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ABSTRACT
Byzantine fault-tolerant causal ordering of messages in asynchro-

nous systems is useful to many applications. Although the problem

has been studied for broadcast communication, it has not been

examined for unicasts or multicasts in asynchronous systems. In

this paper, we use execution histories to prove that it is impossi-

ble to solve causal ordering for both unicasts and multicasts in an

asynchronous system with one or more Byzantine processes. In

view of these impossibility results, we propose the Channel Sync

Algorithms to provide causal order of unicasts and multicasts un-

der the Byzantine failure model in synchronous systems, which

have a known upper bound on message latency. The Channel Sync

Algorithms operate under the synchronous system model, but are

inherently asynchronous and offer a high degree of concurrency as

lock-step communication is not assumed.

CCS CONCEPTS
• Computing methodologies→ Distributed algorithms; • Net-
works→ Network algorithms.
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1 INTRODUCTION
Causality provides important application-level semantics to dis-

tributed programs. Causality is defined by the happens before [14]
relation on the set of events, and by extension, on the set of mes-

sages. If message𝑚1 causally precedes𝑚2 and both are sent to 𝑝𝑖 ,

then𝑚2 cannot be delivered before𝑚1 at 𝑝𝑖 to enforce causal order

[3]. Causal ordering ensures that causally related updates to data

occur in a valid manner respecting that causal relation. Applications

of causal ordering include distributed data stores, fair resource allo-

cation, and collaborative applications such as multiplayer online
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gaming, social networks, event notification systems, group editing

of documents, and distributed virtual environments.

It is important to solve causal ordering under the Byzantine

failure model because it mirrors the real world. Byzantine-tolerant

causal ordering/causal consistency, which considered/relied on only

broadcast communication, was studied in [1, 11, 12, 24]. Byzantine-

tolerant causal ordering for unicasts or multicasts has not been

considered besides the recent analysis in [19].

This paper makes the following contributions.

(1) We prove using execution histories that causal ordering of

unicasts in an asynchronous systemwith even one Byzantine

process is impossible.

(2) In view of the above impossibility result for asynchronous

systems, we show that a solution can be designed in a syn-

chronous system. The strengthening is in the form of a

known upper bound 𝛿 on message latency, and also a known

upper bound𝜓 on the relative speeds of processors.

We propose the Channel Sync algorithm for Byzantine-tolerant

causal ordering of unicasts in a synchronous system. This

algorithm uses 2(𝑛 − 2) control messages of size 𝑂 (1) each,
per application message, where 𝑛 is the number of processes

in the system. This algorithm allows complete concurrency

in the execution. The implementation uses 𝑛 queues per pro-

cess. We prove the correctness of the algorithm and bound

the time amessage can spend in a queue, despite the presence

of Byzantine processes in the system.

(3) Based on the impossibility result of Byzantine-tolerant causal

ordering of unicasts in an asynchronous system, we prove

that it is impossible to solve for Byzantine-tolerant causal

multicasts in an asynchronous system. We then give an ex-

tension of the Channel Sync algorithm for multicasts in a

synchronous system and prove its correctness.

Roadmap. Section 2 reviews related work. Section 3 gives the

system model. Section 4 gives the impossibility result of being un-

able to solve Byzantine causal unicast in an asynchronous system.

For a synchronous system where there is a known upper bound

on the message latency, Section 5 presents the Channel Sync algo-

rithm for Byzantine causal unicast. Section 6 analyzes Byzantine

causal multicast and proves that it is impossible to solve it in an

asynchronous system. Section 7 gives the extension of the Channel

Sync algorithm to Byzantine causal multicast in the synchronous

system model. Section 8 gives a discussion and Section 9 concludes.

2 RELATEDWORK
Algorithms for causal ordering of unicast messages in an asynchro-

nous setting under a fault-free model have been proposed, e.g., in

[23]. These extend to implement causal multicasts in a failure-free

setting [13, 22]. The above algorithms append control information

to application messages. The algorithm in [10] for the same setting
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does broadcast via flooding on a overlay topology and no control

information is used. We are not aware of any work on causal or-

dering in synchronous systems. Indeed, if lock-step execution is

used in a synchronous system or can be simulated, causal order is

naturally satisfied because only one message hop is traversed in

one step or round.

There has been some work on causal broadcasts under various

failure models. Causal ordering of broadcast messages under crash

failures in asynchronous systems was introduced in [3]. This algo-

rithm required each message to carry the entire set of messages

in its causal past as control information. The algorithm presented

in [20] implements crash fault-tolerant causal broadcast in asyn-

chronous systems with a focus on optimizing the amount of con-

trol information piggybacked on each message. An algorithm for

causally ordering broadcast messages in an asynchronous system

with Byzantine failures is proposed in [1]. The feasibility of solving

Byzantine causal order for unicasts, multicasts, and broadcasts was

analyzed in [19]. Recently the Byzantine fault model was used to

implement causal consistency in distributed shared memory and

replicated databases [11, 12, 24]; these approaches relied on broad-

cast communication. To the best of our knowledge, no paper has

attempted to solve causal ordering of unicasts and multicasts in an

asynchronous system with Byzantine failures, besides our analysis

of solvability [19].

3 SYSTEM MODEL
This paper deals with a distributed system having Byzantine pro-

cesses which are processes that can misbehave [15, 21]. A correct

process behaves exactly as specified by the algorithm whereas a

Byzantine process may exhibit arbitrary behaviour including crash-

ing at any point during the execution. A Byzantine process cannot

impersonate another process or spawn new processes.

The distributed system is modelled as an undirected graph 𝐺 =

(𝑃,𝐶). Here 𝑃 is the set of processes communicating asynchronously

in the distributed system. Let 𝑛 be |𝑃 |. 𝐶 is the set of (logical) com-

munication links over which processes communicate by message

passing. The channels are FIFO. 𝐺 is a complete graph.

The system is first assumed to be asynchronous, i.e., there is

no known fixed upper bound 𝛿 on the message latency, nor any

known fixed upper bound 𝜓 on the relative speeds of processors

[7]. In contrast, a synchronous system has been defined as one in

which both 𝛿 and𝜓 are known. [7]. We prove that it is impossible to

solve Byzantine-tolerant causal message ordering for unicasts and

multicasts in an asynchronous system. In light of this impossibility

result, we give an algorithm for a system where 𝛿 is known and

used by the algorithm; the algorithm relies on timeouts which can

use knowledge of 𝜓 for accuracy. Thus, it can be said that the

algorithm assumes a synchronous system. Another algorithm for

such a system is given in [18].

We do not consider the use of digital signatures or cryptographic

techniques in the system model because of their high cost as well

as hidden/implicit assumptions such as bounds on message latency,

as in [6], which makes them inappropriate for truly asynchronous

systems.

Let 𝑒𝑥
𝑖
, where 𝑥 ≥ 1, denote the 𝑥-th event executed by process

𝑝𝑖 . An event may be an internal event, a message send event, or

a message receive event. Let the state of 𝑝𝑖 after 𝑒
𝑥
𝑖
be denoted

𝑠𝑥
𝑖
, where 𝑥 ≥ 1, and let 𝑠0

𝑖
be the initial state. The execution at

𝑝𝑖 is the sequence of alternating events and resulting states, as

⟨𝑠0
𝑖
, 𝑒1
𝑖
, 𝑠1
𝑖
, 𝑒2
𝑖
, 𝑠2
𝑖
. . .⟩. The happens before [14] relation, denoted→, is

an irreflexive, asymmetric, and transitive partial order defined over

events in a distributed execution that is used to define causality.

Definition 1. The happens before relation on events consists of
the following rules:

(1) Program Order: For the sequence of events ⟨𝑒1
𝑖
, 𝑒2
𝑖
, . . .⟩ exe-

cuted by process 𝑝𝑖 , ∀ 𝑗, 𝑘 such that 𝑗 < 𝑘 we have 𝑒 𝑗
𝑖
→ 𝑒𝑘

𝑖
.

(2) Message Order: If event 𝑒𝑥
𝑖
is a message send event executed

at process 𝑝𝑖 and 𝑒
𝑦

𝑗
is the corresponding message receive event

at process 𝑝 𝑗 , then 𝑒𝑥𝑖 → 𝑒
𝑦

𝑗
.

(3) Transitive Order: If 𝑒 → 𝑒′ ∧ 𝑒′ → 𝑒′′ then 𝑒 → 𝑒′′.

Next, we define the happens before relation→ on the set of all

application-level messages 𝑅.

