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Abstract—The dispersion problem on graphs asks k ≤ n robots
placed initially arbitrarily on the nodes of an n-node anonymous
graph to reposition autonomously to reach a configuration in
which each robot is on a distinct node of the graph. This
problem is of significant interest due to its relationship to other
fundamental robot coordination problems, such as exploration,
scattering, load balancing, and relocation of self-driving electric
cars (robots) to recharge stations (nodes). The objective is to
simultaneously minimize (or provide trade-off between) two
fundamental performance metrics: (i) time to achieve dispersion
and (ii) memory requirement at each robot. This problem has
been relatively well-studied on static graphs. In this paper,
we investigate it for the very first time on dynamic graphs.
Particularly, we show that, even with unlimited memory at each
robot and 1-neighborhood knowledge, dispersion is impossible
to solve on dynamic graphs in the local communication model,
where a robot can only communicate with other robots that are
present at the same node. We then show that, even with unlimited
memory at each robot but without 1-neighborhood knowledge,
dispersion is impossible to solve in the global communication
model, where a robot can communicate with any other robot in
the graph possibly at different nodes. We then consider the global
communication model with 1-neighborhood knowledge and es-
tablish a tight bound of Θ(k) on the time complexity of solving
dispersion in any n-node arbitrary anonymous dynamic graph
with Θ(log k) bits memory at each robot. Finally, we extend the
fault-free algorithm to solve dispersion for (crash) faulty robots
under the global model with 1-neighborhood knowledge.

Index Terms—Mobile robots, Dispersion, Dynamic graphs,
Distributed algorithms, Runtime, Memory, Crash faults

I. INTRODUCTION

The dispersion of autonomous mobile robots to spread them

out evenly in a region is a problem of significant interest in

distributed robotics [19, 20]. Recently, this problem has been

formulated in the context of graphs as follows: Given any
arbitrary initial configuration of k ≤ n robots positioned
on the nodes of an n-node graph, the robots reposition
autonomously to reach a configuration where each robot is
positioned on a distinct node of the graph (which we call the

DISPERSION problem) [2]. This problem has many practical

applications, for example, in relocating self-driving electric

cars (robots) to recharge stations (nodes), assuming that the

cars have smart devices to communicate with each other to

find a free/empty charging station [2, 22]. This problem is also

important due to its relationship to many other well-studied

autonomous robot coordination problems, such as exploration,

scattering, and load balancing [2, 22].

The main objective in DISPERSION is to simultaneously

minimize (or provide trade-off between) two fundamental

performance metrics: (i) time to achieve dispersion and (ii)

memory requirement at each robot. Several papers studied

this problem recently on static anonymous trees, grids, and

arbitrary graphs, [2, 22–25] which do not change over time.

The following question naturally arises: Is it possible to solve
DISPERSION on anonymous graphs which change over time
(i.e., dynamic graphs)? In this paper, we establish under which

conditions it is possible on any arbitrary dynamic graph and

provide algorithms with provable time and memory bounds.

There are two communication models: local and global.

In the local communication model [2, 22, 23], a robot

at a graph node can only communicate with other robots

present at the same node. In the global communication model

[8, 16, 24, 25, 30], a robot at a graph node can communicate

with any other robot in the graph, possibly at different nodes.

The global model seems stronger than the local model at first

sight, however many challenges that occur in the local model

carryover to the global model. For example, two robots in two

neighbor nodes of G do not know which edge connects them.

Therefore, the robots operating following the global model still

need to explore the graph as in the local model. Among the

previous works [2, 22–25] on DISPERSION on static graphs,

[2, 22, 23] considered the local model and [24, 25] considered

the global model.

Model Summary and Contributions. We consider k ≤ n
robots operating on an n-node dynamic graph G. The robot

activation setting is synchronous – all robots are activated in

a round and they perform their operations simultaneously in

synchronized rounds. Dynamism of G is modeled in such a

way that G may change in each round following the 1-interval
connected dynamic graph model of Kuhn et al. [26] in which

the number of nodes in G do not change but the edges between

the nodes may change, with the only constraint that G remains

connected in each round. Therefore, for any round r ≥ 0, we

denote the graph by Gr. G has dynamic diameter ̂D which

is the maximum diameter Dr among Gr, r ≥ 0. In addition,

G is anonymous, i.e., nodes have no (unique) IDs and hence

are indistinguishable from each other but the ports (leading to

incident edges) at each node are distinguishable, i.e., the ports

of any node v ∈ Gr have unique labels in the range [1, ̂δ(v)],

where ̂δ(v) is the maximum degree (or dynamic degree) of

node v among all Gr, r ≥ 0. The robots are distinguishable,

i.e., they have unique IDs in the range [1, k]. Runtime is

measured in rounds and memory is measured as the number

of bits stored at each robot.

