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Abstract 

Fast and efJicient detection of deadlocks remains an im- 
portant problem in distributed operating systems. In this 
papel; we present a distributed algorithm to detect gen- 
eralized deadlocks in distributed systems. The algorithm 
pevorms reduction of a distributed wait-jor-graph (WFG) 
to determine a deadlock Ifsuficient informution to decide 
the reducibility of a node is not available at that node, the 
algorithm attempts reduction later in a lazy mannel: We 
prove the comctness of the algorithm. The algorithm has a 
message complexity of 2e messages and a worst-case time 
complexity of 2d hops, where e is the number of edges and 
d is the diameter of the WFG. The algorithm is shown to 
perform better in both time and message complexity than 
the best known distributed algorithms to detect distributed 
generalized deadlocks. We conjecture that the algorithm is 
optimal in the number of messages and time delay, among 
distributed algorithms to detect generalized deadlocks. 

1 Introduction 
In computer systems, a deadlock occurs when a set of 

processes wait indefinitely on each other for their requests 
to be satisfied. A deadlock hampers the progress of the 
processes and lowers the resource availability; therefore, 
all deadlocks must be promptly detected and eliminated 
[lo, 141. Distributed systems are prone to deadlocks and 
detecting deadlocks is an important problem in the design 
of distributed systems. For the purpose of deadlocks, inter- 
action between processes is modeled by a directed graph, 
called a wait-for graph (WFG) [lo, 141. Nodes in a WFG 
are processes and an edge from node i to node j indicates 
that process i has requested a resource from process j and 
process j has not granted the resource to process i. A dead- 
lock is characterized by topological properties of the WFG 
that depend upon the underlying process request model. For 
example, in the simplest request model, called the single- 
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request model, as well as in the AND request model, the 
presence of a cycle in the graph implies a deadlock. In the 
OR request model, the presence of a knot is a necessary and 
sufficient condition for a deadlock to exist [6]. 

In the generalized request model, also called the AND- 
OR request model, the condition for a blocked process to get 
unblocked is expressed as a predicate involving requested 
resources and AND and OR operators [SI. For example, 
predicate i A ( j  V k) denotes that the process is waiting for 
a resource from i and for a resource from either j or k. In 
the 1’-out-of-Q request model [2] ,  a process makes requests 
for Q resources and remains blocked until it is granted any 
P out of the Q resources. The P-out-of-Q and the AND-OR 
models are equivalent because a predicate in the AND-OR 
model can be expressed as a disjunction of P-out-of-Q type 
requests and vice-versa [SI. Thus the P-out-of-Q request 
model is also known as the generaIized request model. A 
generalized deadlock corresponds to a deadlock in the AND- 
OR (or P-out-of-Q) request model. AND and OR models 
are special cases of the generalized deadlock model. 

Although the problem of deadlock detection has been 
relatively well explored in the single-request, the AND re- 
quest, and the OR request models, e.g., [4, 6, 10, 11, 141, 
there remains much to be done towards the detection of gen- 
eralized deadlocks in distributed systems. The generalized 
request model is used frequently in many domains (such 
as resource allocation in distributed operating systems [2], 
communicating processes [9], and quorum consensus algo- 
rithms for distributed databases [7]) and efficient detection 
of generalized deadlocks remains an important problem. 

Previous Work on Generalized Deadlock Detection 

Detecting generalized deadlocks in adistributed systemis 
a difficult problem because it requires detection of a complex 
topology in the global WFG; the topology is determined by 
the conditions that need to be satisfied for each of the blocked 
processes in the WFG to unblock. A cycle in the WFG is 
a necessary but not sufficient condition, whereas a knot in 
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the WFG is a sufficient but not necessary condition for a 
generalized deadlock. 

Design of correct and efficient algorithms to detect gen- 
eralized distributed deadlocks is an extremely difficult prob- 
lem and only four distributedalgorithms (e.g., [2,3,13,15]) 
exist to detect generalized distributeddeadlocks. We do not 
consider centralized algorithms such as [l, 51 in which a 
snapshot of a WFG is collected by some process and then 
examined by that process for a generalized deadlock. The 
algorithms in [2, 13, 151 are based on the “record and re- 
duce” principle; that is, the distributed WFG is recorded and 
reduced to determine if there is a deadlock. Reduction of 
the WFG simulates the granting of requests and is a general 
technique to detect deadlocks [lo]. The algorithm in [3] is 
based on the principle of detection of weak termination of a 
distributed computation. 

