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Abstract 

An emergingparad(igm that handles multiple locii of con- 
trol in a system allows multipleprogram threads to1 work on 
the same task, each thread to work on a different task, or a 
thread to work on multiple tasks for greater design flexibility 
or due to system const,raints such as real-time dem,unds and 
a high load on tasking. We use the definition of context to 
capture the notion of logical locus of control. The context 
of the work being cuirentlwv executed must be identijable 
uniquely by the application, the Resource Managers and 
the Transaction Mancrger because each context ivpresents 
difleent work. In this papel; we define context management 
by d@ining a local Context Manager and ifs user intev$ace. 
We then show why the notion of context is required to solve 
the problems that arise in local and distributed transaction 
processing due to the emerging paradigm. We present solu- 
tions to these problemis in transaction processing using the 
pmposed context management. 

1. Introduction 

Currently, operating systems that handle multilple appli- 
cations provide a separate physical locus of execution for 
each individual application program. The physical locus of 
execution is the process for single-threaded processes pro- 
vided by operating systems such as DOS and VM, and it is 
the thread ’ for multi-threaded processes provided by op- 
erating systems such as UNIX ’, OS12 [5, 121, Windows 
NT and Windows 9!j4 [8]. Operating systems support the 
client-server model of computing by dispatching a separate 

‘Currently with 1Jniverr;ity of Cyprus. Nicosia, Cyprus. ’ For commit processini; of a transaction, the locus of execution is still 
the process. not the thread. This is a drawback of’ existing transaction 
processing design for multithreaded systems. 
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server process or thread to handle a new request from the 
clients. 

There are two recent trends .which indicate thiit the exist- 
ing support provided by system is unsuitable for a range of 
application programs. First, as applications grow in num- 
ber and get more distributed, the number of applications a 
server can support becomes limited by the operating sys- 
tem constraints such as the number of procer;ses/threads 
allowed within the system. Second, as applications be- 
come more nunrerous and response times become critical 
for real-time systems, the servers cannot afford the overhead 
of process start-up and swiitchiing, or forking anid dispatch- 
ing, and the overhead of lockiing mechanisms fix access to 
shared tables for each new application. A new processing 
paradigm is now evolving to overcome the above problems 
and to provide more flexiibility to distribute tasks across 
processeshhreads. The emerging paradigm is as follows: 
a server process or thread can concurrently support multi- 
ple applications, or an applicalion can be distributed across 
multiple processes and/or threads. This paper proposes how 
this new paradigm can be snpplorted, and discusses its inter- 
action with transaction processing. We focus on1 distributed 
transaction processing as an application because it repre- 
sents an important and growing class of applications, and 
it was our involvement in distributed transaction processing 
that triggered this work. 

In the paradigm outlined above, each initiated transac- 
tion supported by a thread@) is explicitly associated with a 
context. Thus, a context becornes a logical locuis of control 
and represents, a transactilon and its associated resources. 
The above notion of context is similar to Xl’Open’s no- 
tion of “threadl-of-control” [ 161. With the new processing 
paradigm, multiple transactions can be associated with a 
thread, representing multiple contexts per thread. However, 
at any instant, t only one of 1 hesie contexts will be active. The 
application and the system should be able to specify and 
determine (i) which context is currently being worked on 
by the thread, and (ii) all ihe resources associated with the 
processing of any context. There is an explicit need to coor- 
dinate the contexts within imd across threads and processes, 
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and to coordinate access to resources by multiple contexts 
(within a thread, across threads, and across processes). This 
is achieved through a Context Manager mechanism and its 
associated user interface defined in this paper. 

The contribution of this paper is that we define con- 
text, the Context Manager (CM) and its user interface, and 
show how context is used for local and distributed trans- 
action processing. We highlight the role of context in a 
multithreaded, real-time, high tasking operating system en- 
vironment, provide different practical styles of transaction 
management using context management, and show how to 
use context management to solve deadlocks, protocol viola- 
tions and loopbacks. We have implemented a prototype of 
the Context Manager for use with the SNA LU6.2 Syncpoint 
Services [7]. The VM operating system Shared File Sys- 
tem has been enhanced to provide a version of the context 
management support described here. 

The paper is organized as follows: Section 2 describes 
the system model. Section 3 examines the requirements 
for a new notion of context, and defines and describes the 
operation and usage of context, along with a new Context 
Management user interface. Two examples of the use of 
context management in a multithreaded environment are 
given. Section 4 describes the problems that arise in dis- 
tributed transaction processing when the new paradigm,viz., 
assigning multiple transactions to multiple threads, is used. 
It then shows how to use context management to solve the 
problems. Section 5 concludes. 