We have the following four contributions (also see Table I):

• It is impossible to solve DISPERSION in an 1-interval
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Comm. Memory/robot 1-neighborhood DISPERSION

model (in bits) knowledge
local unlimited yes impossible (Thm. 1)

global unlimited no impossible (Thm. 2)
global Θ(log k) yes Θ(k)-round algor-

ithm (Thms. 3 & 4)
global, Θ(log k) yes O(k − f)-round

f crashes algorithm (Thm. 5)

TABLE I: Our results on DISPERSION for k ≤ n robots on

an n-node 1-interval connected anonymous dynamic graph.

connected anonymous dynamic graph G in the local

communication model, even with 1-neighborhood knowl-
edge available to robots (which neighbor nodes in G are

occupied by robots and which are not) and with unlimited

memory at each robot.

• It is impossible to solve DISPERSION on an 1-interval

connected anonymous dynamic graph G in the global

communication model, even with unlimited memory at

each robot but without 1-neighborhood knowledge.

• There is a time lower bound of Ω(k) rounds for solving

DISPERSION in an 1-interval connected anonymous dy-

namic graph G in the global communication model with

1-neighborhood knowledge.

• DISPERSION can be solved in asymptotically optimal

O(k) rounds in an 1-interval connected anonymous dy-

namic graph G in the global communication model with

1-neighborhood knowledge using Θ(log k) bits at each

robot (the memory bound of Ω(log k) is from [2, 23]). For

f ≤ k crash faulty robots, the runtime becomes O(k−f)
rounds and memory remains Θ(log k) bits.

Challenges and Techniques. Depth first search (DFS) and

breadth first search (BFS) traversals are the mostly commonly

used approaches for solving DISPERSION on static anonymous

graphs. These traversals generally start from a node and

progressively visit nodes of the graphs (one node sequentially

in DFS and nodes in a level sequentially in BFS) with building

and growing DFS and BFS traversal trees over time until there

is no more multiplicity node. When graph is dynamic, the DFS

and BFS traversal trees cannot be grown consistently. This has

impact on how to find free nodes for the robots to settle and

argue the correctness of the solution.

We start from some initial configurations and show through

combinatorial arguments that it is impossible to solve DISPER-

SION on dynamic graphs in the local communication model,

even with 1-neighborhood knowledge. Additionally, we are

able to show through combinatorial arguments that the global

communication model also does not help. However, with 1-

neighborhood knowledge, we develop a novel technique of

sliding, through which in every round, (at least) a robot reaches

an empty node (that is not previously occupied), which is

enough to argue about the O(k) round time complexity of the

algorithm in the global model. We develop connected compo-

nent, spanning tree, and disjoint path construction techniques

to facilitate this sliding of robots guaranteeing the correctness

and performance bounds, even when robots experience (crash)

faults. The lower bounds are also established, which match

(asymptotically) the bounds established for our algorithm.

Related Work. There are three previous studies [2, 22, 23] for

DISPERSION in static graphs in the local model. For k = n,

Augustine and Moses Jr. [2] proved a memory lower bound of

Ω(logn) bits at each robot and a time lower bound of Ω(D)
(Ω(n) on arbitrary graphs) for any deterministic algorithm on

some graph, where D is the diameter of the graph. They then

provided two algorithms for arbitrary graphs for k = n: (i)

The first algorithm with O(mn) time using O(log n) bits at

each robot and (ii) The second algorithm with O(m) time

using O(n log n) bits at each robot, where m is the number

of edges in the graph. Kshemkalyani and Ali [22] provided

an Ω(k) time lower bound for DISPERSION on arbitrary

graphs for any k ≤ n. They then provided three deterministic

algorithms for arbitrary graphs: (i) The first algorithm with

O(m) time using O(k logΔ) bits at each robot, (ii) The

second algorithm with O(ΔD) time using O(D logΔ) bits

at each robot, and (iii) The third algorithm with O(mk) time

using O(log(max(k,Δ))) bits at each robot, where Δ is the

maximum degree of the graph. Recently, Kshemkalyani et al.
[23] provided an O(min(m, kΔ) · log k)-time, O(log n)-bits

algorithm for arbitrary graphs, provided that the parameters

m, k,Δ are known to robots beforehand.

