
Context Management and Its Applications to Diistributed ‘Transactions

George Samaras; Ajay D. Kshemkalyani, and Andrew Citron

IBM Corporation
P. 0. Box 12 195 ., Research Triangle Park., NC 27709

Abstract

An emergingparad(igm that handles multiple locii of con-
trol in a system allows multipleprogram threads to1 work on
the same task, each thread to work on a different task, or a
thread to work on multiple tasks for greater design flexibility
or due to system const,raints such as real-time dem,unds and
a high load on tasking. We use the definition of context to
capture the notion of logical locus of control. The context
of the work being cuirentlwv executed must be identijable
uniquely by the application, the Resource Managers and
the Transaction Mancrger because each context ivpresents
difleent work. In this papel; we define context management
by d@ining a local Context Manager and ifs user intev$ace.
We then show why the notion of context is required to solve
the problems that arise in local and distributed transaction
processing due to the emerging paradigm. We present solu-
tions to these problemis in transaction processing using the
pmposed context management.

1. Introduction

Currently, operating systems that handle multilple appli-
cations provide a separate physical locus of execution for
each individual application program. The physical locus of
execution is the process for single-threaded processes pro-
vided by operating systems such as DOS and VM, and it is
the thread ’ for multi-threaded processes provided by op-
erating systems such as UNIX ’, OS12 [5, 121, Windows
NT and Windows 9!j4 [8]. Operating systems support the
client-server model of computing by dispatching a separate

‘Currently with 1Jniverr;ity of Cyprus. Nicosia, Cyprus. ’ For commit processini; of a transaction, the locus of execution is still
the process. not the thread. This is a drawback of’ existing transaction
processing design for multithreaded systems.

%NIX is a registered trademark in the United States and other countries
licenced exclusively through X/Open Company Limited.

3 0 S / 2 is a trademark of the IBM Corporation.

-

Windows, Windows NT. and Windows 95 are trademarks ofMicrosoft
Corporation.

server process or thread to handle a new request from the
clients.

There are two recent trends .which indicate thiit the exist-
ing support provided by system is unsuitable for a range of
application programs. First, as applications grow in num-
ber and get more distributed, the number of applications a
server can support becomes limited by the operating sys-
tem constraints such as the number of procer;ses/threads
allowed within the system. Second, as applications be-
come more nunrerous and response times become critical
for real-time systems, the servers cannot afford the overhead
of process start-up and swiitchiing, or forking anid dispatch-
ing, and the overhead of lockiing mechanisms fix access to
shared tables for each new application. A new processing
paradigm is now evolving to overcome the above problems
and to provide more flexiibility to distribute tasks across
processeshhreads. The emerging paradigm is as follows:
a server process or thread can concurrently support multi-
ple applications, or an applicalion can be distributed across
multiple processes and/or threads. This paper proposes how
this new paradigm can be snpplorted, and discusses its inter-
action with transaction processing. We focus on1 distributed
transaction processing as an application because it repre-
sents an important and growing class of applications, and
it was our involvement in distributed transaction processing
that triggered this work.

In the paradigm outlined above, each initiated transac-
tion supported by a thread@) is explicitly associated with a
context. Thus, a context becornes a logical locuis of control
and represents, a transactilon and its associated resources.
The above notion of context is similar to Xl’Open’s no-
tion of “threadl-of-control” [161. With the new processing
paradigm, multiple transactions can be associated with a
thread, representing multiple contexts per thread. However,
at any instant, t only one of 1 hesie contexts will be active. The
application and the system should be able to specify and
determine (i) which context is currently being worked on
by the thread, and (ii) all ihe resources associated with the
processing of any context. There is an explicit need to coor-
dinate the contexts within imd across threads and processes,

1063-6927/96 $5.00 0 1996 IEEE
Proceedings of the 16th ICDCS

683

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:39:21 UTC from IEEE Xplore. Restrictions apply.

and to coordinate access to resources by multiple contexts
(within a thread, across threads, and across processes). This
is achieved through a Context Manager mechanism and its
associated user interface defined in this paper.

The contribution of this paper is that we define con-
text, the Context Manager (CM) and its user interface, and
show how context is used for local and distributed trans-
action processing. We highlight the role of context in a
multithreaded, real-time, high tasking operating system en-
vironment, provide different practical styles of transaction
management using context management, and show how to
use context management to solve deadlocks, protocol viola-
tions and loopbacks. We have implemented a prototype of
the Context Manager for use with the SNA LU6.2 Syncpoint
Services [7]. The VM operating system Shared File Sys-
tem has been enhanced to provide a version of the context
management support described here.