The algorithm by Bracha and Toueg [2] consists of two 
phases. In the lirst phase, the algorithm records a snapshot 
of a distributed WFG and in the second phase, the algorithm 
reduces the graph to check for generalized deadlocks. The 
second phase is nested within the first phase. Therefore, the 
first phase terminates after the second phase has terminated. 
In the two-phase algorithm of Wang et al. [15], the first 
phase records a snapshot of a distributed WFG. The end 
of the first phase is detected using a termination detection 
technique, after which the second phase is initiated to reduce 
the recorded WFG to detect a deadlock. In the one-phase 
algorithm of Kshemkalyani and Singhal [ 131, the recording 
of a snapshot of the distributed, dynamically changing WFG 
and reduction of the recorded WFG is done concurrently. 
The algorithm has to deal with the complications introduced 
because the reduction of a process can begin before the 
state of all WFG edges incident at that process have been 
recorded. Brzezinski et al. [3] define a generalized deadlock 
in terms of weak termination of a distributed computation 
and develop an algorithm that detects generalized distributed 
deadlocks by detecting weak termination of a distributed 
computation. Nodes are logically arranged as a ring and a 
token circulates on the ring to monitor the state of the nodes. 
The token keeps circulating until the monitored states of the 
nodes is the same in two consecutive rounds. 

Paper Objectives 
We present a decentralized algorithm for detecting gen- 

eralized distributed deadlocks and outline its correctness 
proof. The algorithm performs reduction of a distributed 
wait-for-graph (WFG) to detect a deadlock. During the dis- 
tributed reduction, if sufficient information to decide the 
reducibility of a node is not available at that node, the algo- 
rithm attempts reduction later in a lazy manner. 

The proposed algorithm performs better than the algo- 
rithms in [2, 3, 13, 151; it has a message complexity of 2e 
messages and the worst-case time complexity of 2d hops, 

where e is the number of edges and d is the diameter of the 
WFG. It is conjectured in [ 121 that this algorithm is optimal 
in the number of messages and in time delay if detection of 
generalized deadlocks is to be carried out under the follow- 
ing framework: (i) no process has complete knowledge of 
the topology of the WFG or the system, and (ii) the deadlock 
detection is to be carried out in a distributed manner. If the 
initiator of the deadlock detection algorithm is deadlocked, 
at the time the algorithm terminates, it has all the necessary 
information to adequately resolve the deadlock, unlike the 
algorithms in [2,3,13,15]. 

The rest of the paper is organized as follows: In Sec- 
tion 2, we discuss the system model and give a precise 
problem description. In Section 3, we describe the idea 
behind the algorithm and use an illustrative example. In 
Section 4, we present the algorithm. In Section 5, we sketch 
the algorithm’s correctness proof. In Section 6 ,  we analyze 
the performance of the algorithm, and compare it with that 
of previous algorithms. Section 7 concludes. 

2 System Model 
The system consists of P processes (called nodes) which 

are connected by communication channels. There is no 
shared memory in the system and nodes communicate solely 
by sending messages over the channels. The messages are 
reliably delivered with finite but unpredictable delays. The 
system is assumed to be fault-free. 

When a node i makes a generalized request and blocks 
(i.e., goes from active to idle state), the unblocking condition 
of its request is denoted as fi. The domain of fi is the set 
of all nodes which are referenced in fa. Function fa is 
evaluated in the following manner: substitute true for a 
node id in fi if i has received a reply, indicating granting of 
that request, from that node; otherwise, substitute f adse for 
it. Then simplify the function. 

The node unblocks (goes from idle to active state) when 
a sufficient number and combination of its requests to make 
f2 true are granted. When the node unblocks, it withdraws 
the remaining requests it had sent but are not yet granted, or 
are granted but not used in the evaluation of fi. 

The following two axioms describe the blocking and un- 
blocking of nodes: 

Axiom 1 A node blocks when it maks a generalized request 
and does not send any computation messages until it gets 
unblocked. 

Axiom 2 A blocked node gets unblocked if and only if its 
requests are satisjied during the normal course of the un- 
derlying computation. 