There are two previous studies [24, 25] for DISPERSION

on static graphs in the global communication model. [24]

provides a deterministic algorithm for arbitrary graphs that

runs in O(min(m, kΔ)) time using O(log(max(k,Δ))) bits

at each robot, improving the time in [23] in the local model by

an O(log k) factor. [25] provides a Θ(
√
k) time algorithm for

grids using Θ(log k) bits at each robot (the first ever algorithm

for DISPERSION that is optimal w.r.t. both memory and time).

Randomized algorithms for DISPERSION are presented in [29]

where the memory is reduced through randomization.

DISPERSION is closely related to the graph exploration

by mobile robots. The exploration problem has been quite

heavily studied for specific as well as arbitrary graphs, e.g.,

[4, 6, 10, 17, 28]. It was shown that a robot can explore an

anonymous graph using Θ(D logΔ)-bits memory; the runtime

of the algorithm is O(ΔD+1) [17]. In the model where graph

nodes also have memory, Cohen et al. [6] gave two algorithms:

The first algorithm uses O(1)-bits at the robot and 2 bits at

each node, and the second algorithm uses O(logΔ) bits at the

robot and 1 bit at each node. The runtime of both algorithms

is O(m) with preprocessing time of O(mD). The trade-off

between exploration time and number of robots is studied in

[28]. The collective exploration by a team of robots is studied

in [16] for trees. Another problem related to DISPERSION is

the scattering of k robots in an n-node graph. This problem

has been studied for rings [11, 32] and grids [5]. Recently,

Poudel and Sharma [31] provided a Θ(
√
n)-time algorithm for

uniform scattering on a grid [9]. Furthermore, DISPERSION is

related to the load balancing problem, where a given load at

the nodes has to be (re-)distributed among several processors

(nodes). This problem has been studied quite heavily in graphs,
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e.g., [7, 33]. We refer readers to [14, 15] for other recent

developments in these topics.

The only existing work on DISPERSION in dynamic graphs

is due to Agarwalla et al. [1] for dynamic rings. There is no

study on DISPERSION in arbitrary dynamic graphs. The related

problem exploration has been studied relatively well recently

on dynamic graphs. In the work [27] the authors considered

dynamic rings under the 1-interval-connected dynamic graph

model (as in ours), and investigated the feasibility of their

exploration. The exploration of rings in the T -interval con-

nected dynamic graph model is studied in [21]. Exploration

in the weaker model of temporal graphs (compared to the

1-interval connected dynamic graph model) is considered in

[13]. Some time bounds for exploration of temporal graphs are

provided in [12]. Most recently, tight runtime bounds for the

exploration of 1-interval connected dynamic rings are provided

in [18]. Notice that a solution to exploration is enough to solve

DISPERSION but the reverse may not be true.

Roadmap. We discuss model in Section II. We present impos-

sibility results in Section III. We then present the Ω(k)-round

time lower bound in Section IV and O(k)-round algorithm in

Section VI. We then present an algorithm for crash faults in

Section VII. Finally, we conclude in Section VIII.

II. MODEL DETAILS AND PRELIMINARIES

Dynamic Graph Model. We consider the synchronous dy-

namic network model [26] to model the dynamic graph G,

in which the vertex set V is fixed, but the edges can change

arbitrarily as long as the graph is connected. Time is divided

into synchronous rounds. The dynamic network G is given

by a sequence of undirected graphs 〈G0, G1, . . . 〉. For any

integer r ≥ 0, we denote Gr = (V,Er) be the graph of round

r, where |V | = n is the number of nodes and |Er| = mr be

the number of edges in round r. We assume that the topology

of the dynamic graph is controlled by a worst-case adversary

which determines the dynamic graph Gr of round r with the

knowledge of the algorithm and the states until round r − 1.

The adversary has complete control on the graph topology Gr

of every round r as long as Gr is connected. This is a well

studied dynamic graph model, known as 1-interval connected

dynamic network [3, 26].