2. System Model 

A distributed system consists of a set of computingnodes 
linked by a communications network. The nodes of the sys- 
tem cooperate with each other in order to process distributed 
computations. For the purpose of cooperation, the nodes 
communicate by exchanging messages via the: communica- 
tions network. 

A multiprogramming/multiprocessing operating system 
runs at each node. A process which is an executing program 
has a single address space and a single thread of control for 
the program. The state information for the process consists 
of page tables, swap images, file descriptors, outstanding I/O 
requests, and saved register values. Multiple programs are 
handled by maintaining and switching between processes. 
If threads or lightweight processes are supported by the 
operating system, then the threads of a process concurrently 
execute within the same address space. Each thread uses 
a separate program counter, a stack of activation records, 
and a control block which contains information necessary 
for thread management, Most of the information that is part 
of a process is shared by all the threads executing in the 
same address space. This reduces the overhead in creating 
and maintaining information, and the information that has 

to be saved when switching between threads of the same 
program. 

A distributed transaction is a program of one or more 
statements that access data distributed on different nodes in 
the system. Each transaction has a unique identifier denoted 
TRANID. The execution of a distributed transaction requires 
a distributed commitprotocol to ensure that the effects of the 
distributed transaction are atomic, i.e., either all the effects 
of the transaction persist or none persist, whether or not 
failures occur [4]. 

Once the computations of a transaction are completed, 
the application instructs the transaction manager (7”) of 
its node (site) to initiateand coordinate the commit protocol. 
The “logical locus of control” from which the application 
issues the commit command is the entity that identifies to 
the TM the transaction to be committed. At each node, the 
local Resource Managers (RMs), such as database and file 
managers, and Communication Resource Managers (CRMs) 
participate in the commit protocol. The RMdCRMs com- 
mit only those resources that are associated with the current 
“logical locus of control” and transaction. The CRM em- 
bodies the communication protocol and provides a local 
view of the remote processes and remote Th4s. The TMs 
that participate in the commit processing include one co- 
ordinator and one or more subordinates. The coordinator 
coordinates the final outcome of the commit processing by 
issuing a COMMIT or ABORT, that is propagated to all 
subordinates. Subordinate TMs propagate the decision to 
their subordinate TMs or local RMs. The commit operation 
employs the well-known two-phase commit (ZPC) protocol 
[4, 11, 151. 

3. Context 

Definition 1 A context is a unique local logical locus of 
control shared by the application, TM and RMs to manage 
their resources. and relate their resources to the resources 
owned by other RMs within the system. A context represents 
a grouping ofresources within thesystem. needed tope$orm 
a particularfunction in a logicallocus ofcontrol, or to show 
the inter-relationship between diverse resources. 

3.1. Requirements 

There are several emerging trends that require the notion 

1. Currently, a process or thread is associated with at 
most a single logical locus of control. This paradigm 
is proving inadequate for some applications because: 

0 The client-server paradigm requires a server in- 
stance to accept multiple incoming requests. 
For example, the asynchronous FWC style of 

of context. 
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2. 

distributed programming uses this model [l]. 
The following difficulties arise if a different 
thread/procer;s is used for each request. (a) 
First, as appllications grow and become more 
distributed, the number of transactions a server 
can support becomes limited by the operating 
system constraints such as the number of pro- 
cesseshhreads allowed within the system. For 
example, OY2 2.1 and Warp can support 4096 
threads. (b) Second, as these transactions begin 
supporting larger volumes and response time be- 
comes critical for real-time systems, the servers 
cannot afford the overhead of process start- 
up, switching, dispatching or forking, locking 
mechanisms for accessing shared tables, and ex- 
tra storage for each new transaction. A thread 
should be able to support multiple transactions 
and temporarily suspend work on a long-running 
request to process work for another request. 
This minimizes demand on operating system re- 
sources, wlhile allowing greater parallelism in 
servicing requests. The result is better response 
time and/or better throughput. 

e A message routing program in a large (database 
system acts as a router based on the content 
of the message. A database system typically 
uses long-lived programs that handle transac- 
tions from more than one end-user or transac- 
tion at a tiime and that can activate olher con- 
versations based on the database actiivity and 
the input. In both these cases, the same thread 
or process should accept the various incoming 
routing requests (locii of execution) rather than 
have separate threads handle the various routing 
requests fix better efficiency. 