Note that Axiom 2 describes the normal way in which 
a node can get unblocked. A node can get unblocked ab- 
normally if it spontaneously withdraws its requests or its 
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requests are satisfied due to the resolution of a deadlock of 
which it is a part [ll]. There is a risk of false deadlocks 
being reported if a node unblocks abnormally. Detection 
of such false deadlocks can be eliminated by using a times- 
tamping mechanism to consider the dynamically changing 
WFG along the latest observable state [ 11, 131. We do not 
allow a node to unblock abnormally for simplicity. 

The interaction between processes is modeled by a di- 
rected AND-OR wait-for graph denoted by (N, E), where 
N is the set of nodes and E is the set of directed edges 
between nodes. Qpically, IN I << I P I. 

A node i keeps the following variables to keep track of 
its portion of the directed AND-OR W G :  

INi : set of node ids c 0; 
/*set of nodes which are directly blocked on node i. It 
denotes the direct predecessors of node z in the WFG. */ 

OUZ : set of node ids c 8; 
/*set of nodes on which node z is blocked. It denotes the set 
of nodes that are direct successors of node i in the WFG. */ 

f i  : AND-OR expression c I; 
/*the condition for unblocking.*/ 

OUT gives the domain of function f i .  The transitive 
closure of O U Z ,  denoted by OUq+, gives the reachability 
set of i. The transitive closure of INi , denoted by IN:, is 
the set of nodes whose reachability set contains i. 
Problem Statement 

A generalized deadlock exists in the system iff a certain 
complex topology, identified next, exists in the global WFG. 

Definition 1 A generalized deadlock is a subgraph ( D ,  I<) 
of ( N ,  E )  where ( i )  each i E D(# 0) is blocked byfunction 
f i  (OUZ) such that 
fi(OUTi / ( V j  ED, j= fa fJe)  A ( v j  EOUT,-D,j =true) )  = f a l se ,  
and (ii) K is the projection of the edges in ( N ,  E )  on the 
nodes in D. 

From Axioms 1 and 2, it follows that none of the nodes 
in D gets unblocked. All nodes in D thus remain blocked 
forever. All the nodes in the WFG that do not belong to any 
D have a sufficient number of edges to nodes in OUTi - 
D, i.e., fi(OUTi I ( V j ‘ j E D , j = f a l s e ) A ( V j j E O U T , - D , j = t r z l e ) )  = 
t rue.  All these nodes are not deadlocked because their 
requests can be satisfied. 

A distributeddeadlock detection algorithm should satisfy 
the following two correctness conditions: 

Liveness: If a deadlock exists, it is detected by the algo- 
rithm within a finite time. 

Safety: If a deadlock is declared, the deadlock exists in the 
system. 

At the time that a node blocks, it initiates a deadlock de- 
tection algorithm. Note that only the nodes that are reach- 
able from a node in the WFG can be involved in deadlock 
with that node. Thus, the complete WFG is not examined 
to detect if a node is deadlocked; only that part of the WFG 
which is reachable from that node needs to be examined. 

3 BasicIdea 
No node has knowledge of the complete topology of the 

WFG or the system, therefore, the initiator node determines 
the reachable part of the WFG and attempts to sense its 
topology by diffusing FLOOD messages. To initiate dead- 
lock detection, the initiator node sends FLOOD messages 
to all its successor nodes. When a node receives the first 
FLOOD message, it propagates it to all its successor nodes, 
and so on. This is the flood phase. The edges of the WFG 
on which the first FLOOD message is received by each node 
induce a directed spanning tree (DST) in the WFG. 

The deadlock detection as well as detecting termination 
of the algorithm are performed by echoing the FLOOD mes- 
sages at terminating nodes and reducing the graph when an 
appropriate condition at a node in the echo phase is satisfied. 
A terminating node in the graph is either a sink node or a 
non-sink node that has already received a FLOOD message. 
Since a sink node is active (and thus, is already reduced), 
it responds to all FLOOD messages by ECHO messages. 
By sending an ECHO message, a node informs that it has 
been reduced. When a non-sink node in the graph receives a 
second or subsequent FLOOD message, it responds with an 
ECHO message providedit has been reduced by then. How- 
ever, a dilemma arises if a non-sink node in the graph has 
not been reduced when it receives the second or subsequent 
FLOOD message. The state of such a node is presently 
indeterminate and may eventually become reduced after a 
sufficient number of ECHO messages are generated and 
moved up in the graph. Such a node can not immediately 
respond to a FLOOD with an ECHO message and if it waits 
to see if it is later reduced, the algorithmmay deadlock! This 
dilemma is solved in the algorithm using lazy evaluation as 
follows. 