We denote the degree of a node v ∈ Gr by δr(v). We

denote the dynamic degree of a node v ∈ G by ̂δ(v),
which is the maximum over δr(v) over all rounds, i.e.,
̂δ(v) = max1≤r≤∞ δr(v). Similarly, the maximum degree of

the graph Gr is Δr = maxv∈V δr(v), which is the maximum

among the degrees δr(v) of the nodes in Gr, and the dynamic
maximum degree of G is ̂Δ which is the maximum Δr over

all rounds, i.e., ̂Δ = max1≤r≤∞Δr. The diameter Dr of Gr

is longest shortest path between any two nodes in Gr. The

dynamic diameter ̂D is the maximum Dr over all rounds, i.e.,
̂D = max1≤r≤∞Dr.
Gr is unweighted, undirected and connected graph. Thus

1 ≤ ̂Δ ≤ n−1 and the dynamic diameter ̂D < n. The dynamic

graph G is anonymous, i.e., nodes do not have identifiers.

However, for any node v, its incident edges are uniquely

identified by a label (aka port number) in the range [1, ̂δ(v)].
Any edge e connecting two nodes u, v ∈ Gr has two port

numbers associated with it, one at the end of e towards u and

another at the end of e towards v, and there is no correlation

between two port numbers of an edge. Any number of robots

are allowed to move along an edge at any round although

limiting it to one is sufficient in our algorithm. The nodes of

G do not have memory, i.e., they cannot store information.

Robots. Let R = {a1, a2, . . . , ak} be a set of k ≤ n robots

(or agents) residing on the nodes of Gr. No robot resides on

the edges of Gr, but one or more robots can occupy the same

node of Gr. Each robot has a unique �log k	-bit ID taken from

[1, k]. When a robot moves from node u to node v in Gr, it

is aware of the port of u it used to leave u and the port of

v it used to enter v. Furthermore, ai ∈ R is equipped with

memory to store information.
Initially, any node v ∈ G has no, single, or multiple robots

positioned on it. If v has no robot, we call it an empty node,

and if v has two or more robots, we call it a multiplicity node.

Configuration. A configuration Confr =
{(posr(ai)) : 1 ≤ i ≤ k} specifies the robot positions

on the graph nodes at any round r ≥ 0. Conf0 is the initial
configuration. In Conf0, at least a node of G is a multiplicity

node. If there is exactly one multiplicity node in Conf0, the

Conf0 is called a rooted initial configuration. Confr with

no multiplicity node is called a DISPERSION configuration.

Robot’s Communication Model. We assume two types of

communication or sensing power among robots: global com-
munication and 1-neighborhood knowledge. In the global

communication, a robot is capable to communicate with any

other robot in the graph, irrespective of their positions, in

a round. However, they don’t have the position information

(unless at the same node) as graph nodes are anonymous and

there is no correlation between edge port numbers1.
In 1-neighborhood knowledge, a robot at a node v knows

the full information about the robots in the neighbor nodes

Nr(v), where Nr(v) is the set of neighbors of v ∈ Gr. The

full information includes: (i) which neighbor nodes in Nr(v)
are occupied by robot(s) and which are not, (ii) the ID(s) of

the robots on those nodes, (iii) the robot count corresponding

to each neighbor (i.e., multiplicity at each node). Essentially,

a robot can sense if a (particular) neighbor has any robots or

not; and using the global communication assumption, they can

exchange information like robot IDs, count, etc.

Round. At any time a robot ai ∈ R could be active or

inactive. When a robot ai becomes active, it performs the

“Communicate-Compute-Move” (CCM) round as follows.

• Communicate: ai can communicate with other robots

aj ∈ R (on the same node vi of ai or on a different node)

depending on the communication model used. Robot ai
can also observe its own memory.

1In contrast, there is a notion of local communication, in which a robot can
only communicate with other robots present at the same node [2]. Hence, the
global communication subsumes the local communication.
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• Compute: ai may perform an arbitrary computation us-

ing the information observed during the “communicate”

portion of that round. This includes determination of a

(possibly) port to use to exit vi, the information to store

in its memory and other robots at the same node.

• Move: At the end of the round, ai writes new information

(if any) in its memory and exits the node to reach to a

neighbor node.

Time and Memory Complexity. We consider the synchronous

setting where every robot is active in every CCM round and

they perform the CCM round in a synchrony. Therefore, time

is measured in rounds or steps. Another parameter is memory

– the number of bits stored at each robot between rounds. We

assume that sufficient temporary memory is available at each

robot to perform necessary computations within a round. The

information in temporary memory is not carried over to the

next round and hence not counted on the memory complexity.

Dispersion. DISPERSION can be formally defined as follows.