A new paradigm that allows a server procesdthread 
to support multiple transactions is required. 

The notion of context provides useful functionality al- 
lowing process-oriented as well as thread-based sys- 
tems the flexibility needed in today's complex and 
demanding environment. For operating systems that 
allow applicatilons to spawn threads or fork 'processes, 
it is desirable to allow the server application to divide 
the incoming requests however the application choses 
to. Some applications might want all threads to work 
on the same request. Other applications might want 
each thread to work on a different request. A con- 
text manageinst service needs to allow each thread 
to identify each of the contexts it is associated with. 
The context must be independent from the operating 
system's task dispatching mechanism, 

The above requirements express the emergence of environ- 
ments where: 

0 A server process or thread can accept requests from 
different erid users, and the server is allowed to sus- 
pend work on one request to work on a digrerent re- 
quest, or 

e Multiple server procesrses/khreads are working on re- 
lated work representing the: same context of lthe appli- 
cation. 

The application rieeds a way to inform the TM andl the RMs 
which task the application is working on at a particular time, 
and the TMs and RMs need to coordinate to have ai common 
understanding of which context is currently under cxecution, 
for the followins! reasons: 

To group Fogether logically related work and separate 
logically unrelated work. 
Each request is likely to be a part of a differlent atomic 
transaction. The work a server process does on be- 
half of one transactiori must commit or abort indepen- 
dently frclm other unrelated work that the :server was 
handling. 
The security authorization of each request can be dif- 
ferent. An application must make sure that the sys- 
tem's security manager and other RMs cooperate to 
ensure that the access; gramted at the particular instant 
is proper for the end user application that 11s currently 
being worked on. 

For the above, a threadidl or process-id does not suffice 
to identify the logical locus of control; rather ai context-id 
is required. '"lie notion of context allows the management 
of multiple transaction program instances within a single 
process or single thread, as .well as the management of 
a single transaction program instance across several pro- 
cessedthreads, implicitly externalizing the creation, coordi- 
nation and deletion of transactlion program instances via the 
Context Manager interface;. It also allows RMs to associate 
their resources with a transaction program instance. This 
allows other subsystems, such as a TM to coordinate the us- 
age of all resoi~rces related1 to a particular task (transaction). 
The commit issued by the application applies to the context 
from which it was issued; not to the thread thalt issued it. 
A server process has special responsibilities [3]. The server 
process must correctly indicate which end user context it is 
working on behalf of. When many threads are acting on 
behalf o€ the same context, thie application must make sure 
that the work of all the threads is completed before kicking 
off 2PC proclessing. Similarly, when a thresd does work 
on behalf of iinultiple transaction programdapplications, it 
must be ensuired that all the work in the relevant context is 
completed before kicking off 2PC processing. 

5Cu~enfly, for c o m t  processling, the iwus of control is conlined 

to the process level and is not allowed to the thread level, even though 
multi-threaded environments are coinmon. This is an exis ting anomaly. 
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3.2. Context Management 

Context management isalocal application-support mech- 
anism that permits applications to manage logically separate 
pieces of work within a single physical locus of execution 
(e.g., a thread or a process) [2]. When an application pro- 
gram uses context management, the CM keeps track of the 
various contexts, allows the application program to create 
and set a context for work, and allows an application pro- 
gam to switch contexts when appropriate. The context 
manager shares the notion of contexts with the RMs and the 
application program. 

A new incoming conversation is assigned a new context 
and the program's current context is set to the new context. 
When a new outgoing conversation is allocated to a partner 
program, the conversation is assigned the current context of 
the program. 

While context management provides addi tional functions 
such as flexibility and avoidance of process switching to the 
application program, it also imposes extra burden on the 
application program. The application program has to keep 
track of the progress done in each context, and switch con- 
texts to meaningfully exploit the features of context man- 
agement. An application program can perform context man- 
agement by exploitingthe functions provided by the context 
manager using a suite of calls, described subsequently. 

The notion of context provides a logical separation of 
work done by an application program; each logically sepa- 
rate piece of work is done in a separate context. Context is 
local to a system, and distributed work done for the same 
transaction is not part of the same context. When an ap- 
plication program is involved in multiple transactions at a 
time, each transaction is done in a separate context at the 
application program. The same context may be involved in 
multiple transactions sequentially. The application program 
assumes the responsibility of keeping track of its various 
contexts, coordinating the data spaces of the various con- 
texts, and switching between contexts. 

