algorithm is O(np2w+rp2), this is only the asymptotic
upper bound. As shown by Chandra et al. [5, 6], on aver-
age, each message’s record in the KS algorithm maintains
only a constant size of destination list. This means that,
due to the optimal condition that only necessary destina-
tion information is kept, the local log at each site will only
incur an amortized storage cost of O(n). This also applies
to the Opt-Track algorithm. Thus, the amortized message
size complexity of the Opt-Track algorithm is O(npw + rp).
The space complexity of the Opt-Track algorithm is O(p2q).
Still, this is only the asymptotic upper bound. The amor-
tized space complexity will be O(pq), since the size of the
destination list is constant on average [5, 6].

4. DISCUSSION
Compared with the existing causal memory algorithms,

our suite of algorithms has advantages in several aspects.
Similar to the complete replication and propagation causal
memory algorithm, OptP, proposed by Baldoni et al., our al-
gorithm also adopts the optimal activation predicate. How-
ever, compared with the Opt-Track-CRP algorithm, the OptP
algorithm incurs a higher cost in the message size complex-
ity, the time complexity for read operations, and the space
complexity. This is due to the fact that the OptP algorithm
requires each site to maintain a Write clock of size n, and
does not take advantage of the optimization techniques in
the KS algorithm. Compared with other causal memory al-
gorithms [12, 13, 3, 14], our algorithms have the additional
ability to implement causal memories in non-fully replicated
shared memory systems.

The benefit of partial replication compared with full repli-
cation lies in multiple aspects. First, it reduces the number
of messages sent with each write operation. Although the
read operation may incur additional messages, the overall
number of messages can still be lower than the case of full

Table 1: Complexity measures of causal memory algorithms.
Metric Full-Track Opt-Track Opt-Track-CRP OptP [2]

Message count O(pw + rp
n

) O(pw + rp
n

) O(nw) O(nw)

Message size O(n2pw + nrp) O(np2w + rp2) O(nwd) O(n2w)
amortized O(npw + rp)

Time Complexity write O(p) write O(np2) write O(1) write O(1)
read O(n2) read O(n) read O(1) read O(n)

Space Complexity O(npq) O(p2q) O(n) O(n2)
amortized O(pq)

replication if the replication factor is low and readers tend
to read variables from local replica instead of remote ones.
Hadoop HDFS and MapReduce is one such example. The
HDFS framework usually chooses a small constant number
as the replication factor even when the size of the cluster is
large. Furthermore, the MapReduce framework tries its best
to satisfy data locality, i.e., assigning tasks that read only
from the local machine. In such a case, partial replication
generates much less messages than full replication. Partial
replication can also help to reduce the total size of messages
transmitted within the system. Although the two partial
replication causal memory algorithms proposed in this paper
(Full-Track algorithm and Opt-Track algorithm) might have
a higher message size complexity compared with their coun-
terparts for full replication, e.g., Full-Track vs. OptP and
Opt-Track vs. Opt-Track-CRP, this measure is only for the
control messages and does not take into consideration the
size of the data that is actually being replicated. In modern
social networks, multimedia files like images and videos are
frequently shared. The size of these files is much larger than
the control information piggybacked on them. Full replica-
tion might improve the latency for accessing these files from
different locations, however it also incurs a large overhead
on the underlying system for transmitting and storing these
files across different sites. Furthermore, in the scenario in
Section 1, where most accesses to a user’s file are located
within certain geographical regions, the improvement in the
latency brought by full replication is less significant com-
pared to the cost it imposes on the underlying system. Thus,
partial replication can help to reduce the transmission and
storage overhead in the underlying system when read opera-
tions tend to be performed on the local replica and the files
to be replicated are much larger than the control informa-
tion.

The full version of the paper is available as [16].

5. REFERENCES
[1] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and

P. Hutto. Causal memory: definitions, implementation
and programming. Distributed Computing, 9, 1, pages
37–49, 1995.

[2] R. Baldoni, A. Milani, and S. Piergiovanni. Optimal
propagation-based protocols implementing causal
memories. Distributed Computing, 18, 6, pages
461–474, 2006.

[3] N. Belaramani, M. Dahlin, L. Gao, A. Venkataramani,
P. Yalagandula, and J. Zheng. Practi replication. In
NSDI, 2006.

[4] P. Bernstein and S. Das. Rethinking eventual
consistency. Proc. of the 2013 ACM SIGMOD

International Conf. on Management of Data, 2013.

[5] P. Chandra, P. Gambhire, and A. D. Kshemkalyani.
Performance of the optimal causal multicast
algorithm: A statistical analysis. IEEE Transactions
on Parallel and Distributed Systems, 15(1), pages
40–52, January 2004.

[6] P. Chandra and A. D. Kshemkalyani. Causal multicast
in mobile networks. Proc. of the 12th IEEE/ACM
Symposium on Modelling, Analysis, and Simulation of
Computer and Communication Systems, pages
213–220, 2004.

[7] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
Proc. of the 19th ACM SOSP, pages 205–220, 2007.

[8] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. ACM SIGACT News, 2002.

[9] A. Kshemkalyani and M. Singhal. An optimal
algorithm for generalized causal message ordering.
Proc. of the 15th ACM Symposium on Principles of
Distributed Computing (PODC), page 87, 1996.

[10] A. Kshemkalyani and M. Singhal. Necessary and
sufficient conditions on information for causal message
ordering and their optimal implementation.
Distributed Computing, 11, 2, pages 91–111, 1998.

[11] A. Kshemkalyani and M. Singhal. Distributed
Computing: Principles, Algorithms, and Systems.
Cambridge University Press, 2008.

[12] W. Lloyd, M. Freedman, M. Kaminsky, and
D. Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. Proc. of
the 23rd ACM SOSP, pages 401–416, 2011.

[13] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency,
availability, and convergence. Tech. Rep. TR-11-22,
Univ. Texas at Austin, Dept. Comp. Sci., 2011.

[14] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and
A. Demers. Flexible pdate propagation for weakly
consistent replication. In SOSP, 1997.

[15] M. Raynal, A. Schiper, and S. Toueg. The causal
ordering abstraction and a simple way to implement
it. Information Processing Letters, 39, 6, pages
343–350, 1991.

[16] M. Shen, A. Kshemkalyani, and T. Hsu. OPCAM:
Optimal algorithms implementing causal memories in
shared memory systems. Tech. Rep., Univ. Illinois at
Chicago, Dept. Comp. Sci., 2014.