Definition 2. The happens before relation→ on messages con-
sists of the following rules:

(1) The set of messages delivered from any 𝑝𝑖 ∈ 𝑃 by a process is
totally ordered by→.

(2) If 𝑝𝑖 sent or delivered message𝑚 before sending message𝑚′,
then𝑚 →𝑚′.

(3) If𝑚 →𝑚′ and𝑚′ →𝑚′′, then𝑚 →𝑚′′.

Definition 3. The causal past of message𝑚 is denoted as𝐶𝑃 (𝑚)
and defined as the set of messages in 𝑅 that causally precede message
𝑚 under→.

We require an extension of the happens before relation on mes-

sages to accommodate the possibility of Byzantine behaviour. We

present a partial order on messages called Byzantine happens before,

denoted as

𝐵−→, defined on 𝑆 , the set of all application-level messages

that are both sent by and delivered at correct processes in 𝑃 .

Definition 4. The Byzantine happens before relation
𝐵−→ on mes-

sages in 𝑆 consists of the following rules:

(1) The set of messages delivered from any correct process 𝑝𝑖 ∈ 𝑃
by any correct process is totally ordered by

𝐵−→.
(2) If 𝑝𝑖 is a correct process and 𝑝𝑖 sent or delivered message𝑚

(to/from another correct process) before sending message𝑚′ to

a correct process, then𝑚
𝐵−→𝑚′.

(3) If𝑚
𝐵−→𝑚′ and𝑚′

𝐵−→𝑚′′, then𝑚
𝐵−→𝑚′′.

The Byzantine causal past of a message is defined as follows:

Definition 5. The Byzantine causal past of message𝑚, denoted
as 𝐵𝐶𝑃 (𝑚), is defined as the set of messages in 𝑆 that causally precede

message𝑚 under
𝐵−→.

The correctness of Byzantine causal order unicast/multicast/broad-

cast is specified on (𝑅,→) and (𝑆, 𝐵−→) as follows.

Definition 6. A causal ordering algorithm for unicast/multicas-
t/broadcast messages must ensure the following:
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(1) Strong Safety: ∀𝑚′ ∈ 𝐶𝑃 (𝑚) such that𝑚′ and𝑚 are sent to
the same (correct) process, no correct process delivers𝑚 before
𝑚′.

(2) Liveness: Each message sent by a correct process to another
correct process will be eventually delivered.

Definition 7. A causal ordering algorithm for unicast/multicas-
t/broadcast messages must ensure the following:

(1) Weak Safety: ∀𝑚′ ∈ 𝐵𝐶𝑃 (𝑚) such that𝑚′ and𝑚 are sent to
the same (correct) process, no correct process delivers𝑚 before
𝑚′.

(2) Liveness: Each message sent by a correct process to another
correct process will be eventually delivered.

When𝑚
𝐵−→ 𝑚′, then there exists a causal chain from𝑚 to𝑚′

along correct processes that sent messages along that chain.

4 IMPOSSIBILITY RESULT
An algorithm to solve causal ordering collects the execution history

of each process in the system and derives causal relations from it.

Let 𝐸𝑖 denote the (actual) execution history at 𝑝𝑖 and let 𝐸 =
⋃

𝑖 {𝐸𝑖 }.
For any causal ordering algorithm, let 𝐹𝑖 be the execution history at

𝑝𝑖 as collected by the algorithm and let 𝐹 =
⋃

𝑖 {𝐹𝑖 }. 𝐹 thus denotes

the execution history as collected by the algorithm. Let𝑀 (𝐸) and
𝑀 (𝐹 ) denote the messages in 𝐸 and 𝐹 , respectively. 𝑝𝑟 is a correct

process which receives𝑚2 ∈ 𝑀 (𝐸).𝑚1 ∈ 𝑀 (𝐸)∪𝑀 (𝐹 ) is a message

sent to 𝑝𝑟 ; because𝑚1 need not have reached 𝑝𝑟 yet, it may belong

to𝑀 (𝐹 ) \𝑀 (𝐸). Let𝑚1 →𝑚2 |𝐸 and𝑚1 →𝑚2 |𝐹 be the evaluation

(1 or 0) of𝑚1 →𝑚2 using 𝐸 and 𝐹 , respectively.

We rephrase the causal ordering problem (Definition 6) as CO(𝐸,-
𝐹,𝑚2) that returns 1 iff ∀𝑚1,𝑚1 → 𝑚2 |𝐸 = 𝑚1 → 𝑚2 |𝐹 . When 1

is returned, the algorithm output matches God’s truth and solves

CO correctly. Thus, returning 1 indicates that the problem has been

solved correctly by the algorithm using 𝐹 . 0 is returned if either

(1) ∃𝑚1 such that𝑚1 →𝑚2 |𝐸 = 1 and𝑚1 →𝑚2 |𝐹 = 0, denot-

ing a strong safety violation, or

(2) ∃𝑚1 such that𝑚1 →𝑚2 |𝐸 = 0 and𝑚1 →𝑚2 |𝐹 = 1, denot-

ing a liveness violation.

To determine whether CO is solved correctly, we have to evaluate

∀𝑚1,𝑚1 →𝑚2 |𝐸 =𝑚1 →𝑚2 |𝐹 even if𝑚1 ∈ (𝑀 (𝐸)∪𝑀 (𝐹 ))\𝑀 (𝐸)
because such an𝑚1 is recorded by the algorithm as part of 𝐹 . The

key observation we make is that in CO, a single Byzantine pro-

cess 𝑝𝑏 can cause 𝐹 (as recorded by the algorithm) to be different

from 𝐸. This is not just a mismatch between 𝐸𝑏 and 𝐹𝑏 but also be-

tween other 𝐸𝑎 and 𝐹𝑎 by contaminating 𝐹𝑎 via direct and transitive

message passing originated at 𝑝𝑏 .

Theorem 1. It is impossible to solve causal ordering (Definition 6)
as specified by CO(𝐸, 𝐹,𝑚2) of unicast messages in an asynchronous
message passing system with one or more Byzantine processes.

Proof. We prove the impossibility of solving the CO problem

by showing:

(1) a reduction (denoted ⪯) from Black_Box toCO, where Black_Box
is defined below,

(2) a reduction from the Consensus problem (which by the FLP

result [9] is unsolvable in the presence of a single Byzantine

process) to the Black_Box problem.

Specifically, we show how Consensus can be solved by solving

Black_Box, and how Black_Box can be solved by solving CO. If
CO were solvable, Black_Box would be solvable, and then Consen-
sus would also be solvable. That contradicts the unsolvability of

Consensus. Hence, there cannot exist any algorithm to solve CO.
Black_Box(𝑉 , 𝐸, 𝐹,𝑚2) takes as input a vector𝑉 of initial boolean

values, one per process, 𝐸, 𝐹 , and message𝑚2 sent to a correct (non-

Byzantine) process 𝑝𝑟 and𝑚2 is received by 𝑝𝑟 . Black_Box acts as
follows. The correct process 𝑝𝑟 broadcasts the value𝑤 where:

𝑤 =


0 if each correct 𝑝𝑖 has 𝑉 [𝑖] = 0

1 if each correct 𝑝𝑖 has 𝑉 [𝑖] = 1∧
𝑚1
(𝑚1 →𝑚2 |𝐸 =

𝑚1 →𝑚2 |𝐹 ) otherwise

Black_Box is solvable if CO at 𝑝𝑟 is solvable correctly because

solving CO requires using the execution histories of potentially

Byzantine processes as recorded by the algorithm in 𝐹 . In order for

any algorithm to correctly solve CO, it must ensure that 𝐹 matches

𝐸. For this, the following must hold.

• A Byzantine process may attempt to insert a fake entry in

𝐹𝑥 and contaminate the reporting of histories in 𝐹 , leading

to a liveness violation because𝑀 (𝐹 ) \𝑀 (𝐸) ≠ ∅. Therefore,
either contamination of 𝐹 has to be prevented or malicious

entries have to be filtered out from 𝐹 in bounded time. But

due to unicasting, a message from a potentially Byzantine

𝑝𝑥 to 𝑝𝑦 in 𝐹𝑥 , cannot be verified in bounded time by other

processes while collecting the reported execution history

as the message itself cannot be broadcast or communicated

to any process other than 𝑝𝑦 to keep it private. Therefore,

identification of Byzantine processes, their actual execution

histories, and causal chains from them is required.