The CM administers the contexts independently of the 
operating system's task dispatching mechanism. At each 
node, the context is identified by a context-id; a CM main- 
tains a context table that stores the following information 
per contextid: 

0 contextid, unique to a node 
(threadid, process-id), unique to a node 

0 a boolean indicating whether this context is currently 
being worked on by this (threadid,processid) 

The TM maintains the correspondence between the 
TRANID and the contextid, the RM maintains the cor- 
respondence between the resources it manages and the con- 
textid; likewise for the managers of other subsystems. We 
define a Context Management interface that (i) implicitly 

externalizes the creation, coordination and deletion of con- 
texts, and (ii) allows the application and managers ofvarious 
subsystems such as the "M, RM, and security manager to 
associate their resources with a context and coordinate the 
usage of all resources related to a particular context. 

3.2.1 Context Management Calls 

In an environment where there is no one-to-one association 
between threads and contexts (but rather a many-many asso- 
ciation), explicit context management calls are required to 
control the association between threads and contexts. This 
is particularly important for transaction processing because 
the TM and the R M s  must identify the TRANID on a context 
basis and not on a thread basis. The threadid, TRAMD, 
accounting and security information are all part of a context. 

When a thread (more generally, a locus of execution) is 
created, it is assigned a context. The context can be a new 
one or an inherited one. 

Transaction management in a multithreaded environ- 
ment 

We describe three transaction program styles that use threads 
[2] and suggest other CM functions to support the three 
styles. The proposals are commands to start and manage the 
threads within the context management framework. 

Style 1 

Server receives new work, and kicks off a thread to han- 
dle the new work. A new context is implicitly created 
whenever new work is accepted. This is a typical approach 
for an RPC server, or an OS12 LU6.2 TP that issues RE- 
CEIVEALLOCATE and then waits for the next incoming 
work. The context management function to support this is: 

START-THREAD-ANDXANDOFF-CONTEXT : 
This function starts a new thread and disassociates 
the main (old) thread from the newly created context. 
The forked thread is associated with the new context, 

Style 2 

The server kicks off a thread but the forking thread continues 
to work on the same context. This is typical ofan application 
that can take advantage of the parallelism that light-weight 
threads provide. The CM function associated with this is: 

START_THREADANDSHAR-CONTEXT : This 
function starts a new operating system thread. Any 
one of the threads can initiate the commit operation. 
The commit operation affects all resources allocated 
to this context. It is up to the application's design 
to ensure that all threads are ready for commitment. 
If some threads are not ready, the commit call may 
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return a state-check, or it may backout, or accidentally 
commit work in,-progress. The best approach is to 
have the main thread issue COMMIT, after all forked 
threads report that are ready (using an OS waitjpost 
mechanism for example). 

Style 3 

The main thread receives a new work request, and then 
instead of forking a new thread, it hands the work to an 
existing thread. For performance reasons, it is better to 
avoid creating a new thread. So using prestarted threads is 
faster than creating a new one: 

HANDOFF-CONTEXT : This function gives exclu- 
sive ownership of a context to an existing thread and 
posts the thread to inform it a new context is available. 
SHARE-CONmXT : This function permits shared 
ownership of ia context with an existing thread and 
posts the thread to informit anew context is available. 
THREADDONE-WITH-CONTEXT : This function 
allows a thread to disassociate itself witki a context 
and get ready to be involved in a new context. If no 
other thread is associated with the context, an implicit 
commit is attempted. 
GETNEWXONTEXT : This function allows a 
thread to wait for a parent thread to issue HANDOFF 
or SHARE-CONTEXT. Blocking and non-blocking 
flavors are useful. 

In addition, Extract-Current-Context and SetXontext are 
needed to support threaded applications and ,applications 
that are single-threaded, but process more than one context 
at a time. 

a EXTRACT_CURRENT-CONTEXT : This function 
allows TM, RM, or the application to find out which 
context is currently active. 

a SET-CONTEXT : This function allows an applica- 
tion that can run for more than one context (e.g., a 
Transaction program that processes many indepen- 
dent incoming requests) to inform the system which 
context the ,application is currently working on. 

Along with these functions, a START-NEW-CONTEXT 
function is needed for the system scheduler and for appli- 
cations that want to start new work that is independent of 
other work they are processing. 