The paper is organized as follows: Section 2 describes
the system model. Section 3 examines the requirements
for a new notion of context, and defines and describes the
operation and usage of context, along with a new Context
Management user interface. Two examples of the use of
context management in a multithreaded environment are
given. Section 4 describes the problems that arise in dis-
tributed transaction processing when the new paradigm,viz.,
assigning multiple transactions to multiple threads, is used.
It then shows how to use context management to solve the
problems. Section 5 concludes.

2. System Model

A distributed system consists of a set of computingnodes
linked by a communications network. The nodes of the sys-
tem cooperate with each other in order to process distributed
computations. For the purpose of cooperation, the nodes
communicate by exchanging messages via the: communica-
tions network.

A multiprogramming/multiprocessing operating system
runs at each node. A process which is an executing program
has a single address space and a single thread of control for
the program. The state information for the process consists
of page tables, swap images, file descriptors, outstanding I/O
requests, and saved register values. Multiple programs are
handled by maintaining and switching between processes.
If threads or lightweight processes are supported by the
operating system, then the threads of a process concurrently
execute within the same address space. Each thread uses
a separate program counter, a stack of activation records,
and a control block which contains information necessary
for thread management, Most of the information that is part
of a process is shared by all the threads executing in the
same address space. This reduces the overhead in creating
and maintaining information, and the information that has

to be saved when switching between threads of the same
program.

A distributed transaction is a program of one or more
statements that access data distributed on different nodes in
the system. Each transaction has a unique identifier denoted
TRANID. The execution of a distributed transaction requires
a distributed commitprotocol to ensure that the effects of the
distributed transaction are atomic, i.e., either all the effects
of the transaction persist or none persist, whether or not
failures occur [4].

Once the computations of a transaction are completed,
the application instructs the transaction manager (7”) of
its node (site) to initiateand coordinate the commit protocol.
The “logical locus of control” from which the application
issues the commit command is the entity that identifies to
the TM the transaction to be committed. At each node, the
local Resource Managers (RMs), such as database and file
managers, and Communication Resource Managers (CRMs)
participate in the commit protocol. The RMdCRMs com-
mit only those resources that are associated with the current
“logical locus of control” and transaction. The CRM em-
bodies the communication protocol and provides a local
view of the remote processes and remote Th4s. The TMs
that participate in the commit processing include one co-
ordinator and one or more subordinates. The coordinator
coordinates the final outcome of the commit processing by
issuing a COMMIT or ABORT, that is propagated to all
subordinates. Subordinate TMs propagate the decision to
their subordinate TMs or local RMs. The commit operation
employs the well-known two-phase commit (ZPC) protocol
[4, 11, 151.

3. Context

Definition 1 A context is a unique local logical locus of
control shared by the application, TM and RMs to manage
their resources. and relate their resources to the resources
owned by other RMs within the system. A context represents
a grouping ofresources within thesystem. needed tope$orm
a particularfunction in a logicallocus ofcontrol, or to show
the inter-relationship between diverse resources.

3.1. Requirements

There are several emerging trends that require the notion

1. Currently, a process or thread is associated with at
most a single logical locus of control. This paradigm
is proving inadequate for some applications because:

0 The client-server paradigm requires a server in-
stance to accept multiple incoming requests.
For example, the asynchronous FWC style of

of context.

684

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:39:21 UTC from IEEE Xplore. Restrictions apply.

2.

distributed programming uses this model [l].
The following difficulties arise if a different
thread/procer;s is used for each request. (a)
First, as appllications grow and become more
distributed, the number of transactions a server
can support becomes limited by the operating
system constraints such as the number of pro-
cesseshhreads allowed within the system. For
example, OY2 2.1 and Warp can support 4096
threads. (b) Second, as these transactions begin
supporting larger volumes and response time be-
comes critical for real-time systems, the servers
cannot afford the overhead of process start-
up, switching, dispatching or forking, locking
mechanisms for accessing shared tables, and ex-
tra storage for each new transaction. A thread
should be able to support multiple transactions
and temporarily suspend work on a long-running
request to process work for another request.
This minimizes demand on operating system re-
sources, wlhile allowing greater parallelism in
servicing requests. The result is better response
time and/or better throughput.

e A message routing program in a large (database
system acts as a router based on the content
of the message. A database system typically
uses long-lived programs that handle transac-
tions from more than one end-user or transac-
tion at a tiime and that can activate olher con-
versations based on the database actiivity and
the input. In both these cases, the same thread
or process should accept the various incoming
routing requests (locii of execution) rather than
have separate threads handle the various routing
requests fix better efficiency.

A new paradigm that allows a server procesdthread
to support multiple transactions is required.