Definition 1 (DISPERSION): Given an n-node 1-interval
connected dynamic graph G = (V,E) having k ≤ n mobile
robots positioned initially arbitrarily on its nodes, the robots
reposition autonomously to reach a configuration where each
robot is on a distinct node of G.

III. IMPOSSIBILITY RESULTS

In Section VI, we will present a deterministic algorithm that

solves DISPERSION in any n-node 1-interval connected dy-

namic graph under global communication and 1-neighborhood

knowledge. We show here the impossibility of solving DIS-

PERSION on dynamic graphs deterministically when dropping

either global communication or 1-neighborhood knowledge.

Interestingly, both impossibility results hold even if the robots

have unlimited memory and infinite computational power.

Theorem 1 (impossibility dropping global communica-
tion): It is impossible to solve DISPERSION of k ≥ 5 mobile
robots on a dynamic graph deterministically with the robots
having 1-neighborhood knowledge and unlimited memory, but
without global communication.
Proof. We show that there is no deterministic algorithm

solving DISPERSION of k ≥ 5 robots. If there is an algorithm

A solving DISPERSION on dynamic graphs, then the algorithm

must work on any dynamic graph and starting from any initial

configuration Conf0.

Consider the following initial configuration Conf0 and the

dynamic graph. A path of length (k− 1), where each node in

the path has one robot, except one end point has two robots and

the other end point connects to a single node of any connected

sub-graph of the remaining (n− k+ 1) nodes. See Fig. 1 for

k = 6 robots. Since there is no global communication (but 1-

neighborhood knowledge), the robots can communicate with

their immediate neighbors. Let’s consider the case for k = 6
and Fig. 1. To achieve dispersion, the extra one robot at end

node v has to find a place to be settled. The only option for

the robots at node v is to move to the single neighbor u. The

node u,w and x has two occupied neighbors each. The node

y at the other end of the path has only one occupied neighbor

x and one empty neighbor. However, this information at node

y is unknown to the robots at nodes v, u, w and x. The only

way to achieve dispersion from this configuration in a single

round is: one robot at v moves to u, the robot at u moves to

w, the robot at w moves to x, the robot at x moves to y, and

y moves to an empty neighbor. However, the local view or

information of the robots at the nodes w and x are identical.

Thus, deterministically it is not possible for the robots at the

nodes w and x to move to the same direction, towards the

node y (in other words deterministically it is impossible to

break the symmetry). This is because they do not agree on the

port numbering of the graph. Therefore it is not possible to

achieve dispersion in a single round from this configuration.

Fig. 1: The dynamic graph with the specific configuration for

k = 6, where the node v has two robots, nodes u,w, x, y has

one robot each and others nodes are empty. One can take any

connected sub-graph formed by the empty nodes.

Thus it may happen that this configuration changes in the

next round. We argue that the adversary can determine the

dynamic graph in such a way that this specific configuration

can be reached from any other configuration in one or few

rounds without reaching dispersion configuration. Since the

algorithm is deterministic, the adversary can connect edges

among the nodes in such a way that each of the k − 2 robots

move to k − 2 nodes, one to each, and two robots move to a

single node. Then it can add edges among this k − 1 nodes

to make a k − 1 length path and join a connected sub-graph

with the remaining n− k+ 1 nodes at the end of the path. 
�

Theorem 2 (impossibility dropping 1-neighborhood
knowledge): It is impossible to solve DISPERSION of k ≥ 3
mobile robots on a dynamic graph deterministically with the
robots having global communication and unlimited memory,
but without 1-neighborhood knowledge.
Proof. If there is a deterministic algorithmA solving DISPER-

SION of k ≥ 3 robots on dynamic graphs, then the algorithm

must work on any dynamic graph and starting from any initial

configuration. We show that there is a configuration such that if

the execution of A reaches to this configuration at some round

r, the adversary can determine a dynamic graph such that the

progress is zero in the next round r + 1. (Note that one can

simply assume such a configuration as the initial configuration

Conf0). Suppose the robots have unlimited memory and

can communicate with any robots at any node on the graph

i.e., global communication. Since the global communication

doesn’t give any positional information of a robot on the graph,

a robot cannot determine which of it’s neighbor nodes are

occupied by robot(s) and which are unoccupied or empty.