3.2.2 Examples of Styles 

Example 1 - T h a d  handles multiple contexts 

Table 1 gives Example 1 in which a single thread at the 
server switches context to handle requests from two clients. 

Example 2-Threads Handle a Transaction Using Differ- 
ent/ Same Contexts 

Example 2 given in Tahle 2 deals with one client and 
one server. The server has prestarted a number of threads. 
A database clientherver application can use this design to 
optimize the performance of an application that opens more 
than one cursor, and fetches data from each ciusor in an 
order that is nat known in ,advance. A separate connection 
is used for each cursor to allow a fetch to be done on each 
open cursor inidependent of the data flowing on( other con- 
nections. The server hands off work to the threads which 
are already initialized, and are: waiting for incoming work. 
The waiting threads are not involved in work for any con- 
text. Once the thread isgiven the context and the connection 
associated with that context, the thread has exclusive use of 
the connection. In the example, multiple threads work on 
a single transaction using different contexts. There are two 
independent c:onnections created at the server. By default, 
each connection starts a new context. 

For perfonnancereasoiis, it is better to have all the threads 
use the same context. Even though each conniection has its 
own context, the server can understand, through application- 
specific logic:, that the work is related work. So the server 
could choose to hand the name context to each of the threads. 
The example would change as follows: In step 1, the 
server woulcl issue SHARE-CONTEXT instead of HAND- 
OFF-CONTEXT. In stq) 2, the server would simply issue 
SHARE-CONTEXT instead of STARTAE’VV-CONTEXT 
and HANDOFF-CONTEXT. 

3.3. Interfaces betweten Context Manager, Transac- 
tion Manager and Resource Managers 

The TM and protected RMs normally associate a thread 
with a TRAMD. Threadid and “ I D ,  dong with ac- 
counting and security inforrnation are components of a “con- 
text”. In an environment where an applicafion can start a 
thread to trike care of part or all of a transaction, the TM 
and the protected RMs nered to share the current context 
of the thread that is executing on the protected resource. 
The mechanism that allows the TM and the RMs on a local 
system to share a common contextid is a matter of imple- 
mentation. Two design choices we considered are given 
below. 

Design 1: Each time an RM, including the security Rh4, 
is invoked, it can query the current context using the CM’s 
EXTRAC‘T-CURRENT_C:ONTEXT. The IRM would then 
have to look up, in its awn tables, and determine if it is 
already involved in work for this current context. If it is not 
already involved in work for the current context, the RM 
should add an entry to its intemal tables. The entry should 
include the contextid, and whatever other information the 
particular RM needs. The TM needs to correlate information 
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Client I 

BEGIN TRANSACTION 
request 

get reply 

request 

eet re& 

COMMIT (client 1 commits) 

pz- 
0 

1 

2 

3 

Server 

START-NEW-CONTEXT(C 1) 
BEGIN TRANSACTION 
begin work for client 1: send reply 

START-NE W-CONTEXT( C2 ) 
BEGIN TRANSACTION 
begin work for client 2; send reply 
SETXONTEXT(C1) 
(serverswitch to Client 1's context C1) 
do some work for context 1; send reply 

SET-CONTEXT(C2) 
(server switch to Client 2's context C2) 
do some work for context 2; send reply 

SETXONTEXT(C1) 
Change context to C1. Issue COMMIT to TM. TM commits 
all work associated with current context. (TM queries CM to 
get current context before processing commit. It will then 
associate current context with the TRANID and order all RMs 
to commit work associated with that TRANID and context.) 

SET-CONTEXT(C2) 
change context to C2. Issue COMMIT to TM. 
TM commits all work associated with current context. 
(TM interacts with CM as in previous step.) 

Client 2 

BEGIN TRANSACTION 
request 

get reply 

Table 1. Example 1. Thread handles multiple contexts. 

request 

get reply 

COMMIT (client 2 commits) 

Client 1 

BEGIN TRANSACTION 
SQL request 
OPEN-CURSOR A 
(one protected connection with the server) 

SQL request 
OPEN-CURSOR B 
(one protected connection with the server) 

fetch from A 
fetch from B 
COMMIT 
(If both connections are protected, 
the local TM will initiate commit 
processing on both connections.) 