The notion of context provides useful functionality al-
lowing process-oriented as well as thread-based sys-
tems the flexibility needed in today's complex and
demanding environment. For operating systems that
allow applicatilons to spawn threads or fork 'processes,
it is desirable to allow the server application to divide
the incoming requests however the application choses
to. Some applications might want all threads to work
on the same request. Other applications might want
each thread to work on a different request. A con-
text manageinst service needs to allow each thread
to identify each of the contexts it is associated with.
The context must be independent from the operating
system's task dispatching mechanism,

The above requirements express the emergence of environ-
ments where:

0 A server process or thread can accept requests from
different erid users, and the server is allowed to sus-
pend work on one request to work on a digrerent re-
quest, or

e Multiple server procesrses/khreads are working on re-
lated work representing the: same context of lthe appli-
cation.

The application rieeds a way to inform the TM andl the RMs
which task the application is working on at a particular time,
and the TMs and RMs need to coordinate to have ai common
understanding of which context is currently under cxecution,
for the followins! reasons:

To group Fogether logically related work and separate
logically unrelated work.
Each request is likely to be a part of a differlent atomic
transaction. The work a server process does on be-
half of one transactiori must commit or abort indepen-
dently frclm other unrelated work that the :server was
handling.
The security authorization of each request can be dif-
ferent. An application must make sure that the sys-
tem's security manager and other RMs cooperate to
ensure that the access; gramted at the particular instant
is proper for the end user application that 11s currently
being worked on.

For the above, a threadidl or process-id does not suffice
to identify the logical locus of control; rather ai context-id
is required. '"lie notion of context allows the management
of multiple transaction program instances within a single
process or single thread, as .well as the management of
a single transaction program instance across several pro-
cessedthreads, implicitly externalizing the creation, coordi-
nation and deletion of transactlion program instances via the
Context Manager interface;. It also allows RMs to associate
their resources with a transaction program instance. This
allows other subsystems, such as a TM to coordinate the us-
age of all resoi~rces related1 to a particular task (transaction).
The commit issued by the application applies to the context
from which it was issued; not to the thread thalt issued it.
A server process has special responsibilities [3]. The server
process must correctly indicate which end user context it is
working on behalf of. When many threads are acting on
behalf o€ the same context, thie application must make sure
that the work of all the threads is completed before kicking
off 2PC proclessing. Similarly, when a thresd does work
on behalf of iinultiple transaction programdapplications, it
must be ensuired that all the work in the relevant context is
completed before kicking off 2PC processing.

5Cu~enfly, for c o m t processling, the iwus of control is conlined

to the process level and is not allowed to the thread level, even though
multi-threaded environments are coinmon. This is an exis ting anomaly.

685

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:39:21 UTC from IEEE Xplore. Restrictions apply.

3.2. Context Management

Context management isalocal application-support mech-
anism that permits applications to manage logically separate
pieces of work within a single physical locus of execution
(e.g., a thread or a process) [2]. When an application pro-
gram uses context management, the CM keeps track of the
various contexts, allows the application program to create
and set a context for work, and allows an application pro-
gam to switch contexts when appropriate. The context
manager shares the notion of contexts with the RMs and the
application program.

A new incoming conversation is assigned a new context
and the program's current context is set to the new context.
When a new outgoing conversation is allocated to a partner
program, the conversation is assigned the current context of
the program.

While context management provides addi tional functions
such as flexibility and avoidance of process switching to the
application program, it also imposes extra burden on the
application program. The application program has to keep
track of the progress done in each context, and switch con-
texts to meaningfully exploit the features of context man-
agement. An application program can perform context man-
agement by exploitingthe functions provided by the context
manager using a suite of calls, described subsequently.

The notion of context provides a logical separation of
work done by an application program; each logically sepa-
rate piece of work is done in a separate context. Context is
local to a system, and distributed work done for the same
transaction is not part of the same context. When an ap-
plication program is involved in multiple transactions at a
time, each transaction is done in a separate context at the
application program. The same context may be involved in
multiple transactions sequentially. The application program
assumes the responsibility of keeping track of its various
contexts, coordinating the data spaces of the various con-
texts, and switching between contexts.

The CM administers the contexts independently of the
operating system's task dispatching mechanism. At each
node, the context is identified by a context-id; a CM main-
tains a context table that stores the following information
per contextid:

0 contextid, unique to a node
(threadid, process-id), unique to a node

0 a boolean indicating whether this context is currently
being worked on by this (threadid,processid)

The TM maintains the correspondence between the
TRANID and the contextid, the RM maintains the cor-
respondence between the resources it manages and the con-
textid; likewise for the managers of other subsystems. We
define a Context Management interface that (i) implicitly

externalizes the creation, coordination and deletion of con-
texts, and (ii) allows the application and managers ofvarious
subsystems such as the "M, RM, and security manager to
associate their resources with a context and coordinate the
usage of all resources related to a particular context.