• Let there be a message𝑚 sent by 𝑝𝑥 in 𝐸𝑥 . During the collec-

tion of 𝐸𝑥 for reporting 𝐹𝑥 , Byzantine processes may delete

information about𝑚 from 𝐹𝑥 , leading to a strong safety vio-

lation because𝑀 (𝐸) \𝑀 (𝐹 ) ≠ ∅. Therefore, either deletion
of information from 𝐸 in 𝐹 has to be prevented, or such dele-

tions from 𝐸 when presented with 𝐹 have to be recognized in

bounded time. This requires identification of the Byzantine

processes, their actual execution histories, and causal chains

from them.

If there were an algorithm to make 𝐹 match 𝐸, it requires identifying
whether each of the processes that input their execution histories is
correct or Byzantine (to trace and deal with/resolve the impact of
contamination via message passing by the Byzantine processes from
those Byzantine sources on the execution histories of other processes).
Thus, Black_Box ⪯ CO.

In the Consensus problem, each process has an initial value and

all correct processes must agree on a single value. The solution

needs to satisfy the following three conditions [15, 21].

• Agreement: All non-faulty processes must agree on the same

single value.

• Validity: If all non-faulty processes have the same initial

value, then the agreed-on value by all the non-faulty pro-

cesses must be that same value.

• Termination: Each non-faulty processmust eventually decide

on a value.
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When Consensus(𝑉 ) is to be solved, it invokes the black box

for Black_Box(𝑉 , 𝐸, 𝐹,𝑚2). Each correct process outputs as its con-

sensus value the value that it receives from 𝑝𝑟 and terminates.

Agreement, Validity, and Termination clauses of Consensus can be

seen to be satisfied. So Consensus ⪯ Black_Box.
If CO is (correctly) solvable, it returns 1 for ∀𝑚1,𝑚1 →𝑚2 |𝐸 =

𝑚1 →𝑚2 |𝐹 , (and implicitly for all𝑚2). We now have

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 ⪯ 𝐵𝑙𝑎𝑐𝑘_𝐵𝑜𝑥 ⪯ 𝐶𝑂

This implies that if the CO problem is solvable, then Consensus
is also solvable. That contradicts the FLP impossibility result for a

Byzantine process system, hence CO is not solvable. □

Digression 1. It is worth observing that under the crash-failure

model, even though Consensus ⪯ Black_Box, we have that Black_Box
⪯̸ CO. This latter relation ⪯̸ is because solving CO does not require

identifying the crashed processes; their (correct) execution histories

can be faithfully transmitted to other processes (transitively) via

the execution messages sent in the execution history itself as it

grows and be present at the other (correct) processes’ execution

histories and in in-transit messages. As𝑚1 and𝑚2 must have been

sent, the execution histories of their senders can transitively propa-

gate to other non-crashed processes. In other words, the execution

history of any prefix can be represented by that execution. There-

fore, 𝑀 (𝐸) = 𝑀 (𝐹 ). Hence, it suffices to consider the execution

histories 𝐸𝑖 of non-crashed processes (that include 𝑝𝑟 ) to determine

𝑚1 →𝑚2 without having to identify the crashed processes.

Digression 2. We outline the logic that CO (Definition 6) cannot

be solved for Byzantine Causal Broadcast. For Byzantine Causal

Broadcast, 𝐹 cannot be made to match 𝐸.

• By running the causal ordering layer above the Byzantine

Reliable Broadcast (BRB) [4, 5] layer, liveness violation can

be prevented by ensuring𝑀 (𝐹 ) \𝑀 (𝐸) = ∅. If a Byzantine
process 𝑝𝑏 attempts to insert a fake entry about broadcast

of𝑚 by 𝑝𝑥 in 𝐹𝑥 (𝑥 = 𝑏 or 𝑥 ≠ 𝑏) at a correct process 𝑝𝑦 , 𝑝𝑦
can verify whether or not this insertion is valid as based on

the Reliability/ Termination properties of BRB,𝑚 must be

delivered by the BRB layer at all correct processes including

𝑝𝑦 . Therefore, no message from a correct process to another

correct process will wait indefinitely for causal delivery.

• However, a Byzantine process 𝑝𝑥 can delete from 𝐹𝑥 informa-

tion about a broadcast of𝑚1 by 𝑝𝑘 that it has received, where

𝑝𝑘 may be a correct process, despite running the causal order-

ing layer above the BRB layer. A message𝑚2 then broadcast,

where𝑚1 → 𝑚2 and the message chain passes through a

message broadcast by 𝑝𝑥 , can be delivered by a correct pro-

cess 𝑝𝑟 before𝑚1 is, if 𝑝𝑟 is not to wait indefinitely. Thus,

𝑀 (𝐸) \𝑀 (𝐹 ) ≠ ∅ and strong safety violations may occur.

Thus, to solve CO, it is necessary to identify Byzantine processes,

their actual execution histories, and causal chains from them. Then

Black_Box ⪯ CO and hence Consensus ⪯ CO.
We now show a similar result to Theorem 1 with strong safety

(Definition 6) defined in terms of the→ relation replaced by weak

safety (Definition 7) defined in terms of the

𝐵−→ relation in the

correctness criteria for causal ordering.

Theorem 2. It is impossible to solve causal ordering (Definition 7)
of unicast messages in an asynchronous message passing system with
one or more Byzantine processes.

Proof. We rephrase the causal ordering problem (Definition 7)

as CO(𝐸, 𝐹,𝑚2) that returns 1 iff ∀𝑚1,𝑚1

𝐵−→ 𝑚2 |𝐸 = 𝑚1

𝐵−→ 𝑚2 |𝐹 .
The problem is solved correctly iff 1 is returned.

Observe,𝑚1

𝐵−→𝑚2 is equivalent to:𝑚1 →𝑚2∧ there is a causal

path from send event of 𝑚1 to send event of 𝑚2 going through

correct processes in the execution. We define𝑚1

𝐵−→𝑚2 |𝐹 as (𝑚1 →
𝑚2 |𝐹 ∧ there is a causal path from send event of𝑚1 to send event of
𝑚2 going through correct processes in the execution). (Likewise for

𝑚1

𝐵−→𝑚2 |𝐸 .) The algorithm to solve CO does not have to determine

whether the path through correct processes exists.

Note that𝑚2 is necessarily sent by a correct process when𝑚1

𝐵−→
𝑚2 holds. The proof of Theorem 1 carries identically, subject to the

following changes. In the specification of Black_Box, the definition∧
𝑚1

(𝑚1

𝐵−→ 𝑚2 |𝐸 =𝑚1

𝐵−→ 𝑚2 |𝐹 ) instead of

∧
𝑚1

(𝑚1 → 𝑚2 |𝐸 =

𝑚1 →𝑚2 |𝐹 ) is used.
That Consensus ⪯ Black_Box still holds is self-evident. Black_Box

⪯ CO still holds because solving CO correctly still requires using

the execution histories of Byzantine processes as recorded by the

algorithm in 𝐹 , similar to the proof for Theorem 1. In order for any

algorithm to correctly solve CO, it must ensure that 𝐹 matches 𝐸.

For this, the following must hold.

• Due to unicasting, a message𝑚 from a potentially Byzantine

𝑝𝑥 to 𝑝𝑦 in 𝐹𝑥 , cannot be verified in bounded time by other

processes while collecting the reported execution history

as the message itself cannot be broadcast or communicated

to any process other than 𝑝𝑦 to keep it private. Thus, a

fake entry may be inserted in 𝐹𝑥 by a Byzantine process,

even if there exists some path through correct processes

from sender of 𝑚1 to sender of 𝑚2, leading to a liveness

violation because𝑀 (𝐹 ) \𝑀 (𝐸) ≠ ∅. (Note, liveness of𝑚2 is

not with respect to a𝑚1 sent by a correct process but all𝑚1.)

Therefore, either contamination of 𝐹 has to be prevented or

malicious entries have to be filtered out from 𝐹 in bounded

time. This requires identifying Byzantine processes, their

actual execution histories, and causal chains from them.

• Let there be a message𝑚1 sent by correct process 𝑝𝑥 in 𝐸𝑥 .

During the collection of 𝐸𝑥 for reporting 𝐹𝑥 , if there are no

Byzantine processes along some path from 𝑝𝑥 to sender 𝑝𝑘
of 𝑚2, (hence 𝑝𝑘 must be a correct process), it is possible

to ensure that no Byzantine processes can cause deletion

of information about𝑚1 from 𝐹𝑥 , thus (𝑀 (𝐸))𝑐 \ 𝑀 (𝐹 ) =
∅, where (𝑀 (𝐸))𝑐 is the messages of 𝑀 (𝐸) sent by correct

processes. Thus, weak safety violation of𝑚2 (with respect

to𝑚1 sent by correct processes) can be prevented.