Server 
Two threads are prestarted and are waiting to do work on 
behalf of a context by issuing to the main thread GET-NEW-CONTEXT 

START-NEW-CONEXT(C1) (to CM) 
BEGIN TRANSACTION (to TM) 
HANDOFF-CONTEXT(to thread 1) 
(This satisfies thread-one's GET-NEW-CONTEXT. 
Thread-one is now processing SQL request.) 

START-NEWXONTEXT(C2) (to CM) 
HANDOFF_CONTEXT(thread 2) 
(This satisfies thread-two's GET-NEW-CONTEXT. 
Threadiwo is now processing SQL request). 

The two server threads will receive the commit message. Each thread 
issues COMMIT to TM. TM commits all work associated with current 
context of each thread. TM queries CM to get current context 
before processing commit. It then associates current context 
of each thread with TRANID and requests all RMs to commit work 
associated with that TRANID and context. 

Table 2. Example 2. Threads handle a transaction using same/different contexts. 
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about the TRANID with the contextid. A security manager 
needs to associate the UserID, and possibly password or 
other security related tokens, with the contextid. A database 
RM would need to correlate table update information, lock 
information, and TRANID with the contextid. 

Design 2: The CM provides a broadcast mechanism. 
With this approach, the CM broadcasts the current contextid 
to all “interested” RMs. The broadcast would occur each 
time an OS dispatchablie unit (thread or process) changed 
the context it was working on. The context change would 
occur because the application has issued a SET-CONTEXT 
call to the CM. The RMs would do internal housekeeping 
when notified that the aictive context has switched from one 
contextid to another. The switch does not imply that the 
work has committed or aborted, but rather that a context has 
temporarily suspended execution. This is akin to X/OPEN’s 
xa-end(suspend). The mechanism for determining which 
RM is “interested” in the broadcast is also an implementation 
issue. There can be either dynamic registration where an RM 
calls the CM to request to be notified of all changes within 
a scope, or the CM can support automatic inclusion of RMs 
based on system definiiion. 

The choice of quenj versus broadcast is a performance 
issue. In a particular eiivironment queries might entail less 
overhead than broadcasts. In the prototype developed for 
OS/2, a query mechaniism was used and the CM kept con- 
textid on a process and thread basis. So each thread could 
be operating on a diffixent context, or it could be operat- 
ing on the same context as another thread depending on the 
application’s style. 

The next section describes how context management can 
be used to solve complex issues in distributed transaction 
processing that arise clue to the way multiple transactions 
are assigned across processes and threads. 

4. Distributed Trarnsaction Management 

Each new incoming request accepted by a Transaction 
Program (TP) is handled by a new instance of the TP. Multi- 
ple such TP instances share the same TRANID but may be in 
the same thread/differc:nt threads/ different processes, in the 
proposed processing paradigm. Each TP instance: is a dif- 
ferent locus of control and context is necessary to identify it. 
We show that the “RANID, and threadid or processid are 
not enough to identify the TP instance. If contextid is not 
used, there is a possibility of deadlocks [9] or protocol vi- 
olations during commit processing, due to the combination 
of the new processing paradigm and “loopback”, tiiscussed 
next. The problems are more obvious in the peer-to-peer 
comiunication model where the commit can be initiated 
by any partner in the; transaction tree and more than one 
transaction is in progress at the same time. The notion of 
context plays an important role in solving these problems 
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cleanly. We will discuss the problems in transaction pro- 
cessing without context, and the solutionsoffered by context 
management. The use of context management in reconcil- 
ing communication protocol support between chained and 
unchained transactions has been presented in [ 141. 

4.1. Loopback 

Loopback is a system state iin which a transaction reap- 
pears at a node that is already involved in the same trans- 
action [7]. Multiple TPs in one commit tree present the 
same TRANID to the shared resource managers. The “re- 
infection” can be direct when a client invokes a server that 
happens to reside on the same node. Loopback can be in- 
direct, when a server, say X, is invoked by a client on a 
different node, which in turn is a cascaded server for a client 
on the same node as the server X. Indirect loopback can 
also occur when two different servers on the same node are 
invoked as part off the same transaction. Figure 1 illustrates 
a loopback invollving three partiter programs X, ’U: and Z. 