3.2.1 Context Management Calls

In an environment where there is no one-to-one association
between threads and contexts (but rather a many-many asso-
ciation), explicit context management calls are required to
control the association between threads and contexts. This
is particularly important for transaction processing because
the TM and the R M s must identify the TRANID on a context
basis and not on a thread basis. The threadid, TRAMD,
accounting and security information are all part of a context.

When a thread (more generally, a locus of execution) is
created, it is assigned a context. The context can be a new
one or an inherited one.

Transaction management in a multithreaded environ-
ment

We describe three transaction program styles that use threads
[2] and suggest other CM functions to support the three
styles. The proposals are commands to start and manage the
threads within the context management framework.

Style 1

Server receives new work, and kicks off a thread to han-
dle the new work. A new context is implicitly created
whenever new work is accepted. This is a typical approach
for an RPC server, or an OS12 LU6.2 TP that issues RE-
CEIVEALLOCATE and then waits for the next incoming
work. The context management function to support this is:

START-THREAD-ANDXANDOFF-CONTEXT :
This function starts a new thread and disassociates
the main (old) thread from the newly created context.
The forked thread is associated with the new context,

Style 2

The server kicks off a thread but the forking thread continues
to work on the same context. This is typical ofan application
that can take advantage of the parallelism that light-weight
threads provide. The CM function associated with this is:

START_THREADANDSHAR-CONTEXT : This
function starts a new operating system thread. Any
one of the threads can initiate the commit operation.
The commit operation affects all resources allocated
to this context. It is up to the application's design
to ensure that all threads are ready for commitment.
If some threads are not ready, the commit call may

686

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:39:21 UTC from IEEE Xplore. Restrictions apply.

return a state-check, or it may backout, or accidentally
commit work in,-progress. The best approach is to
have the main thread issue COMMIT, after all forked
threads report that are ready (using an OS waitjpost
mechanism for example).

Style 3

The main thread receives a new work request, and then
instead of forking a new thread, it hands the work to an
existing thread. For performance reasons, it is better to
avoid creating a new thread. So using prestarted threads is
faster than creating a new one:

HANDOFF-CONTEXT : This function gives exclu-
sive ownership of a context to an existing thread and
posts the thread to inform it a new context is available.
SHARE-CONmXT : This function permits shared
ownership of ia context with an existing thread and
posts the thread to informit anew context is available.
THREADDONE-WITH-CONTEXT : This function
allows a thread to disassociate itself witki a context
and get ready to be involved in a new context. If no
other thread is associated with the context, an implicit
commit is attempted.
GETNEWXONTEXT : This function allows a
thread to wait for a parent thread to issue HANDOFF
or SHARE-CONTEXT. Blocking and non-blocking
flavors are useful.

In addition, Extract-Current-Context and SetXontext are
needed to support threaded applications and ,applications
that are single-threaded, but process more than one context
at a time.

a EXTRACT_CURRENT-CONTEXT : This function
allows TM, RM, or the application to find out which
context is currently active.

a SET-CONTEXT : This function allows an applica-
tion that can run for more than one context (e.g., a
Transaction program that processes many indepen-
dent incoming requests) to inform the system which
context the ,application is currently working on.

Along with these functions, a START-NEW-CONTEXT
function is needed for the system scheduler and for appli-
cations that want to start new work that is independent of
other work they are processing.

3.2.2 Examples of Styles

Example 1 - T h a d handles multiple contexts

Table 1 gives Example 1 in which a single thread at the
server switches context to handle requests from two clients.

Example 2-Threads Handle a Transaction Using Differ-
ent/ Same Contexts

Example 2 given in Tahle 2 deals with one client and
one server. The server has prestarted a number of threads.
A database clientherver application can use this design to
optimize the performance of an application that opens more
than one cursor, and fetches data from each ciusor in an
order that is nat known in ,advance. A separate connection
is used for each cursor to allow a fetch to be done on each
open cursor inidependent of the data flowing on(other con-
nections. The server hands off work to the threads which
are already initialized, and are: waiting for incoming work.
The waiting threads are not involved in work for any con-
text. Once the thread isgiven the context and the connection
associated with that context, the thread has exclusive use of
the connection. In the example, multiple threads work on
a single transaction using different contexts. There are two
independent c:onnections created at the server. By default,
each connection starts a new context.

For perfonnancereasoiis, it is better to have all the threads
use the same context. Even though each conniection has its
own context, the server can understand, through application-
specific logic:, that the work is related work. So the server
could choose to hand the name context to each of the threads.
The example would change as follows: In step 1, the
server woulcl issue SHARE-CONTEXT instead of HAND-
OFF-CONTEXT. In stq) 2, the server would simply issue
SHARE-CONTEXT instead of STARTAE’VV-CONTEXT
and HANDOFF-CONTEXT.