If there were an algorithm to make 𝐹 match 𝐸, it still requires identi-
fying whether each of the processes that input their execution histories
is correct or Byzantine (to trace and deal with/resolve the impact of
contamination via message passing by the Byzantine processes from
those Byzantine sources on the execution histories of other processes) .
Hence Black_Box ⪯ CO. The theorem follows. □
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Digression 3. We outline the logic that CO (Definition 7) can

be solved for Byzantine Causal Broadcast. For Byzantine Causal

Broadcast, 𝐹 can be made to match 𝐸.

• 𝑀 (𝐹 ) \ 𝑀 (𝐸) = ∅, hence liveness violations cannot occur.
Same reasoning as in first bullet in Digression 2.

• If there is a path through correct processes along𝑚1

𝐵−→𝑚2,

which can faithfully propagate information about𝑚1, when

𝑚2 arrives at 𝑝𝑟 it will wait for 𝑚1 which must arrive at

𝑝𝑟 because of the Reliability/ Termination properties of the

BRB layer over which the causal ordering layer is run. Thus

𝑀 (𝐸)𝑐 \𝑀 (𝐹 ) = ∅ and weak safety violations cannot occur.

(This holds even if broadcaster of𝑚1 is Byzantine.)

Thus to solve CO for broadcasts under Definition 7, it is not neces-

sary to identify whether each process is Byzantine, hence Black_Box
⪯̸ CO and hence Consensus ⪯̸ CO.

5 CHANNEL SYNC ALGORITHM
As a result of Theorems 1, 2 we know that it is impossible to main-

tain both (strong and weak) safety and liveness while trying to

causally order unicast messages in an asynchronous system with

Byzantine faults. However, it is possible to develop a solution based

on timeouts in the synchronous system model. Under the assump-

tion of a network guarantee of an upper bound 𝛿 onmessage latency,

we prevent the Byzantine nodes from making non-faulty nodes

wait indefinitely resulting in a liveness attack.

Algorithm 1 presents a solution that assumes that the underlying

network guarantees that all messages are delivered within 𝛿 time.

As long as this assumption holds, Algorithm 1 can guarantee both

weak safety and liveness. Each process maintains FIFO queues for

each other process where it stores incoming messages from the

concerned process. Application messages are delivered immediately

after getting popped from the queue. However, control messages are

not processed immediately; the algorithm checks to make sure that

it is safe to deliver the next message in the queue before completing

processing. Whenever a process sends a message it informs every

other process about the send event via a control message. Whenever

a process delivers a message, it also informs every other process

via a control message. Whenever process 𝑝𝑖 receives a control or

applicationmessage from process 𝑝 𝑗 , it pushes it into𝑄 𝑗 . All control

messages have timers associated with them to time them out in

case of Byzantine behaviour of the sender and/or receiver. When

𝑝𝑖 pops a receive control message from any queue 𝑄𝑥 it waits for

either the corresponding send control message to reach the head of

its queue (be dequeued), or the receive control message gets timed

out in case the send control message does not arrive. This ensures

that causality is not violated at 𝑝𝑖 , while ensuring progress. We also

need to ensure that in case of non-Byzantine behaviour on part of

both the sender and receiver, both the send control message and

receive control message do not time out before the other one arrives.

In order to achieve this, the timer for receive control messages has

to be set to at least 𝛿 as shown in Lemma 1 while the timer for send

control messages can be varied (see discussion below). The timer

for send control messages can be reduced (it can be set to 0 without

compromising weak safety) to implement different behaviours in

the system, but the timer for receive control message has to be at

least 𝛿 , and increasing it will only result in sub-optimal behaviour.

Algorithm 1: Channel Sync Algorithm
Data: Each 𝑝𝑖 maintains a FIFO queue𝑄 𝑗 for every process 𝑝 𝑗

1 when the application is ready to send message𝑚 to 𝑝 𝑗 :

2 𝑠𝑒𝑛𝑑 (𝑚, 𝑗, 𝑎𝑝𝑝 ) to 𝑝 𝑗

3 for all 𝑥 ≠ 𝑖, 𝑗 do
4 𝑠𝑒𝑛𝑑 (⟨𝑖, 𝑗, 𝑠𝑒𝑛𝑡 ⟩, 𝑥, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ) to 𝑝𝑥

5 when ⟨𝑚, 𝑖, 𝑡𝑦𝑝𝑒 ⟩ arrives from 𝑝 𝑗 :

6 𝑄 𝑗 .𝑝𝑢𝑠ℎ (⟨𝑚, 𝑖, 𝑡𝑦𝑝𝑒 ⟩)
7 if 𝑡𝑦𝑝𝑒 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 then
8 start 𝑡𝑖𝑚𝑒𝑟 for message𝑚

9 if𝑚[2] = 𝑠𝑒𝑛𝑡 then
10 if matching receive control message is in𝑄𝑚 [1] or popped

then
11 stop timers of send control message and matching

receive control message

12 if𝑚[2] = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 then
13 if matching send control message is in𝑄𝑚 [1] or popped

then
14 stop timers of receive control message and matching

send control message

15 when the application is ready to process a message from 𝑝 𝑗 and

| 𝑄 𝑗 |≠ 0: ⊲ Only one instance of this block is

executed at a time for a particular 𝑄𝑥

16 ⟨𝑚, ∗, 𝑡𝑦𝑝𝑒 ⟩ = 𝑄 𝑗 .𝑝𝑜𝑝 ( )
17 if 𝑡𝑦𝑝𝑒 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∧𝑚[2] = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 then
18 while timeout period not exceeded ∧ timer not stopped do
19 wait in a non-blocking manner

20 if 𝑡𝑖𝑚𝑒𝑟 is stopped then
21 while matching send control message not reached head of

𝑄𝑚 [1] do
22 wait in non-blocking manner

23 delete𝑚

24 if 𝑡𝑦𝑝𝑒 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∧𝑚[2] = 𝑠𝑒𝑛𝑡 then
25 while timeout period not exceeded ∧ timer not stopped do
26 wait in a non-blocking manner

27 if timer stopped then
28 delete the matching receive control message (popped/in

𝑄𝑚 [1] if present)

29 delete𝑚

30 if 𝑡𝑦𝑝𝑒 = 𝑎𝑝𝑝 then
31 deliver𝑚

32 for all 𝑥 ≠ 𝑖, 𝑗 do
33 𝑠𝑒𝑛𝑑 (⟨𝑖, 𝑗, 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 ⟩, 𝑥, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ) to 𝑝𝑥

Therefore, the timer for receive control messages should always be

𝛿 .

Lemma 1. Under the assumption of a network guarantee of deliver-
ing messages within a finite time period 𝛿 , no receive control message
with a timer greater than or equal to 𝛿 can get processed before the
matching send control message at any process when both the sender
and receiver processes are correct, during the execution of Algorithm 1.
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Proof. Without any loss of generality, we take 𝛿𝑟 = 𝛿 and 𝛿𝑠 = 0.

Here 𝛿𝑟 and 𝛿𝑠 are timer wait times for receive control and send

control messages, respectively. Whenever, a send control message

arrives in Algorithm 1, it stops the timer of the matching receive

control message (if already present) to make sure that the receive

control message waits for the send control message to get processed.

If the send control message gets popped from the queue and the

receive control message has not arrived, it simply gets processed.

Now whenever the receive control message arrives, it waits for the

timeout period and gets timed out without impacting weak safety

because the send control message has already been processed.

In order to ensure that a receive control message waits for a

send control message to get processed, we need to ensure that the

send control message arrives before the receive control message

times out. The maximum amount of time the send control message

can take to arrive at any process 𝑝𝑖 is 𝛿 and the minimum amount

of time the matching receive control message can take to arrive

at 𝑝𝑖 is 0. This means that in the worst-case scenario, the send

control message will arrive in time 𝛿 after the arrival of the receive

control message. Therefore, since the send control message arrives

before the receive control message times out, the receive control

message will have to wait for the matching send control message to

get processed. (Note: the sender and receiver are non-Byzantine. If

either of them is Byzantine, the receive control message, if present,

may still time out at correct process 𝑝𝑖 but, as we will show in

Corollary 1 and Theorem 4, correctness of causal ordering is not

impacted under

𝐵−→.) □

From Lemma 1, the timer for send control messages can be set as

low as 0 without impacting weak safety. The timer for send control

messages can be tweaked based on the desired system performance.