Consider a configuration where (k−2) robots are at (k−2)
nodes (each node having one robot) and one node has two
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robots. Therefore (k − 1) nodes are occupied by robots and

(n − k + 1) nodes are empty. Thus to achieve dispersion

it remains for a single robot to find an empty node to be

settled down. The adversary determines a dynamic graph for

the next round in such a way that the dispersion is not

possible. Form a clique with the (k − 1) occupied nodes,

say the clique is K(k−1). Form any connected graph by the

other (n − k + 1) empty nodes, say it is H . Since the

algorithm is deterministic, the adversary knows which robot

at a node in K(k−1) will move through which port of a

node in the next round. Since there are O(k2) edges in the

clique K(k−1) and only k robots on (k − 1) nodes, there

must exist at least one edge (u, v) through which no robot

moves in the next round. The adversary removes the edge

(u, v) from the clique and add two edges (u, x) and (v, y)
connecting any two nodes x and y in H . This makes the

dynamic graph connected. More importantly, the robots at

node u and v cannot differentiate between the adjacent edges

which connecting nodes in K(k−1) and nodes in H . This

completes the dynamic graph construction for the next round.

From the construction it is clear that no new node is visited

by the robots in the next round; hence the progress is zero.

The considered configuration might be broken at some

round. But the configuration can be reached from any con-

figuration by adding appropriate edges in one of few rounds.

Then the above dynamic graph construction continues in the

further rounds. Thus the dispersion is never possible. 
�

IV. LOWER BOUND

We show a time lower bound of Ω(k) rounds for DIS-

PERSION on a dynamic tree starting from a rooted initial

configuration Conf0. Thus the lower bound also holds for any

arbitrary dynamic graphs. The lower bound is unconditional

on memory of each robot, i.e., a robot can have unlimited

memory. In fact, we show the following result.

Theorem 3 (Ω(k) time lower bound): Any algorithm solv-
ing DISPERSION of k ≤ n robots on an 1-interval connected
dynamic (rooted) tree of n nodes requires Ω(k) rounds, even
when the dynamic diameter of the tree is ̂D = O(1). The
lower bound holds even if the robots have unlimited memory.
Proof. Let us consider a rooted tree, i.e., the robots are placed

at a single node of the tree initially. We show that one can

construct a dynamic tree i.e., a sequence of dynamic trees

such that in each round at most one new node will be visited

by the robots. This will evident that there exists a dynamic

tree, on which it requires at least k rounds to visit k (new)

nodes by the robots, and hence the dispersion requires Ω(k)
rounds. Moreover, the dynamic diameter of this dynamic tree

is constant. Let us now explain such a dynamic tree.

Recall that the robots are placed at a single node initially.

Consider the set of nodes Ar ⊆ V which holds at least one

robot at any round r, and the set of nodes Br which doesn’t

have any robots at round r. Then Ar∩Br = ∅ and Ar∪Br =
V at any round r. Further notice that |A0| = 1, the single

node holding all the robots initially. Then the dynamic tree

in round r + 1 would be: make two star graphs (trees) TAr

and TBr
by the two set of nodes Ar and Br respectively and

connect the two star graphs by adding an edge between their

centres, see Fig. 2. The diameter of the connected tree is 3.

Then in round r + 1, only a single node (i.e., the centre of

the star graph TBr ) may be visited by the robot(s). After each

round, construct such two star graphs and connect them by an

edge connecting the centres of the star. The trees are always

connected and diameter is 3. Thus in each round at most one

new node (the centre of the star TBr
) may be settled by a

robot. Hence the dispersion requires at least Ω(k) rounds. 
�

Fig. 2: The dynamic tree at any round r with diameter D = 3.

Remark: The above proof doesn’t depend on the memory of

a robot; and it also holds for randomized algorithms.

V. CONNECTED COMPONENTS, SPANNING TREES, AND

THEIR CONSTRUCTION

We first describe how connected components are con-

structed and then describe the construction of spanning trees

for the components. We use Fig. 3 as a running example. These

concepts will be used in the algorithm in Section VI.

Connected Components. Consider a (dynamic) graph Gr =
(V,Er) at round r ≥ 0 with k ≤ n robots positioned arbitrarily

(on one or multiple nodes of it). See Fig. 3(a) where 14 robots

are placed on the nodes of a 15-node graph Gr. We give a

formal definition of a connected component before discussing

how it is computed by robots in round r.