Currently, when a loopback occurs, a process or thread is 
dispatched to handle the second occurrence of the transac- 
tion. The two lacii ofexeculion have the same TFANID but 
can be differentiated by using the processid or threadid. 
In 2PC, the TM needs to determine which resolurce needs 
to be sent Prepare [7]. (Note that the Prepare flows cor- 
respond to the TP-Prepare service of OS1 TP [ 131, and in 
the X/Open model, they are triggered by xuplrepaw and 
uxgrepare [ 161). A particular resource associated with 
the locus of control can be identified by process-id (from 
which TRANID can be deduced) and connectionid (the 
‘leg’ identifier, known in OS1 TP as the branchid and in 
LU6.2 as the conversation coirrelator). This is sufficient 
even if the application prorogmri has a conversation with an- 
other application on its own node whereby both branches 
of the connectiodconversalion have the same TFlANID and 
connectionid. In the new processing paradigm, the TM 
can identify a particular re3ource associated with the locus 
of control by contextid, fiom which TRANID can be de- 
duced, and connectionid. If TRANID or threadid were 
used instead of contextid, two locii of control would sat- 
isfy (TRANID., connectionid) or (threadid, connectionid) 
when the two locii of execution were allocated to the same 
thread and had a connectlion with each other. However, 
when the contextid is used with the connectionid, the con- 
textid uniquely identifies the locus of execution, with re- 
spect to which the connection-id is used to determine which 
resource@) should be sent Prepare. 

The above occurrence of loopback arises in the new 
paradigm when a peer-topeer communication model, such 
as modern SN,4 (APPN and APPC), is assumedl. The peers 
in the transaclion are considered to be ‘loosely coupled’ 
[16]. In the pieer-to-peer model, the commit initiator can 
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Figure 1. Example of Loopback 

be different from the dialog initiator, and may reside on the 
same system. In this case, the (TRANID, connectionid) 
pair is not sufficient to identify the dialog on which the 
Prepare or Backout should be sent. But in the hierarchical 
communication model, (such as OS1 TP [ 131 and RF’C [ 11, 
whether blocking or nonblocking), only the dialog initiator 
can initiate commit processing or send Prepare; a TRANID, 
which can be deduced from processid or threadid, and con- 
nectionid are sufficient for the TM to determine the branch 
on which the CRM should send the Prepare. However, 
context is still needed for other requirements presented in 
Section 3.1. 

4.2. Protocol Violations and Deadlocks 

Ifthe scope ofthe commit is the process and the TRANID 
and processid are used to identify the different resources, 
protocol violations and deadlock [9] occur. If context man- 
agement is used and the commit scope is the context (using 
the context-id), such problems do not occur. Consider the 
configuration shown in Figure 1. The distributed transaction 
involves three partner programs, X, Y and Z. An instance 
of program P is denoted by TP4. TPX has invoked servers 
Tp-Y and TPZ. The arrows on the lines indicate the di- 
rection of invocation of TPs. TP-Y has in turn invoked 
T P Z  (which is really instance TPZ’  that is distinct from 
TPZ that was started before it). T P Z  and TPZ’ share 
the same TRANID, processid, and threadid, and hence the 
TM cannot distinguish between them. The commit tree is 
not a spanning tree if its nodes are defined by the TRANID, 
processid, and threadid. 

Example 1 of Protocol Violations / Deadlocks 

(1) TP-X initiates the commit process. Both the conversa- 
tion resourcesrepresenting the connection to TP-Y and T P Z  
belong to the current scope of TPX (the scope is the process 
with the same TRANID) and the Prepare message [6] is sent 

to both TP-Y and TPZ. (2) In turn, the TM of TP-Y sends 
Prepare to TPZ’. However, T P Z  and TPZ’  share the same 
TRANID, processid, and threadid, and hence cannot be 
distinguished by the TM handling them. The TM of TPZ 
receives two Prepares for the same transaction, which is in- 
terpreted as a protocol violation and results in backing out 
the transaction. 

Using context management, the two incoming requests 
from client TP-Y and client T P X  result in the creation of 
two separate contexts (with the same TRANID) for TPZand 
TPZ’. The commit scope isnow the context and the commit 
tree is now represented by a tree of contexts. This is now a 
spanning tree. When TPX issues Commit, the Prepare for 
partner TPZ is for the context representing the connection 
from T P X  to TPZ. The other Prepare that arrives from 
TP-Y is for the context that represents the connection from 
TP-Y to TPZ’. Based on context, the TM distinguishes 
between T P Z  and TPZ’ and there are no problems in the 
2PC. 