3.3. Interfaces betweten Context Manager, Transac-
tion Manager and Resource Managers

The TM and protected RMs normally associate a thread
with a TRAMD. Threadid and “ I D , dong with ac-
counting and security inforrnation are components of a “con-
text”. In an environment where an applicafion can start a
thread to trike care of part or all of a transaction, the TM
and the protected RMs nered to share the current context
of the thread that is executing on the protected resource.
The mechanism that allows the TM and the RMs on a local
system to share a common contextid is a matter of imple-
mentation. Two design choices we considered are given
below.

Design 1: Each time an RM, including the security Rh4,
is invoked, it can query the current context using the CM’s
EXTRAC‘T-CURRENT_C:ONTEXT. The IRM would then
have to look up, in its awn tables, and determine if it is
already involved in work for this current context. If it is not
already involved in work for the current context, the RM
should add an entry to its intemal tables. The entry should
include the contextid, and whatever other information the
particular RM needs. The TM needs to correlate information

687

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:39:21 UTC from IEEE Xplore. Restrictions apply.

Client I

BEGIN TRANSACTION
request

get reply

request

eet re&

COMMIT (client 1 commits)

pz-
0

1

2

3

Server

START-NEW-CONTEXT(C 1)
BEGIN TRANSACTION
begin work for client 1: send reply

START-NE W-CONTEXT(C2)
BEGIN TRANSACTION
begin work for client 2; send reply
SETXONTEXT(C1)
(serverswitch to Client 1's context C1)
do some work for context 1; send reply

SET-CONTEXT(C2)
(server switch to Client 2's context C2)
do some work for context 2; send reply

SETXONTEXT(C1)
Change context to C1. Issue COMMIT to TM. TM commits
all work associated with current context. (TM queries CM to
get current context before processing commit. It will then
associate current context with the TRANID and order all RMs
to commit work associated with that TRANID and context.)

SET-CONTEXT(C2)
change context to C2. Issue COMMIT to TM.
TM commits all work associated with current context.
(TM interacts with CM as in previous step.)

Client 2

BEGIN TRANSACTION
request

get reply

Table 1. Example 1. Thread handles multiple contexts.

request

get reply

COMMIT (client 2 commits)

Client 1

BEGIN TRANSACTION
SQL request
OPEN-CURSOR A
(one protected connection with the server)

SQL request
OPEN-CURSOR B
(one protected connection with the server)

fetch from A
fetch from B
COMMIT
(If both connections are protected,
the local TM will initiate commit
processing on both connections.)

Server
Two threads are prestarted and are waiting to do work on
behalf of a context by issuing to the main thread GET-NEW-CONTEXT

START-NEW-CONEXT(C1) (to CM)
BEGIN TRANSACTION (to TM)
HANDOFF-CONTEXT(to thread 1)
(This satisfies thread-one's GET-NEW-CONTEXT.
Thread-one is now processing SQL request.)

START-NEWXONTEXT(C2) (to CM)
HANDOFF_CONTEXT(thread 2)
(This satisfies thread-two's GET-NEW-CONTEXT.
Threadiwo is now processing SQL request).

The two server threads will receive the commit message. Each thread
issues COMMIT to TM. TM commits all work associated with current
context of each thread. TM queries CM to get current context
before processing commit. It then associates current context
of each thread with TRANID and requests all RMs to commit work
associated with that TRANID and context.

Table 2. Example 2. Threads handle a transaction using same/different contexts.

688

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:39:21 UTC from IEEE Xplore. Restrictions apply.

about the TRANID with the contextid. A security manager
needs to associate the UserID, and possibly password or
other security related tokens, with the contextid. A database
RM would need to correlate table update information, lock
information, and TRANID with the contextid.

Design 2: The CM provides a broadcast mechanism.
With this approach, the CM broadcasts the current contextid
to all “interested” RMs. The broadcast would occur each
time an OS dispatchablie unit (thread or process) changed
the context it was working on. The context change would
occur because the application has issued a SET-CONTEXT
call to the CM. The RMs would do internal housekeeping
when notified that the aictive context has switched from one
contextid to another. The switch does not imply that the
work has committed or aborted, but rather that a context has
temporarily suspended execution. This is akin to X/OPEN’s
xa-end(suspend). The mechanism for determining which
RM is “interested” in the broadcast is also an implementation
issue. There can be either dynamic registration where an RM
calls the CM to request to be notified of all changes within
a scope, or the CM can support automatic inclusion of RMs
based on system definiiion.