Definition 2 (component graph): Consider the graph Gr =
(V,Er) at round r ≥ 0. The component graph CGr =
(V occupied

r , Eoccupied
r ), where V occupied

r ⊆ V are the nodes
of Gr which have at least a robot positioned on it at round r
and Eoccupied

r ⊆ Er are the the edges of Gr that connect any
two nodes in V occupied

r .
CGr may not necessarily be connected. If it is connected,

then we say that CGr is a single connected component,
otherwise, there may be two or more connected components in

CGr which we write as CGr = {CG1
r, . . . , CGβ

r }, β ≥ 1. A

connected component CGφ
r ∈ CGr can be defined as follows.

Definition 3 (connected component): Consider the com-

ponent graph CGr = (V occupied
r , Eoccupied

r ). A connected

component CGφ
r = (V φ

r , Eφ
r ) ⊆ CGr, φ ≤ β, such that

736



Algorithm 1: ConnectedComponent(InfoPacketSet(ai))

1 CGφ
r ← vi (the node of Gr where ai is currently positioned);

2 Nr(vi)← the neighbors of vi in Gr ;

3 Noccupied
r (vi)← the nodes in Nr(vi) which have at least a robot on
them;

4 add the nodes in Noccupied
r (vi) and the corresponding edges with port

numbers in CGφ
r ;

5 ToBeProcessedNodeSet(ai)← Noccupied
r (vi);

6 AlreadyProcessedNodeSet(ai)← vi;

7 while ToBeProcessedNodeSet(ai) �= ∅ or some node in CGφ
r has

Noccupied
r () that leads to (at least) a node of Gr that is not already

in CGφ
r

8 order the nodes in ToBeProcessedNodeSet(ai) in the
increasing order of their IDs;

9 vmin ← smallest ID node in ToBeProcessedNodeSet(ai);

10 add the nodes in Noccupied
r (vmin) and the corresponding edges

with port numbers in CGφ
r ;

11 AlreadyProcessedNodeSet(ai)←
AlreadyProcessedNodeSet(ai) ∪ {vmin};
ToBeProcessedNodeSet(ai)←
ToBeProcessedNodeSet(ai) ∪Noccupied

r (vmin);
12 ToBeProcessedNodeSet(ai)←

ToBeProcessedNodeSet(ai)\AlreadyProcessedNodeSet(ai);

13 return CGφ
r ;

Algorithm 2: ComponentSpanningTree(CGφ
r )

1 vφr (mult)← the multiplicity node in CGφ
r ; if two or more multiplicity

nodes in CGφ
r , vφr (mult) is the smallest ID multiplicity node;

2 STφ
r ← vφr (mult);

3 Stack(ai)← the neighbor nodes of vφr (mult) in CGφ
r pushed in the

decreasing order of the port numbers at vφr (mult) leading to them;
4 while Stack(ai) �= ∅
5 v ← the node on the top of Stack(ai);
6 connect v with the node from which it was explored and add it to

STφ
r ;

7 push the unexplored neighbors of v to Stack(ai) in the
decreasing order of their port numbers at v leading to them;

8 return STφ
r ;

(i) for any two nodes u, v ∈ CGφ
r , there is a path following

the edges in CGφ
r , and

(ii) there is no edge from any node v ∈ CGφ
r to any node

v′ ∈ CGr\{CGφ
r }.

For the configuration shown in Fig. 3(a), there are two

connected components CG1
r and CG2

r as shown in Fig. 3(b).

Connected Components Construction. The goal is to con-

struct connected components CG1
r, . . . , CGβ

r by the robots

in each round r. Let ai, aj belong to the same connected

component CGφ
r , 1 ≤ φ ≤ β, at round r. Suppose ai, aj

are positioned on nodes vi, vj ∈ V at round r. We would

like both ai, aj to construct the same CGφ
r . For example, the

robots 2, 4, 6, 8− 11 compute the same connected component

CG2
r (shown in red) in Fig. 3(b); the remaining robots compute

CG1
r (shown in green).

We describe how ai constructs CGφ
r at round r. The

pseudocode is given in Algorithm 1.