Lazy Evaluation 

If a non-sink node in the graph has not been reduced when 
it rec!eives a second or subsequent FXOOD message, it im- 
mediately responds to such a FLOOD message with a PIP 
message. A PIP message conveys the indeterminate state 
of the node. An ECHO message conveys the fact that the 
sender node is reduced. A node attempts a reduction when- 
ever it receives an ECHO. If a node is reduced until the time 
it ha.. received a response to all the FLOOD messages that it 
sent (we call this “local reduction” of the node), it sends an 
ECHO message to its parent in the DST. Otherwise, it sends 
a PIP message to its parent in the DST. Note that if the node 
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was not reduced at this instant, it does not mean that it is 
not reducible. This is because some of its successor nodes 
that sent a PIP might have gotten reduced later and reduc- 
tion of these nodes might have been sufficient to reduce this 
node, had it waited long enough. To take care of such con- 
ditions, (i) the reduced status of nodes that previously sent 
a PIP message is propagated upwards in the DST towards 
the initiator node. Also, (ii) when a (unreduced) node sends 
a PIP message to its parent node, the message contains the 
unsatisfied portion of the unblocking function, called the 
residual function, of the sender node. For example, if the 
unblocking function of a node is 1: A (y V z )  and the node 
has received an ECHO from y, then the residual function is 
5. Ancestor nodes of the unreduced node gather both these 
pieces of information and attempt to determine if the node 
can be reduced. 

The information about nodes that sent a PIP but were later 
reduced is propagated in the following manner. A node i 
keeps a set of node ids, denoted by R,, that contains the 
ids of nodes in OUT,' that sent a PIP, but were reduced 
later. When a node i sends an ECHO or a PIP message, the 
current value of R, is sent in the message. When a node i 
receives an ECHO or a PIP message, it adds the contents 
of the received R set to R,. This is eager dissemination 
of reduced node information. The eager dissemination is 
sufficient but not necessary for lazy evaluation. 

A node j keeps a set of residual functions, denoted by 
Z,, that contains tuples of the form <IC, f k > ,  where f k  

denotes the residual function of node k. The information 
about the residual function of nodes is propagated in the 
following manner: When a node sends an ECHO or a PIP 
message to its parent in the DST (this happens when the 
node has received a response from all its successor nodes), 
the message contains the residual function set of the sender 
node. An ECHO or a PIP message sent to a non-parent node 
carries null as the value of the residual function set. When 
a node j receives an ECHO or a PIP message with a non- 
null value of the residual function set, it adds the received 
residual function set to 2,. This retarded collection of resid- 
ual function is necessary and sufficient for evaluation of the 
unblocking function at nodes. This is how the information 
about the residual unblocking function of nodes and the in- 
formation that a node that sent a PIP was eventually reduced 
is propagated upwards in the tree. 

A node j evaluates its unblocking function f, whenever 
it receives an ECHO message. In addition, after a node j 
has received responses to all FLOOD messages it sent, it 
evaluates every residual function in the set Zj as follows: 
select a tuple <k, f k  > from Zj and check if entries in Rj 
are sufficient to reduce f k  . If a node j succeeds in reducing 
node ki residual function fk , we say that node k has been 
remotely reduced (at node j). In such a situation, node j 
adds k to R, and deletes tuple < k, fk  > from Zj . This is 
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Figure 1. An example of a WFG. 

done repeatedly until no more entries in Zj can be reduced. 
Thus, a node j uses information in Rj about its succes- 

sor nodes that sent PIP but later got reduced or that were 
remotely reduced, to attempt to reduce the residual function 
of as yet unreduced descendants in 2,. As a residual func- 
tion traverses up the DST, it can progressively strengthen 
because more reduced node information gets collected by 
lazy evaluation further up the DST. 