The choice of quenj versus broadcast is a performance
issue. In a particular eiivironment queries might entail less
overhead than broadcasts. In the prototype developed for
OS/2, a query mechaniism was used and the CM kept con-
textid on a process and thread basis. So each thread could
be operating on a diffixent context, or it could be operat-
ing on the same context as another thread depending on the
application’s style.

The next section describes how context management can
be used to solve complex issues in distributed transaction
processing that arise clue to the way multiple transactions
are assigned across processes and threads.

4. Distributed Trarnsaction Management

Each new incoming request accepted by a Transaction
Program (TP) is handled by a new instance of the TP. Multi-
ple such TP instances share the same TRANID but may be in
the same thread/differc:nt threads/ different processes, in the
proposed processing paradigm. Each TP instance: is a dif-
ferent locus of control and context is necessary to identify it.
We show that the “RANID, and threadid or processid are
not enough to identify the TP instance. If contextid is not
used, there is a possibility of deadlocks [9] or protocol vi-
olations during commit processing, due to the combination
of the new processing paradigm and “loopback”, tiiscussed
next. The problems are more obvious in the peer-to-peer
comiunication model where the commit can be initiated
by any partner in the; transaction tree and more than one
transaction is in progress at the same time. The notion of
context plays an important role in solving these problems

689

cleanly. We will discuss the problems in transaction pro-
cessing without context, and the solutionsoffered by context
management. The use of context management in reconcil-
ing communication protocol support between chained and
unchained transactions has been presented in [141.

4.1. Loopback

Loopback is a system state iin which a transaction reap-
pears at a node that is already involved in the same trans-
action [7]. Multiple TPs in one commit tree present the
same TRANID to the shared resource managers. The “re-
infection” can be direct when a client invokes a server that
happens to reside on the same node. Loopback can be in-
direct, when a server, say X, is invoked by a client on a
different node, which in turn is a cascaded server for a client
on the same node as the server X. Indirect loopback can
also occur when two different servers on the same node are
invoked as part off the same transaction. Figure 1 illustrates
a loopback invollving three partiter programs X, ’U: and Z.

Currently, when a loopback occurs, a process or thread is
dispatched to handle the second occurrence of the transac-
tion. The two lacii ofexeculion have the same TFANID but
can be differentiated by using the processid or threadid.
In 2PC, the TM needs to determine which resolurce needs
to be sent Prepare [7]. (Note that the Prepare flows cor-
respond to the TP-Prepare service of OS1 TP [131, and in
the X/Open model, they are triggered by xuplrepaw and
uxgrepare [161). A particular resource associated with
the locus of control can be identified by process-id (from
which TRANID can be deduced) and connectionid (the
‘leg’ identifier, known in OS1 TP as the branchid and in
LU6.2 as the conversation coirrelator). This is sufficient
even if the application prorogmri has a conversation with an-
other application on its own node whereby both branches
of the connectiodconversalion have the same TFlANID and
connectionid. In the new processing paradigm, the TM
can identify a particular re3ource associated with the locus
of control by contextid, fiom which TRANID can be de-
duced, and connectionid. If TRANID or threadid were
used instead of contextid, two locii of control would sat-
isfy (TRANID., connectionid) or (threadid, connectionid)
when the two locii of execution were allocated to the same
thread and had a connectlion with each other. However,
when the contextid is used with the connectionid, the con-
textid uniquely identifies the locus of execution, with re-
spect to which the connection-id is used to determine which
resource@) should be sent Prepare.

The above occurrence of loopback arises in the new
paradigm when a peer-topeer communication model, such
as modern SN,4 (APPN and APPC), is assumedl. The peers
in the transaclion are considered to be ‘loosely coupled’
[16]. In the pieer-to-peer model, the commit initiator can

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:39:21 UTC from IEEE Xplore. Restrictions apply.

TP-Y

TP-Z and TP-Z’ share
same TRANID,

process-id and thread-id

Figure 1. Example of Loopback

be different from the dialog initiator, and may reside on the
same system. In this case, the (TRANID, connectionid)
pair is not sufficient to identify the dialog on which the
Prepare or Backout should be sent. But in the hierarchical
communication model, (such as OS1 TP [131 and RF’C [11,
whether blocking or nonblocking), only the dialog initiator
can initiate commit processing or send Prepare; a TRANID,
which can be deduced from processid or threadid, and con-
nectionid are sufficient for the TM to determine the branch
on which the CRM should send the Prepare. However,
context is still needed for other requirements presented in
Section 3.1.