For instance, setting 𝛿𝑠 = 0 would result in reduced latency for

all send control messages at the expense of some receive control

messages waiting out their entire waiting period of 𝛿 in the queue.

If 𝛿𝑠 > 0 a send control message waits after being popped until

timeout. If in this interval any receive control message arrives,

the receive control message gets deleted (lines 12-14, 27-28) and

does not have to wait after being popped and until its timeout.

So although the wait of a send control message increases, that

of a receive control message decreases. It would be interesting to

simulate the effect on overall system latency by varying 𝛿𝑠 from 0

upwards while keeping 𝛿𝑟 fixed at 𝛿 as per Lemma 1.

If 𝛿𝑠 = 0 (effectively, no timer for send control messages), then in

Algorithm 1, stopping the send control message timer (lines 11,14)

and testing if it was stopped (lines 25,27) can be replaced by setting

and testing a boolean 𝑓 𝑙𝑎𝑔_𝑡𝑖𝑚𝑒𝑟_𝑠𝑡𝑜𝑝𝑝𝑒𝑑 .

A send event and a receive event are referred to as 𝑠 and 𝑟 ,

respectively. The control messages we use for send and receive

events are denoted 𝑐𝑚𝑠 and 𝑐𝑚𝑟 , respectively.

Theorem 3. Under the assumption of a network guarantee of
delivering messages within a finite time period 𝛿 , queued messages in
Algorithm 1 will be dequeued in at most 𝛿𝑟 +max(𝛿𝑟 , 𝛿𝑠 ) time.

Proof. As a simplifying assumption, the time taken to pop a

message from a queue is considered to be 0. The time each message

spends in the queue is only because of latency induced by control

messages. Let𝑚 be an applicationmessage inserted in𝑄𝑖0 at process

𝑝 𝑗 at time 0 (as a reference instant). The waiting time in the queue

can be analyzed as follows.

(1) There may be no control messages in front of𝑚 in𝑄𝑖0 . Since

the latency induced by application messages that may be in

front of𝑚 is 0,𝑚 will be popped and delivered immediately.

The waiting time in the queue for𝑚 is 0.

(2) There may be one or more send control messages before𝑚

in𝑄𝑖0 . Each of the control messages will take at most 𝛿𝑠 time

to get processed. Since the timers for all of those control

messages are ticking concurrently,𝑚 will have to wait for at

most 𝛿𝑠 time.

(3) There may be one receive control message 𝑐𝑚𝑟𝑖0 in front of

𝑚 in 𝑄𝑖0 . 𝑐𝑚𝑟𝑖0 is for application message𝑚1 sent from 𝑖1
(before time 0) to 𝑖0 (received before time 0). Note, if there

are multiple receive control messages ahead, the analysis

can be independently made for each of them.

(a) 𝑐𝑚𝑠𝑖1 does not arrive in 𝛿𝑟 . 𝑐𝑚𝑟𝑖0 times out at 𝛿𝑟 . So total

delay is 𝛿𝑟 .

(b) Otherwise 𝑐𝑚𝑠𝑖1 is inserted in 𝑄𝑖1 in time 𝛿𝑟 from time 0.

(i) It may be blocked by 𝑐𝑚𝑠′
𝑖1
. This times out in 𝛿𝑠 time.

Total delay is therefore 𝛿𝑟 + 𝛿𝑠 .
(ii) It may be blocked by 𝑐𝑚𝑟𝑖1 for application message𝑚2

from 𝑖2 sent before time 0 to 𝑖1 received before time 0,

ahead in 𝑄𝑖1 . Therefore 𝑐𝑚𝑟𝑖1 arrived within time 𝛿𝑟
from time 0. It waits for 𝑐𝑚𝑠𝑖2 .

(4) Reasoning for the delay introduced by wait for 𝑐𝑚𝑠𝑖2 , corre-

sponding to application message𝑚2, in 𝑄𝑖2 is as follows.

(a) 𝑐𝑚𝑠𝑖2 does not arrive in 𝛿𝑟 . 𝑐𝑚𝑟𝑖1 times out in 𝛿𝑟 after its

arrival which was latest at 𝛿𝑟 from time 0. Total delay is

therefore 𝛿𝑟 + 𝛿𝑟 .
(b) Otherwise 𝑐𝑚𝑠𝑖2 arrived within 𝛿𝑟 from time 0 because𝑚2

was sent before time 0 due to transitive chain𝑚2 →𝑚1

and 𝑚1 was received before time 0. Therefore 𝑐𝑚𝑠𝑖2 is

inserted in 𝑄𝑖2 in 𝛿𝑟 from time 0.

(i) It may be blocked by 𝑐𝑚𝑠′
𝑖2
. This times out in 𝛿𝑠 time.

Total delay is therefore 𝛿𝑟 + 𝛿𝑠 .
(ii) It may be blocked by 𝑐𝑚𝑟𝑖2 for application message𝑚3

from 𝑖3 sent before time 0 to 𝑖2 received before time 0,

ahead in 𝑄𝑖2 . Therefore 𝑐𝑚𝑟𝑖2 arrived within time 𝛿𝑟
from time 0. It waits for 𝑐𝑚𝑠𝑖3 .

(5) The reasoning for the delay introduced by wait for 𝑐𝑚𝑠𝑖3 in

𝑄𝑖3 is identical to the reasoning for the wait introduced by

𝑐𝑚𝑠𝑖2 in the previous item. In particular, 𝑐𝑚𝑠𝑖3 was inserted

in 𝑄𝑖3 within 𝛿𝑟 from time 0.

We generalize the above analysis as follows. Define← as the

“waits for" or “succeeds in time" relation on control messages in the

queues at 𝑝 𝑗 . Then, there exists a chain of control messages

𝑐𝑚𝑟𝑖0 ← 𝑐𝑚𝑠𝑖1 ← 𝑐𝑚𝑟𝑖1 ← 𝑐𝑚𝑠𝑖2 ← 𝑐𝑚𝑟𝑖2 ← . . .← 𝑐𝑚𝑠𝑖𝑘

each of which must have arrived in the corresponding 𝑄𝑖𝛼 within

time 𝛿𝑟 from time 0 (see (∗) below). This chain corresponds to the

following chain of application messages:

𝑚𝑘 →𝑚𝑘−1 → . . .𝑚2 →𝑚1

We prove that “(∗) 𝑐𝑚𝑟𝑖𝑎−1 is inserted in 𝑄𝑖𝑎−1 within time 𝛿𝑟
from time 0, 𝑐𝑚𝑠𝑖𝑎 was inserted in 𝑄𝑖𝑎 within time 𝛿𝑟 from time 0."

We use induction. The base case, being for 𝑎 = 2, was shown above.
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Assume the induction hypothesis is true for 𝑥, 𝑥 ≥ 2. We show the

result (∗) for 𝑥 + 1. As 𝑐𝑚𝑟𝑖𝑥 arrives in 𝑄𝑖𝑥 before 𝑐𝑚𝑠𝑖𝑥 , from the

induction hypothesis for 𝑥 , 𝑐𝑚𝑟𝑖𝑥 is inserted in 𝑄𝑖𝑥 within 𝛿𝑟 from

time 0. It waits for 𝑐𝑚𝑠𝑖𝑥+1 . 𝑐𝑚𝑠𝑖𝑥+1 arrived within 𝛿𝑟 from time 0,

because𝑚𝑥+1 was sent before time 0 due to transitive chain𝑚𝑥+1 →
𝑚𝑥 → . . .𝑚1 and 𝑚1 was received before time 0 (because 𝑐𝑚𝑟𝑖0
was received in 𝑄𝑖0 before time 0). Therefore 𝑐𝑚𝑠𝑖𝑥+1 is inserted in

𝑄𝑖𝑥+1 within 𝛿𝑟 from time 0. (end of proof of (∗))
We also claim 𝑘 is finite and bounded because the corresponding

control messages existed in the queues at 𝑝 𝑗 at time 0 or later and

were therefore added to the queues at the earliest at −max(𝛿𝑟 , 𝛿𝑠 );
this implies the corresponding application messages were therefore

sent after −𝛿 −max(𝛿𝑟 , 𝛿𝑠 ).
The chain of control messages terminates at 𝑐𝑚𝑠𝑖𝑘 , for 𝑘 > 0.

The queues contribute delays as analyzed by the following cases.