The initiator node is deadlocked if it is not reduced after 
receiving responses to all of its FLOOD messages because 
no further lazy evaluation can occur. Otherwise, it is not 
deadlocked. 

An Example 
We now illustrate the basic idea behind the algorithm with 

the help of an example. Figure 1 shows a distributed WFG 
that spans seven nodes numbered 1 through 7. All nodes 
except node 6 are blocked and the unblocking functions 
of these nodes are as follows: fi=4 V 2, f2=3 A 4 A 5,  

Suppose node 1 initiates deadlock detection and sends 
out FLOOD messages to nodes 2 and 4. Figure 2 shows 
the diffusion of FLOOD messages through the WFG. The 
thicker edges of the graph denote the edges along which 
nodes received their first FLOOD message and define the 
DST. 

Figure 3 shows how various nodes respond to FLOOD 
messages they receive. Since node 6 is active, it responds 
to the FLOOD messages from nodes 3 and 7 by ECHO' 
(6, 1, 0, 0) messages. Before node 7 receives the ECHO 
message, it receives FLOOD messages from nodes 3 and 4. 

'The first parameter of an ECHO or a PIP message is the sender's id, 
the second parameter is the initiator node id, the third parameter is the R 
set of the sender, and the fourth parameter is the Z set of the sender node. 

f3=2 V (6 A 7), f4=7. f5=1 V 7, f,j=true, f7=6. 
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Figure 2. Diffusion of FLOOD messages. 

Node 7 responds to these FLOOD messages by PIP(7,1,8, 
8) messages because the state of node 7 is indeterminate at 
this instant. On the receipt of the ECHO message, node 7 
succeeds in reducing itself and sends an ECHO(7, 1, {7}, 
8) message to node 5,  its parent in the DST. 

M e r  receiving ECHO message from node 7, node 5 gets 
reduced and sets RS to (7). On receipt of a PIP message 
from node 1, node 5 sends ECHO(5, 1, {7}, 0) message to 
node 2. 

Node 4 receives FLOOD from node 1 before it receives 
PIP from node 7. Consequently, it responds to FLOOD with 
a PIP(4,1,8,8). Node 4 is not reduced after it has received 
PIP from node 7 and thus sends a PIP(4,1,8, { <4,7>}) to 
its parent in the DST (node 2). 

Node 2 sends a PIP(2,1,8,0) message to node 3. Node 
3 is not reduced after it has received ECHO from node 
6 and PIP messages from nodes 2 and 7. However, its 
residual function is 2V7. Therefore, it sends PIP(3, 1, 8, 
{ <3,2 V 7>}) message to node 2. 

On receipt of PIP(4, 1, 8, {<4, 7>}) from node 4 and 
PIP(3, 1, 8, {<3, 2 V 7>}) message from node 3, 22 at 
node 2 becomes {<3, 2 V 7>, <4, 7>}. On receipt of 
ECHO(5, 1, {7}, 8) message from node 5, node 2 sets R2 
to (7). It adds its residual function <2, 3A4> to 2 2  and 
succeeds in reducing all three residual functions in 22 using 
R2. Consequently, R2 becomes {3,4,7}. Since node 2 is 
reduced, it sends ECHO(2, 1, {3,4,7}, 0) to node 1. On 
receipt of this message, node 1 is reduced and declares "no 
deadlock". 

4 Distributed Deadlock Detection Algorithm 
The pseudo-code for the algorithm uses the symbol + 

for the assignment operator, and the CSP-like symbol I3 for 
the selection operator. The semantics of "a -+ b" is '3 a 

w 
PIP ........................ 

Figure 3. Flow of ECHO/PIP messages. 

b skip." A node i has variables OUTi, I N i ,  and 
fi which describe the WFG locally. The deadlock detection 
algorithm uses the following variables. 
parenti:  integer +- 0; /*node id of parent of node a.*/ 

outi: set of integer c OUTa; 
/*nodes for which i is waiting. */ 

Ri : set of integer c 8; /* nodes in this subtree which sent 
PIPS, and which subsequently got reduced.*/ 

pip-.senti: boolean + f a l s e ;  
/* indicates if i sent PIP to other nodes.*/ 

X i  : AND-OR expression c f a ;  
/* unblocking function for i. */ 

## define struct FNRES { 
id:integer; I* node identifier. */ 
uc:AND-OR expression ;} /* residual unblocking func. */ 

/* local residual function. */ 

I* residual functions of unreduced nodes in subtree. */ 

str: FNRES c I; 
Zi : set of FNRES +- 0; 

initiate algorithm 
/*Executed by node i to detect whether it is deadlocked. *I 
init +- i ;  
parenti +- i; 
send'FLOOD(i, i )  to each j in outi. 