4.2. Protocol Violations and Deadlocks

Ifthe scope ofthe commit is the process and the TRANID
and processid are used to identify the different resources,
protocol violations and deadlock [9] occur. If context man-
agement is used and the commit scope is the context (using
the context-id), such problems do not occur. Consider the
configuration shown in Figure 1. The distributed transaction
involves three partner programs, X, Y and Z. An instance
of program P is denoted by TP4. TPX has invoked servers
Tp-Y and TPZ. The arrows on the lines indicate the di-
rection of invocation of TPs. TP-Y has in turn invoked
T P Z (which is really instance TPZ’ that is distinct from
TPZ that was started before it). T P Z and TPZ’ share
the same TRANID, processid, and threadid, and hence the
TM cannot distinguish between them. The commit tree is
not a spanning tree if its nodes are defined by the TRANID,
processid, and threadid.

Example 1 of Protocol Violations / Deadlocks

(1) TP-X initiates the commit process. Both the conversa-
tion resourcesrepresenting the connection to TP-Y and T P Z
belong to the current scope of TPX (the scope is the process
with the same TRANID) and the Prepare message [6] is sent

to both TP-Y and TPZ. (2) In turn, the TM of TP-Y sends
Prepare to TPZ’. However, T P Z and TPZ’ share the same
TRANID, processid, and threadid, and hence cannot be
distinguished by the TM handling them. The TM of TPZ
receives two Prepares for the same transaction, which is in-
terpreted as a protocol violation and results in backing out
the transaction.

Using context management, the two incoming requests
from client TP-Y and client T P X result in the creation of
two separate contexts (with the same TRANID) for TPZand
TPZ’. The commit scope isnow the context and the commit
tree is now represented by a tree of contexts. This is now a
spanning tree. When TPX issues Commit, the Prepare for
partner TPZ is for the context representing the connection
from T P X to TPZ. The other Prepare that arrives from
TP-Y is for the context that represents the connection from
TP-Y to TPZ’. Based on context, the TM distinguishes
between T P Z and TPZ’ and there are no problems in the
2PC.

Example 2 of Protocol Violations / Deadlocks

(1) T P X issues Prepare-For-Syncpt [6] on the branch to
TP-Y. (2) TP-Y then issues the same call to TPZ’. (3)
The TM cannot distinguish between TPZ and TPZ’ and
in an effort to Prepare that branch of the tree identified by
(TPX,TP-Y) and (TP-Y,TPZ’), the TM at Z propagates
the Prepare along (TPZ,TPX). (4) The TM at T P X will
detect aprotocol violation in the hierarchical communication
model [161, or a deadlock will occur in the peer-to-peer
communication model as follows: TP-X will not reply to
the Prepare request of TPZ; TPZ’ (which the TM cannot
distinguish from TPZ) will not reply to the Prepare request
of TP-Y; TP-Y will not reply to the Prepare request of TPX.

However, if context were used, TPZ’ would never have
sent a Prepare to TP-X, and no problems would have oc-
curred. Context is essential to keeping a spanning 2PC tree.

Example 3 of Protocol Violations / Deadlocks

The 2PC protocol has been extensively optimized by reduc-
ing the number of messages and force log writes [7,15]. One
such well-known optimization is the linear commit, other-
wise known as the Last-Agent (LA) optimization. When
a partner that initiates the 2PC protocol decides to use the
LA optimization, it first chooses the agent that will act as
the last agent, then prepares all the other subordinates and
finally passes control to the LA (by sending it the Y E S vote).

(1) Let TPX choose partner T P Z as the last agent. When
partner T P X initiates the commit processing, the TM of
TPX will send Prepare only to TP-Y. (2) TP-Y will in turn
send Prepare to TPZ’. (3) The TM handling TPZ’ cannot
distinguish between it and T P Z if it does not use context.
So it attempts to send Prepare to T P X along (TPZ,TP-X)

690

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:39:21 UTC from IEEE Xplore. Restrictions apply.

because it does not know T P Z has been chosen as the LA
of TPX.

If the Conversation between T P X and TP;! is half-
duplex, T P X has send control and TPZ waits ‘to receive
send control in order to send Prepare to TP-X. This wait
is indefinite because T P X is blocked waiting for the re-
sponse to the initial Prepare, TP-Y is blocked waiting for a
response from TPZ’, and TPZ, (which the TM at Z cannot
distinguish from TP-Z’) is blocked waiting for send control
from TPX. If the conversation between T P X and T P Z is
full-duplex and a peer-to-peer model is used, T P Z sends the
Prepare to T P X and waits for a reply from TPX. But TPX
cannot receive the Prepare because its TM is blocked wait-
ing for the response to the initial Prepare, TP-Y is blocked
waiting for a resporise from TPZ’, and TPZ, (which the
TM at Z cannot distinguish from TPZ’) is b1ock:ed waiting
for a response from TPX. Thus, there is deadlock. If a hi-
erarchical model is used and conversations are full-duplex,
a protocol violation is detected by the TM of TPX. None
orthese problems would arise if context were used because
the TM of TPZ’ would not send a Prepare to TPX.