(1) There is no receive control message ahead of 𝑐𝑚𝑠𝑖𝑘 in 𝑄𝑖𝑘 .

Total delay this queue contributes is 𝛿𝑟 + 𝛿𝑠 .
(2) Total overall delay contributed by queues 𝑄𝑖𝑧 , 𝑧 = [1, 𝑘 − 1]

combined is considered next. Send control messages ahead

of and including 𝑐𝑚𝑠𝑖𝑧 on timing out contribute up to 𝛿𝑠
combined delay. Receive control messages ahead of 𝑐𝑚𝑠𝑖𝑧 on

timing out contribute up to 𝛿𝑟 combined delay. The combined

contribution of such send and receive control messages is up

to max(𝛿𝑟 , 𝛿𝑠 ). Plus the up to 𝛿𝑟 delay contributed by 𝑐𝑚𝑠𝑖𝑧
to get enqueued in𝑄𝑖𝑧 as seen above in (∗) gives a combined

delay bound of 𝛿𝑟 +max(𝛿𝑟 , 𝛿𝑠 ). This is also the combined

delay contributed by queues 𝑄𝑖1 through 𝑄𝑖𝑘−1 .

(3) Send (or receive) control messages ahead of𝑚 in 𝑄𝑖0 con-

tribute a delay of max(𝛿𝑠 , 𝛿𝑟 ).
Total overall delay contributed by all queues 𝑄𝑖0 to 𝑄𝑖𝑘 is thus

max(𝛿𝑟 + 𝛿𝑠 , 𝛿𝑟 +max(𝛿𝑟 , 𝛿𝑠 ),max(𝛿𝑟 , 𝛿𝑠 )) = 𝛿𝑟 +max(𝛿𝑟 , 𝛿𝑠 ).
If 𝑘 = 0, there is no receive control message ahead of𝑚 in 𝑄𝑖0 ,

and as shown at the start of the proof, total delay is bounded by 𝛿𝑠 .

Combining 𝑘 = 0 and 𝑘 > 0 cases, the total overall delay of𝑚 is

bounded by max(𝛿𝑠 , 𝛿𝑟 +max(𝛿𝑟 , 𝛿𝑠 )) = 𝛿𝑟 +max(𝛿𝑟 , 𝛿𝑠 ). □

Since the amount of time each message spends in the message

queue is bounded by a finite quantity, every application message

will eventually be delivered. Therefore liveness is maintained by

Algorithm 1.

Corollary 1. Algorithm 1 guarantees liveness.

Theorem 4. Under the assumption of a network guarantee of
delivering messages within a finite time period 𝛿 , Algorithm 1 can
guarantee weak safety by setting timers for control messages as a
function of 𝛿 .

Proof. In order to ensure weak safety, prior to delivering any

message𝑚′ at process 𝑝 𝑗 , we need to ensure that if ∃𝑚 ∈ 𝐵𝐶𝑃 (𝑚′)
such that𝑚 is sent to 𝑝 𝑗 , then𝑚 is delivered before𝑚′ at 𝑝 𝑗 .

Algorithm 1 ensures weak safety at any process as follows:

• Program Order: Since we assume FIFO channels, messages

from 𝑝𝑖 to 𝑝 𝑗 get enqueued in 𝑄𝑖 in program order and get

delivered in program order.

• Transitive Order: Let𝑚 be sent by 𝑝𝑖 to 𝑝 𝑗 at send event

𝑠𝑥
𝑖
. Consider a causal chain of 𝑏 messages starting at 𝑠

𝑦

𝑖
from

𝑖 = 𝑖0 and ending at 𝑗 = 𝑖𝑏 through correct processes and

having these events:

⟨𝑠𝑦
𝑖
= 𝑠𝑖0 → 𝑟𝑖1 → 𝑠𝑖1 → 𝑟𝑖2 → ....→ 𝑟𝑖𝑏−1 → 𝑠𝑖𝑏−1 → 𝑟𝑖𝑏 ⟩

Let 𝑠𝑥
𝑖

𝐵−→ 𝑠
𝑦

𝑖
and𝑚′ = ⟨𝑠𝑖𝑏−1 → 𝑟𝑖𝑏 ⟩ be the last message of

the causal chain. This implies that𝑚 ∈ 𝐵𝐶𝑃 (𝑚′) by transi-

tivity. The control messages for all the events in the causal

chain above will reach 𝑝 𝑗 .

We make the following observations at 𝑝 𝑗 .

(1) In 𝑄𝑖0 , 𝑐𝑚𝑠𝑖0 (control message for 𝑠𝑖0 ) waits for𝑚 (sent at

𝑠𝑥
𝑖0
) to get delivered.

(2) From Lemma 1, in 𝑄𝑖𝛼 (1 ≤ 𝛼 ≤ (𝑏 − 1)), 𝑐𝑚𝑟𝑖𝛼 waits for

𝑐𝑚𝑠𝑖𝛼−1 in 𝑄𝑖𝛼−1 to be processed.

(3) In 𝑄𝑖𝛼 (1 ≤ 𝛼 ≤ (𝑏 − 2)), 𝑐𝑚𝑠𝑖𝛼 waits for 𝑐𝑚𝑟𝑖𝛼 to be

processed.

(4) In𝑄𝑖𝑏−1 ,𝑚
′
(sent at 𝑠𝑖𝑏−1 ) waits for 𝑐𝑚𝑟𝑖𝑏−1 to be processed.

Hence, message𝑚′ waits for message𝑚 to get delivered.

Algorithm 1 therefore ensures weak safety: “that ∀𝑚 ∈ 𝐵𝐶𝑃 (𝑚′)
sent to the same 𝑝 𝑗 , 𝑚 gets delivered before 𝑚′ at 𝑝 𝑗 ," under a
network guarantee of delivering messages within a fixed time. □

Complexity for Unicasts. The Channel Sync algorithm uses 2(𝑛 −
2) control messages of size 𝑂 (1) each per application message

and does not inhibit concurrency (beyond what is necessary to

enforce causal order). Any delay up to the maximum in Theorem 3

is essential for causal order in the face of Byzantine processes. The

algorithm has a very high degree of concurrency but each process

has to manage 𝑛 queues and a timer per control message.

Note that in contrast to the Channel Sync algorithm, the algo-

rithm in [1] for causal ordering of broadcasts under weak safety

requires 𝑂 (𝑛) broadcasts (control message broadcasts) of size 𝑂 (𝑛)
each per application message broadcast. It also has an added latency

equivalent to 3𝛿 due to the underlying Bracha’s BRB protocol [4].

6 BYZANTINE CAUSAL MULTICAST
In a multicast, a send event sends a message to multiple destinations

that form a subset of the process set 𝑃 . Different send events by the

same process can be addressed to different subsets of 𝑃 . This models

dynamically changingmulticast groups andmembership inmultiple

multicast groups. There can exist overlapping multicast groups. In

the general case, there are 2
|𝑃 | − 1 groups. Although there are

several algorithms for causal ordering of messages under dynamic

groups, such as [13, 22], none of them consider the Byzantine failure

model.

Byzantine Reliable Multicast (BRM) [16, 17] has traditionally

been defined based on Bracha’s Byzantine Reliable Broadcast (BRB)

[4, 5]. These algorithms require that in every multicast group 𝐺 ,

less then |𝐺 |/3 processes are Byzantine. When a process does a

multicast, it invokes br_multicast and when it is to deliver such

a message, it executes br_deliver. In the discussion below, it is

assumed that a message is uniquely identified by a (sender ID,

seq_num) tuple. BRM satisfies the following properties.

• Validity: If a correct process br_delivers message𝑚 from a

correct process 𝑝𝑠 , 𝑝𝑠 must have executed br_multicast(m).
• Integrity: For any message 𝑚, a correct process executes

br_deliver at most once.
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• Self-delivery: If a correct process executes br_multicast(m),
then it eventually executes br_deliver(m).
• Reliability (or Termination): If a correct process executes

br_deliver(m), then every other correct process in the mul-

ticast group 𝐺 also (eventually) executes br_deliver(m).

As causal multicast is an application layer property, it runs on top

of the BRM layer. Byzantine Causal Multicast (BCM) is invoked

as bc_multicast(𝑚) which in turn invokes br_multicast(𝑚′)
to the BRM layer. Here, 𝑚′ is 𝑚 plus some control information

appended by the BCM layer. A br_deliver(𝑚′) from the BRM

layer is given to the BCM layer which delivers the message𝑚 to the

application via bc_deliver(m) after the processing in the BCM

layer.