receive FLOOD(k, init) 
/*Executed by node i on receiving a FLOOD message from IC. */ 
[ 
/* FLOOD for new invocation (detected by timestamps, un- 
shown).*/ /*Case F1.*/ 
outi =I - 

parenti 
X i  + f i;pip-senti  + f a l s e ;  

k; outj +- OUTj; Ri, Zi + 8; 
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fi = true - 
fi = false - /* i is unblocked. Case F1-A. */ 

/* i is blocked. Case Fl-B. */ 
send ECHO(i,  init, @ , a )  to k; 

send FLOOD(i ,  init) to each j E outi; 
0 

/* FLOOD received before all expected PIPsECHOs received. */ 
/* CaseE. */ 

x; = true - /* i is unblocked. Case F2-A. */ 

Xi = false - /* a is blocked. Case F2-B. */ 

out; # 0 - 
send ECHO(i,  init, R;, 0 )  to k; 

send PIP( i ,  init, Ri, 0) to k ;  
pip-senti +- true; 

U 

/* FLOOD received after all expected ECHOslPE’s received. */ 
/* Case F3. */ 

X i  = true - /* i is unblocked. Case F3-A. */ 

Xi = false - /* i is blocked. Case F3-B. */ 

OUti = 0 - 
send ECHO(i,  init, Ri, 0) to k ;  

send PIP( i ,  init, Ri, 0) to k. 
1 
receive ECHOG, init, R, 2) 
/*Executed by node z on receiving an ECHO from j .  */ 
Xi = false - 

/* if i is blocked, try reducing it by substituting 
true for j in X,. Step El. */ 

xi +- X i ( 0 W  I j  =true);  
Xi =true - 

init = i i NO deadlock; exit; 
pip-senti = true - Ri + Ri U {i}; 

I* update R, to indicate i sent PIPS.*/ 

/* perform processing common to PIPS and ECHOs.*/ 
commonreply processing. 

receive PPG, init, R, 2) 
/*Executed by node i on receiving a PIP from j .  *I 
commonreply-processing. 

/* No special actions unique to PIP are needed. */ 

commonxepl y -processing 
/*Executed by node i to do common actions when either a PIP or 
ECHO is received. */ 
outi +- outi - ( j } ;  

zi +- zi U 2; 

/* updatelocalvariables out ; ,  R,, 2;. StepEP1. */ 
Ri c Ri IJ R; 

outi = 8 -+ /* all expectedreplies received. Step EP2. */ 

/* i is not yet reduced. Add to 2,. Step EP2.1. */ 
X i  = f a l s e  - 

str.id +- i ;  
str.uc +- X i ;  
Zi + Zi U{&}; 

eval; 

( X i  = true Apip-senti) - /* use Ri to evaluate unreduced nodes in Z, . Step EP2.2. */ 

/* examine X ;  using R; which was updated in eval.*/ 

/* if i sent PIP, update R; to indicate so. Step EP2.3.*/ 

/* i is locally reduced using updated R,. Step EP2.4. */ 

Ri + Ri U { i } ;  

X i  =true --+ 

init = i - NO deadlock; exit; 
send ECHO(i, init, Ri, Z i )  to parenti; 

/* a is not locally reduced using updated R,. Step EP2.5. */ 
X i  = f a l se  - 

init = i --+ deadlock; exit; 
send PIP( i ,  init, Ri, Zi)  to parenti. 

- eval 
/*Executed by node i to evaluate Z using the data that nodes in R 
are unblocked. */ 
tempR : set of integer t Ri; /* working variable for R,. */ 

repeat 
For every r E temp R do par 

for every z E Zi do par instantiate each occur- 
rence of r in z.uc by true ; 

rap od; 
tempR + tempR - ( r } ;  

rap od; 
for every z E 2, do par 

z.uc=true - 
tempR +-- tempRU{z.id}; 
z.id # i - Ri +- Ri U { z . i d } ;  

/* if z.id = i ,  then X ,  will also be true. */ 
zi +- zi - { z } ;  

rap od; 
untiltempR = 0. 