5. Conclusions

Operating systerns that support threads withiin a process
need the notion of context to efficiently support the paradigm
where a single thread can be concurrently associated with
several transaction!; or where several threads work on the
same transaction. The first contribution of this paper was
that it defined context management by defining a Context
Manager and the primitives in its associated user interface.
Systems that do not support threads, but support server pro-
cesses can take advantage of the context management ser-
vices. The context management services permit a transac-
tion processing application to specify which work is to be
handled at any instant. The application using these services
can then divide the work within and among the threads
or processes, and be assured the resource managers will
know which transaction the work belongs to. While context
management fits naturally in the peer-to-peer transactional
paradigm, it also ,allows legacy, process-oriented systems
to increase the transactional throughput by allowing multi-
plexing of transactions within one process.

A second contribution of this paper is that it showed
how context management is necessary to solve problems
such as deadlocks and protocol violations, and to handle
loopback situations that arise in distributed transaction pro-
cessing when using the paradigm in which a thread could
be associated with multiple transactions. The paper then
gave solutions to these problems in transaction processing.
We expect context management will became increasingly
important to efficiently handle higher lasking demands and
real-time demands on the operating system. We have im-

plemented a pirdotype of the Context Manager and its user
interface for use with transaction processing. Ike VM op-
erating system Shared File System has been enhanced to
provide several features of‘ context management support de-
scribed here.

References
Ananda, A. L., Tay, B. H.. Koh, E. K., A Survey of Asyn-
chronous: WC, ACM Cperating Systems Revi(av, 1992.
Citron, A.,, Context hdanaiger, Proc. 4th Int. Workshop on
High Perfiwmance Trmsaction Sysfems,, Asilomar, Septem-
ber 1991.
Comer, D ~ , Intemetworkinlg with TCPIIP: Principles, Proto-
cols and Architecture, Preintice Hall, Englewood Cliffs, N.J.

Gray, J.N.,, Notes on Data Base Operating Systems, In Oper-
ating Sy,stems - An AabancedCourse, R. Bayer, R. Graham,
and G. Seagmuller (Eds.)., LNCS, Vol. 60, Sipringer-Verlag,
1978.
OS/2 2.0 Technical Libmy, Control Point Programmers’
Reference:, IBM, 19816, 1991.
Systems Network Architecture : Transaction1 Programmers’
Reference Manual for L.U Trpe 6.2, Document Number
SC30-3”!4-5, IBM, June 1993.
Systems Network Architlecture Sync Point Services Archi-
tecture Reference, Document Number SC3 :I -8134-0, IBM,
Sept. 1994.
King A., Inside Windows 1995, Microsoft Press, ISBN 1-

Kshemlhlyani, AD., Skighal, M., On Chmacterization and
Correctness of Distdbuted DeadlockDetection, Jour. of Par-
allel and Distrib. Computing, 22(I), 44-59, July 1994.
Lampson, B.W., Atoimic Transactions, In “13istributed Sys-
tems: Architecture andl Implementation -. An Advanced
Course“, B.W. Lamlpsoni (Ed.), LNCS, Vol. 105, Sprhger-
Verlag,, 246-265,1981.
Mohan., @., Lindsay, B., Obermarck, R., Transaction Man-
agement in the R* Dishbuted Data Base Management Sys-
tem, ACMTrans. on Dartabase Sysf., 11(4), Dec. 1986.
Moskalwitz, D., Kerr, D,,, et al., OS/2 2.1 Unleashed, Sam’s
Publislning @rentice:-Hall). JSBN 0-672-30:240-3, 1993.
Information Technollogy - Open Systems Interconnection -
Distributed Transaction Processing - Part 1 :: OS1 TP Model;
Part 2: OS1 TP Service, ISO/IEC JTC II’SC 21 N, April
1992.
Samaras, G., Citron A., Kshemkalyani, A.. D., Unchained
Transactions and SNA’s: LU6.2, Proc. 5th Intern. Workshop
on Kgh-Perfirmance Transaction Systems, 28.1-28.19,
Asilorniir, Sept. 1993.
Samam, G., K. Britton, Citron A., C. Mohan, Two-Phase
Commit Optimizations in a Commercial Distributed Envi-
ronment, Jour ofDibtril5. andpar. Databases,3(4), 325-360,
Oct. 1995.
Distributed TP: a) The TX Specification 1’209, b) The XA
Specification C193 61911, c) The XA+ Specification S201,
XIOpen Consortium, Nov. 1992, Feb. 199:2, Apr. 1993.

ISBN 0-13470154-2,. 198i8.

55615-62!6-~, 1994.

69 1

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:39:21 UTC from IEEE Xplore. Restrictions apply.