BCMneeds to satisfy BC_Validity, BC_Integrity, BC_Self-Delivery,

and BC_Reliability which are the counterparts of the above four

propertieswith br_multicast and br_deliver replaced by bc_mul-
ticast and bc_deliver, respectively. In addition to these proper-

ties BCM must satisfy safety and liveness as described in Section 3.

Theorem 5. It is impossible to guarantee liveness and strong safe-
ty/ weak safety (Definition 6 / 7) while causally ordering multicast
messages in an asynchronous message passing system with one or
more Byzantine processes.

Proof. From Theorems 1 and 2, it is impossible to causally order

unicasts with even one Byzantine process in the system. As unicast

is a special case of multicast where the group size is 1 (or 2 if you

include the sender in the group) and the special case cannot be

solved, the general case of multicast also cannot be solved. □

7 CHANNEL SYNC ALGORITHM FOR
MULTICAST

The Channel Sync algorithm idea can be extended towork for causal

ordering of multicast messages in the face of Byzantine failures,

under the assumption of the network guarantee of an upper bound

𝛿 on the message latency. The modifications to adapt this algorithm

are given next. Observe that weak safety (+ liveness) needs to hold

only for the

𝐵−→ relation on messages, which are the messages sent

by and received by only correct processes.

7.1 Channel Sync Algorithm for Multicast over
BRM Layer

Let 𝛿𝐵𝑅𝑀 be the latency of the BRMprotocol. (This is 3𝛿 for Bracha’s

BRM.) The major changes to Algorithm 1 to get Algorithm 2 that

runs on top of the BRM layer and also guarantees BC_Validity,

BC_Integrity, BC_Self-delivery, BC_Reliability, are as follows. (1)

The application messages are sent via the BRM layer whereas send

and receive control messages are sent directly. As the BRM layer

does not maintain source-order delivery, to ensure source order of

multicasts, sequence numbers are used and a non-blocking wait of

up to 𝛿𝐵𝑅𝑀 is introduced when a message is br_delivered (lines 3-4).

Further to ensure that a send control message is enqueued in 𝑄 𝑗

after the matching application message, it waits for 𝛿𝐵𝑅𝑀 on arrival

before further processing. Further, to ensure FIFO enqueuing of

receive control messages w.r.t. send control messages sent before

them, a receive control message is also required to wait for 𝛿𝐵𝑅𝑀 on

arrival before further processing (lines 9-10). (2) The send control

message contains the group members instead of the receiver 𝑗 in

the second parameter (line 7). (3) When this send control message

is received, the parameter 𝐺 is manipulated to track the matching

receive control messages in their queues and its timer is stopped

if all matching receive control messages from members in 𝐺 are

in their queue or popped (lines 14,17,20). (4) When popped, a send

control message deletes the matching receive control messages if

they are present in their queue or are popped (lines 33-34).

Consider a correct sender 𝑝𝑠 and a correct receiver 𝑝𝑟 . The earli-

est that an observer 𝑝𝑥 can enqueue the receive control message

is 𝛿𝐵𝑅𝑀 : 0 for the app message from 𝑝𝑠 to 𝑝𝑟 and 0 wait for it, 0

for the receive control message from 𝑝𝑟 to 𝑝𝑥 , and a wait of 𝛿𝐵𝑅𝑀
for the receive control message before enqueueing. In contrast,

the latest that the send control message from 𝑝𝑠 to 𝑝𝑥 can get en-

queued at 𝑝𝑥 is 2𝛿𝐵𝑅𝑀 + 𝛿 : max of 𝛿𝐵𝑅𝑀 for 𝑝𝑠 ’s app message to be

br_delivered to 𝑝𝑠 and any ensuing wait before it sends the send

control message to 𝑝𝑥 , 𝛿 for the send control message to reach 𝑝𝑥 ,

and a wait of 𝛿𝐵𝑅𝑀 for the send control message before enqueuing.

So 𝛿𝑟 = 𝛿 + 𝛿𝐵𝑅𝑀 , the difference. 𝛿𝑠 can be 0 or larger with the

same trade-offs as discussed for Algorithm 1. If 𝛿𝑠 = 0 (effectively

no timer for send control messages), receive control messages in

their queues may wait 𝛿𝑟 until they time out as they may not get

deleted when the send control message gets popped and deleted

(because the receive control message arrived after that time).

It is not necessary to send the group members 𝐺 in the second

parameter of the send control message and we can eliminate this

space overhead and corresponding time overhead for processing 𝐺 .

In this case, stopping the send control message timer is not useful

(because we cannot track the matched receive control messages in

order to delete them (lines 33-34)) nor is it possible (lines 17,20).

This implies that a send control message must not need a timer (i.e.,

𝛿𝑠 is effectively set to 0), and the send control message’s second

parameter 𝐺 is to be replaced by 𝑥 (line 7). Correctness of the

algorithm is not impacted.

The proofs of correctness (weak safety and liveness) are al-

most identical to those for Algorithm 1. BC_Validity, BC_Integrity,

BC_Self-delivery, BC_Reliability can easily be seen to follow from

the corresponding BRB layer properties. This leads to:

Theorem 6. Under a network guarantee of delivering messages
within𝛿 time, Algorithm 2 ensures BC_Validity, BC_Integrity, BC_Self-
delivery, BC_Reliability, weak safety and liveness.

Proof. Algorithm 2 uses the br_multicast and br_deliver
primitives implementing BRM as the underlying layer. Algorithm 2

guarantees BC_Validity, BC_Integrity, BC_Self-delivery, BC_Reliability

by utilizing the corresponding guarantees provided by the BRM

layer as follows.

BC_Validity: If a correct process executes bc_deliver(m) from
correct process 𝑝𝑠 , it must have executed br_deliver(m) from

𝑝𝑠 (lines 3-8, 21-37). Since the BRM layer guarantees validity, if

a correct process executes br_deliver(m) from correct process

𝑝𝑠 , 𝑝𝑠 must have executed br_multicast(m). From lines 1-2 and

the algorithm, correct process 𝑝𝑠 executes br_multicast(m) only

when it has executed bc_multicast(m).
BC_Integrity: At a correct process, the BRM layer delivers

messages to the BCM layer by pushing messages into a FIFO queue
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Algorithm 2: Channel Sync Algorithm for Multicast Using

BRM Layer

Data: Each 𝑝𝑖 maintains a FIFO queue𝑄 𝑗 for every process 𝑝 𝑗

1 when the application is ready to send message𝑚 to group𝐺 via

bc_multicast(m,G):
2 br_multicast(m,G) to each 𝑝 𝑗 ∈ 𝐺
3 when br_deliver(m,G) from 𝑝 𝑗 :

4 wait non-blocking for min(𝛿𝐵𝑅𝑀 since highest arrived seq_num,

until no lower seq_num missing)

5 if 𝑗 = 𝑖 then
6 for all 𝑥 do
7 𝑠𝑒𝑛𝑑 (⟨𝑖,𝐺, 𝑠𝑒𝑛𝑡 ⟩, 𝑥, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ) to 𝑝𝑥

8 𝑄 𝑗 .𝑝𝑢𝑠ℎ (⟨𝑚,𝐺,𝑎𝑝𝑝 ⟩)
9 when ⟨𝑚, 𝑖, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ⟩ arrives from 𝑝 𝑗 :

10 wait non-blocking for 𝛿𝐵𝑅𝑀

11 𝑄 𝑗 .𝑝𝑢𝑠ℎ (⟨𝑚, 𝑖, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ⟩)
12 start 𝑡𝑖𝑚𝑒𝑟 for message𝑚

13 if𝑚[2] = 𝑠𝑒𝑛𝑡 then
14 𝐷 =𝑚[1]
15 for all 𝑥 ∈ 𝐷 do
16 if matching receive control message is in𝑄𝑥 or popped then
17 stop timer of matching receive control message;

𝐷 = 𝐷 \ {𝑥 }; stop timer if 𝐷 = ∅

18 if𝑚[2] = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 then
19 if matching send control message 𝑐 is in𝑄𝑚 [1] or popped then
20 stop timer; 𝑐.𝐷 = 𝑐.𝐷 \ {𝑚[0] }; stop timer of 𝑐 if 𝑐.𝐷 = ∅