5 Correctness Proof 
The FLOOD messages induce a directed spanning tree 

@ST) in the WFG. The root of the tree is the initiatorand the 
parent of each node i in the tree, denoted by parenti, is the 
node from which i received its first FLOOD. The transitive 
closure of parenti, denoted by parent:, is the set of all 
ancestors of i. 

Assertion: FLOOD messages are diffused through the en- 
tire reachable WFG of the initiator. 

The initiator init sends FLOOD messages to all nodes in 
its OUTi,it. When a node receives the first FLOOD mes- 
sage, it sends FLOOD messages to all its direct successor 
nodes (Case F1-B) and so on. From induction, FLOOD 
messages are diffused through the entire reachable WFG of 
the initiator. 

Definition 2 A node i is locally terminated rfs it has pm- 
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cessed all the PIPS and ECHOs it expected in response to 
the FLOODS it sent, i.e., outi = 0. 

From Theorems 2 and 3 on time and message complexity 
(see Section 6), it follows that the algorithm terminates in 
finite time. 

Definition 3 Node i is locally reduced & f i t  receives a suf- 
ficient number of ECHOs so that X i  = true afcer outi = 8. 

Definition4 Node i is remotely reduced at j E IN: ifs 
3 j  (E IN:), 3z  E Zj such that z.id = i and there are 
enough elements in Rj by the time outj = 0 (these have 
all been reduced either locally or remotely) to satisfy i's 
residual unblocking condition z.uc at j .  

This reduction is remote and i is not aware of it. Note 
that i's residual unblocking condition in Zj may be stronger 
than Xi ,  indeed it may even be true. However the presence 
of a sufficient number of elements in Rj indicates that i's 
requests as represented in Xi are satisfiable. 

The boolean variable reducei will be used to indicate 
whether node i was reduced. The boolean variable reduce; 
will be used to indicate whether node i is reduced at node 
j. reduce: indicates that node i was locally reduced. 
reduce$+ indicates that node i was remotely reduced at 
node j. 

We sketch a correctness proof by stating some lemmas 
and observations. Detailed proofs are given in [12J 

Lemma 1 states that node i may be reduced at most at 
onenodein {i} Uparent:. 

Lemma 1 reducei * reduce: @ 
( r e d ~ ~ e i ~ , ~ ~ ~ ~ . .  ej,)fi, j1, j 2 ,  . . . , j, E parenti+) 

Lemma 2 states that if i was remotely reduced at node IC, 
then at local termination, i belongs to Rj for every ancestor 
j of IC. 

Lemma2 reduceaZi rj V j  E (parent: U{IC}), when 

Lemma 3 states that if a node j that sent a PIP gets 
reduced before local termination, the element j is contained 
in Ri for every ancestor i of j before i locally terminates. 

outj = 0, i E Rj 

Observation 1 I f  node i belongs to the R parameter in 
some ECHO or PIP received by j ,  then reduce; where 
IC EOUTjS. 

Lemma 5 states that if node i sends a PIP (either before 
it is locally reduced or because it is not reduced at local 
termination), then at local termination at each ancestor node 
j of i, [(z E Zj,  where z.id = i) @ (i E Rj)]. 

Lemma5 (i sends a PIP A reduce:) V -v-educef when 
outi = 0 e 
'dj E (parent: U{;}), when outj = 0, [ (z  E Zj, where 
z.id = i) @ (i E Rj)] 

Observation 2 For any i, the value of Xi which is repre- 
sented in z.uc, where %.id = i and z is in the parameter Z,  
progressively strengthens as it ascends up the spanning tree 
in PIP and ECHO messages. 

Observation 3 Ifnode i receives an ECHO or a PIP fmm 
node j, node i has already sent a FLOOD to node j and j 
E outi. 

Observation 4 Node i does not send any ECHOs unless 
reduce:. 

The above observations and lemmas are used to prove 
the following result [ 121. 

Theorem 1 The initiator declares deadlock iff it is dead- 
locked. 