Example 2 of Protocol Violations / Deadlocks 

(1) T P X  issues Prepare-For-Syncpt [6] on the branch to 
TP-Y. (2) TP-Y then issues the same call to TPZ’. (3) 
The TM cannot distinguish between TPZ and TPZ’  and 
in an effort to Prepare that branch of the tree identified by 
(TPX,TP-Y) and (TP-Y,TPZ’), the TM at Z propagates 
the Prepare along (TPZ,TPX). (4) The TM at T P X  will 
detect aprotocol violation in the hierarchical communication 
model [ 161, or a deadlock will occur in the peer-to-peer 
communication model as follows: TP-X will not reply to 
the Prepare request of TPZ; TPZ’ (which the TM cannot 
distinguish from TPZ) will not reply to the Prepare request 
of TP-Y; TP-Y will not reply to the Prepare request of TPX.  

However, if context were used, TPZ’ would never have 
sent a Prepare to TP-X, and no problems would have oc- 
curred. Context is essential to keeping a spanning 2PC tree. 

Example 3 of Protocol Violations / Deadlocks 

The 2PC protocol has been extensively optimized by reduc- 
ing the number of messages and force log writes [7,15]. One 
such well-known optimization is the linear commit, other- 
wise known as the Last-Agent (LA) optimization. When 
a partner that initiates the 2PC protocol decides to use the 
LA optimization, it first chooses the agent that will act as 
the last agent, then prepares all the other subordinates and 
finally passes control to the LA (by sending it the Y E S  vote). 

(1) Let TPX choose partner T P Z  as the last agent. When 
partner T P X  initiates the commit processing, the TM of 
TPX will send Prepare only to TP-Y. (2) TP-Y will in turn 
send Prepare to TPZ’. (3) The TM handling TPZ’ cannot 
distinguish between it and T P Z  if it does not use context. 
So it attempts to send Prepare to T P X  along (TPZ,TP-X) 
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because it does not know T P Z  has been chosen as the LA 
of TPX. 

If the Conversation between T P X  and TP;! is half- 
duplex, T P X  has send control and TPZ waits ‘to receive 
send control in order to send Prepare to TP-X. This wait 
is indefinite because T P X  is blocked waiting for the re- 
sponse to the initial Prepare, TP-Y is blocked waiting for a 
response from TPZ’, and TPZ,  (which the TM at Z cannot 
distinguish from TP-Z’) is blocked waiting for send control 
from TPX.  If the conversation between T P X  and T P Z  is 
full-duplex and a peer-to-peer model is used, T P Z  sends the 
Prepare to T P X  and waits for a reply from TPX. But TPX 
cannot receive the Prepare because its TM is blocked wait- 
ing for the response to the initial Prepare, TP-Y is blocked 
waiting for a resporise from TPZ’, and TPZ,  (which the 
TM at Z cannot distinguish from TPZ’) is b1ock:ed waiting 
for a response from TPX.  Thus, there is deadlock. If a hi- 
erarchical model is used and conversations are full-duplex, 
a protocol violation is detected by the TM of TPX.  None 
orthese problems would arise if context were used because 
the TM of TPZ’ would not send a Prepare to TPX. 

5. Conclusions 

Operating systerns that support threads withiin a process 
need the notion of context to efficiently support the paradigm 
where a single thread can be concurrently associated with 
several transaction!; or where several threads work on the 
same transaction. The first contribution of this paper was 
that it defined context management by defining a Context 
Manager and the primitives in its associated user interface. 
Systems that do not support threads, but support server pro- 
cesses can take advantage of the context management ser- 
vices. The context management services permit a transac- 
tion processing application to specify which work is to be 
handled at any instant. The application using these services 
can then divide the work within and among the threads 
or processes, and be assured the resource managers will 
know which transaction the work belongs to. While context 
management fits naturally in the peer-to-peer transactional 
paradigm, it also ,allows legacy, process-oriented systems 
to increase the transactional throughput by allowing multi- 
plexing of transactions within one process. 

A second contribution of this paper is that it showed 
how context management is necessary to solve problems 
such as deadlocks and protocol violations, and to handle 
loopback situations that arise in distributed transaction pro- 
cessing when using the paradigm in which a thread could 
be associated with multiple transactions. The paper then 
gave solutions to these problems in transaction processing. 
We expect context management will became increasingly 
important to efficiently handle higher lasking demands and 
real-time demands on the operating system. We have im- 

plemented a pirdotype of the Context Manager and its user 
interface for use with transaction processing. Ike  VM op- 
erating system Shared File System has been enhanced to 
provide several features of‘ context management support de- 
scribed here. 
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