21 when the application is ready to process a message from 𝑝 𝑗 and

| 𝑄 𝑗 |≠ 0: ⊲ Only one instance of this block is

executed at a time for a particular 𝑄𝑥

22 ⟨𝑚, ∗, 𝑡𝑦𝑝𝑒 ⟩ = 𝑄 𝑗 .𝑝𝑜𝑝 ( )
23 if 𝑡𝑦𝑝𝑒 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∧𝑚[2] = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 then
24 while timeout period not exceeded ∧ timer not stopped do
25 wait in a non-blocking manner

26 if 𝑡𝑖𝑚𝑒𝑟 is stopped then
27 while matching send control message not reached head of

𝑄𝑚 [1] do
28 wait in non-blocking manner

29 delete𝑚

30 if 𝑡𝑦𝑝𝑒 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∧𝑚[2] = 𝑠𝑒𝑛𝑡 then
31 while timeout period not exceeded ∧ timer not stopped do
32 wait in a non-blocking manner

33 for all 𝑥 ∈ 𝑚[1] \𝐷 do
34 delete the matching receive control message (popped/in

𝑄𝑥 if present)

35 delete𝑚

36 if 𝑡𝑦𝑝𝑒 = 𝑎𝑝𝑝 then
37 bc_deliver(𝑚, ∗)
38 for all 𝑥 do
39 𝑠𝑒𝑛𝑑 (⟨𝑖, 𝑗, 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 ⟩, 𝑥, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ) to 𝑝𝑥

as seen in line 8. Since the BRM layer executes br_deliver(m) at
most once for any message𝑚, each message is placed in the queue

at most once. Each message in the queue is delivered by the BCM

layer only once as seen in lines 21-37.

BC_Self-Delivery: If a correct process 𝑝𝑖 executes bc_multi-
cast(m), and it is present in themulticast group𝐺 , it will br_multi-
cast𝑚 to𝐺 (lines 1-2), then br_deliver message𝑚 into the FIFO

queue at 𝑝𝑖 (and at other processes in 𝐺) (lines 3-8) and eventually

bc_deliver𝑚 from the queue at 𝑝𝑖 (lines 21-37).

BC_Reliability: When a correct process executes bc_deliv-
er(m) for any message 𝑚, it means that it must have executed

br_deliver(m) as seen in lines 3-8 and 21-37. By the reliability

property provided by the BRM layer, all correct processes in the

group𝐺 must have executed br_deliver(m) (lines 3-8) and placed
𝑚 in their FIFO delivery queues. This means that they will eventu-

ally execute bc_deliver(m) as seen in lines 21-37.

Liveness: Follows from Corollary 1 to Theorem 3.

Weak Safety: Follows from Theorem 4. The use of multicast

instead of unicast does not affect the correctness of weak safety.

To see this, consider 𝑝𝑥 unicasting𝑚1 to 𝑝𝑤 , let𝑚1

𝐵−→ 𝑚2 via a

message chain which ends with𝑚∗ received by 𝑝𝑦 and then𝑚2

is sent by 𝑝𝑦 to 𝑝𝑧 . From the logic in Theorem 4, at 𝑝𝑧 , the send

control message for𝑚1 will be popped from 𝑄𝑥 before the receive

control message for𝑚∗ from 𝑄𝑦 which is ahead of𝑚2 in 𝑄𝑦 . As
the algorithm sends the application message to its destinations before
broadcasting the corresponding send control message, even if 𝑝𝑥 had

multicast 𝑚1 to {𝑝𝑤 , 𝑝𝑧 }, 𝑚1 would be ahead of and be popped

before the send control message for𝑚1 from 𝑄𝑥 at 𝑝𝑧 . Therefore it

is guaranteed that even if multicasts are used,𝑚1 is delivered before

𝑚2 at 𝑝𝑧 and weak safety is satisfied. (Further, as indicated above,

the send control message can have timer 𝛿𝑠 = 0 and the group 𝐺

need not be transmitted on the send control messages; correctness

is not affected.) □

Complexity for Multicasts. The algorithm uses 𝑛( |𝐺 | + 1) point-
to-point control messages of size 𝑂 (1) each per multicast to 𝐺

and does not inhibit concurrency (beyond what is necessary to

enforce causal order); any delay up to the maximum in Theorem 3

is essential for causal order in the face of Byzantine processes.

7.2 Channel Sync Algorithm for Multicast
without BRM Layer

The Channel Sync Algorithm can also be extended to causally order

multicast messages without using the BRM layer. This is useful

when (a) the application wants to avoid the 𝛿𝐵𝑅𝑀 delays until deliv-

ery, (b) the objective is only to thwart attacks on the causal ordering

property (weak safety and liveness) and not the four properties

of BRM, and/or (c) the restriction that the number of Byzantine

processes in each group 𝐺 has to be less than |𝐺 |/3 cannot be

met. The choice between using or not using a BRM primitive de-

pends on the application’s requirements. The following changes

will need be made to Algorithm 2. (i) The br_multicast(m,G) in
line (2) would be replaced by “send (𝑚,𝐺) to each 𝑥 ∈ 𝐺”. (ii) The
br_deliver(m,G) in line (3) would be replaced by arrival of a mes-

sage (𝑚,𝐺). (iii) Lines (4) and (10) would be eliminated because

there is no need to wait as the BRM primitive is not used. Further,

𝛿𝑟 would reduce from 𝛿𝐵𝑅𝑀 + 𝛿 to 𝛿 .
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8 DISCUSSION
Byzantine causal broadcast under weak safety is solvable in an asyn-

chronous system [1, 19]. Byzantine causal unicast or multicast are

not. One cannot use a Byzantine fault-tolerant (BFT) causal broad-

cast protocol to implement point-to-point or multicast abstraction

by adding recipient-ID and filtering on arrival only those messages

intended for the local node because the filtering mechanism at the

local node can be voided/compromised if the local node is Byzan-

tine. Furthermore, the BFT Causal Broadcast execution which is at

a lower layer on top of which the application runs can be peeped

into by the local Byzantine node and it can read a message not

intended for it. A 𝑝𝑖 to 𝑝 𝑗 unicast must be kept private to the two.

This is not possible without the use of cryptographic primitives,

which are not considered as mentioned in the system model.

We rule out full-information protocols (FIP) [8] where the entire

transitively collected message history is used as control information

because (i) a message from 𝑝𝑖 to 𝑝 𝑗 or to𝐺 needs to be kept private

to those two processes or to 𝐺 , and (ii) a FIP obviates the need

for causal ordering. Item (i) can also be understood as follows:

a FIP performs a form of flooding which essentially implements

broadcasting, which is not permitted for maintaining privacy.

Synchronization mechanism in the algorithms. In view of the

impossibility result, the algorithms we presented are in a synchro-

nous system model. Here, processes are not required to execute in

lock-step rounds. In a step of lock-step execution, a process first

sends messages and then receives messages sent by others in that

very step. After receiving a message in a step, it has to wait for

the start of the next step to send messages. (Lock-step execution

can be provided by synchronizers [2] in an asynchronous system,

and is useful when the application program is synchronous, i.e.,

written assuming lock-step execution. It is not possible to design

synchronizers under Byzantine failures.) Indeed, if lock-step exe-

cution is emulated by a synchronous system or can be simulated,

causal order is naturally satisfied because only one message hop

is traversed in one step or round. Our algorithms are designed for

asynchronous applications that do not use lock-step in their code

(see list of applications listed in Section 1, e.g., social networking). If

lock-step were used, an additional delay of at least the time needed

to emulate a step, which would be at least 𝛿 , would be incurred

besides the message latency and wait time for a send event before

the start of the next step, in addition to the other costs of emulation.

In our Channel Sync algorithm, 2𝛿 is an upper bound on the delay

when there is Byzantine behavior whereas the total delay can be as

low as 0. We are not aware of any work which provides lock-step

that tolerates Byzantine faults.

To ensure Byzantine-tolerant causal order, the Channel Sync

algorithm synchronizes on a per message basis (2(𝑛 − 2) control
messages of size 𝑂 (1) each) and all concurrent messages are syn-

chronized independently but concurrently. Thisminimizes the delay

experienced by a message from the time of sending to the time of

Byzantine-tolerant causal delivery, while factoring out the effects

of Byzantine processes and allowing the application program to be

asynchronous (in the synchronous system) without the restricting

paradigm of rounds.

9 CONCLUSION
This paper showed that it is impossible to implement Byzantine

causal order of unicasts and multicasts in an asynchronous system.

The Channel Sync algorithms for unicasts and for multicasts were

then presented to implement causal order in a synchronous system

which has a network guarantee of an upper bound on message

latency. The Channel Sync algorithms have a non-trivial cost of

implementation but have a very high degree of concurrency.
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