Deadlock Resolution 

If the initiator i finds that it is deadlocked, it can use Zi 
to locally construct the topology of the deadlocked portion 
of the WFG. It can then use various strategies to choose 
a desirable set of nodes to abort to resolve the deadlock. 
The algorithm considerably facilitates efficient and fast res- 
olution of a detected deadlock, whereas the other algorithms 
[2,13,15] require an additional round of messages to collect 
the information that is needed to resolve the deadlock. 

6 Performance 
For a WFG with e edges and a diameter d ,  the following 

results are shown in [12]. 
Lemma 3 (Node j sent a PIP and then reduce;) =$ V i  E 
(parent; U { j } ) ,  at the time outi = 0, j E Rs Theorem 2 The algorithm terminates in 2d + 2 message 

hopS. 

Note that the initiator can detect it is not deadlocked in Lemma 4 states that if i E Rj , then i was already reduced 
at some node ' before local termination (' = i, Or was fewer message hops as soon as it gets locally reduced. In 

the best case, this is only 2 message hops [12]. remotely reduced at some node 1 E OUTj' U{ i}. 

Lemma E R j  * reducef,  E and Theorem 3 An invocation of the algorithm uses 2e mes- 
reduce; happened before i wasplaced in Rj sages. 
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Criterion Bracha- Wang Kshemkalyani- 
Toueg [21 et al. [151 Singhal[13] 

Phases 2 2 1 
Delay 4d 3 d + 1  2d 

Messages 4 e  6e 4e - 2n + 21 
(5 4e) 

Note that the message size in the algorithm is variable, 
and some messages may be larger than those in earlier algo- 
rithms [2, 15, 131. However, message headers are usually 
large, so a slightly larger message body should not be a 
drawback. 

Table 1 compares the performance of the proposed al- 
gorithm with the existing distributed algorithms to detect 
generalized deadlocks [2, 13, 151. The proposed algorithm 
performs better than the algorithms in [2, 13, 151; it has a 
message complexity of 2e messages and the worst-case time 
complexity of 2d hops. Also, in the proposed algorithm the 
initiator has information locally available to resolve the de- 
tected deadlock; the other algorithms incur extra time and 
message overhead to achieve this. It is conjectured in [12] 
that the proposed algorithm is optimal in the number of mes- 
sages and time delay if detection of generalized deadlocks is 
to be carried out under the following framework (i) no pro- 
cess has complete knowledge of the topology of the WFG 
or the system, and (ii) the deadlock detection is to be carried 
out in a distributed manner. 

Proposed 
algorithm 

1 
2d 
2e 

7 Conclusions and Discussion 

We presented a distributed algorithm for detecting gen- 
eralized deadlocks in a distributed system. The algorithm 
is based on the principle of diffusion computation and per- 
forms reduction of a distributed WFG to detect a deadlock. 
Deadlock detection is performed by echoing the diffusion 
computation messages at terminating nodes and reducing 
the graph when an appropriate condition at a node in the 
echo phase is found. If sufficient information to decide the 
reducibility of a node is not available at that node, the algo- 
rithm optimizes the performance by attempting the reduction 
later in a lazy manner. 

We sketched the correctness proof of the algorithm. The 
algorithm detects all deadlocks in a bite time and if it re- 
ports a deadlock, the deadlock exists in the system. The 
algorithm performs considerably better than the existing 
distributed algorithms to detect generalized deadlocks in 
distributed systems. It has a message complexity of 2e mes- 
sages and the worst-case time complexity of 2d hops. We 
conjecture that the algorithm is optimal in the number of 

messages and time delay, among distributed algorithms to 
detect generalized deadlocks [ 123. 

In practice, a WFG is dynamic, i.e., processes make re- 
quests and requests get satisfied on a continual basis. Con- 
sider an edge from i to j. By the time a FLOOD sent by i 
reaches j ,  j had already replied to i. This edge is aphuntom 
edge. Phantom edges that arise due to the dynamic nature 
of the WFG are dealt with as in [ 131. 

Due to the symmetric nature of the algorithm, multiple 
nodes may initiate the deadlock detection concurrently and 
a particular node may initiate it multiple times. Sequence 
numbers and initiator-ids distinguish between different in- 
stances of the algorithm. An optimization on the number 
of messages can be performed by maintaining a timestamp- 
based priority order on all invocations of the algorithm and 
suppressing lower priority invocations [2]. 
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