We need some notations. Suppose Nr(vi) =
{v1vi , . . . , vδvi } be the neighbors of node vi ∈ Gr

where ai is currently positioned. Let Noccupied
r (vi) ={v ∈

Nr(vi) such that v has (at least) a robot on it}.
Furthermore, let Pr(vi) be the ports at node vi lead-

ing to the nodes in Nr(vi). Let P occupied
r (vi) ={p ∈

Pr(vi) such that p leads vi to a node in Noccupied
r (vi)}. With

1-neighborhood knowledge, ai can have information about

Noccupied
r (vi) and P occupied

r (vi), i.e., ai knows which nodes

in Nr(vi) have robot(s) and which ones have not, and which

ports in Pr(vi) connect vi to those nodes.
Additionally, suppose InfoPacketr(vi) =

{ai, count(ai), Noccupied
r (vi), P

occupied
r (vi)} is a quadruple,

which we call the information packet, for ai at round r, where

count(ai) ≥ 1 is the number of robots positioned on vi.
Essentially, InfoPacketr(vi) contains the ID of ai, number

of robots on vi, the ids of the robots on nodes Noccupied
r (vi),

and the port IDs of vi from which the nodes (or robots)

in Noccupied
r (vi) are reached from vi. If there are multiple

robots on any node in Noccupied
r (vi), then the smallest ID

among them is used in InfoPacketr(vi) (the robots on a

node agree locally on the smallest ID robot among them to

broadcast the information packet). Furthermore, since ai uses

global communication, it can broadcast InfoPacketr(vi)
to all other robots in R\{ai} and receive InfoPacketr(.)s
from all the robots in R\{ai}.

We now describe CGφ
r construction algorithm by ai at

round r (Algorithm 1). In the beginning of round r, ai broad-

casts InfoPacketr(vi) and receives InfoPacketr(.)s from

other robots. In fact, if k robots are on α < k nodes in round

r, then α nodes broadcast one information packet each and

receive α − 1 packets. Algorithm 1 starts with ai initializing

CGφ
r a single node vi (the current node position of ai). Node

vi is also assigned the count(ai), which will be used later

for identifying multiplicity at any node. ai then updates CGφ
r

adding the nodes in Noccupied
r (vi). Node vi is then connected

to the nodes in Noccupied
r (vi) with the corresponding edges.

The corresponding port numbers in P occupied
r (vi) are also

assigned to the edges. ai now orders the nodes of CGφ
r \{vi}

(which are the nodes in Noccupied
r (vi)) in the increasing order

of the robot IDs. For each node v ∈ Noccupied
r (vi), ai adds the

nodes in Noccupied
r (v) to CGφ

r and the corresponding edges

and ports using the information from InfoPacketr(v). Robot

v also assigns count(.) to node v. This process then repeats

until either

i. all the α−1 information packets have not been processed

by ai. This condition implies that CGφ
r = CGr, i.e.,

CGφ
r is itself the component graph CGr.

ii. there is some node v′ ∈ CGφ
r such that Noccupied

r (v′)
leads to (at least) a node of Gr that is not already on

CGφ
r . This condition implies that there are two or more

connected components in the component graph CGr and

CGφ
r is one of them.

Observation 1: Each node in the connected component CGφ
r

has an unique ID.
The above observation is due to the fact that each node

in CGφ
r has a robot on it which supplies ID to that node. If

count(v) > 1 for any node v ∈ CGφ
r , then the smallest ID

robot among count(v) robots provides ID to v.
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(a) Graph Gr = (V,Er) at round
r

(b) Connected components CG1
r and CG2

r
of Gr

(c) Spanning trees ST 1
r , ST

2
r of

CG1
r, CG2

r , resp.

Fig. 3: An illustration of how connected components and spanning trees are constructed in round r for a 15-node, 17-edge

dynamic graph Gr. The © nodes denote the roots of the respective spanning trees. The port numbers of the edges of Gr are

also shown (small text) and the 14 robots are shown near to the respective nodes (big text).

Observation 2: Consider a connected component CGκ
r �=

CGφ
r constructed by some other robot al �= ai. Pick any node

v ∈ CGφ
r and any node w ∈ CGκ

r . Nodes v, w are at least 2
hops away from each other in Gr.

The above observation is due to the fact that if a node v ∈
CGφ

r is not 2-hop away from any node w ∈ CGκ
r , due to

1-neighborhood knowledge of v, w, CGφ
r , CGκ

r would be the

same connected component when constructed (by the robots

positioned on v, w).

Lemma 1: Consider the connected component CGφ
r con-

structed by ai in round r. Suppose aj �= ai is positioned at
some node of CGφ

r in round r. Both the robots ai, aj construct
the same connected component CGφ

r .
Proof. Due to global communication, after broadcast and

receipt of information packets, each robot will have the same

information. As Algorithm 1 is deterministic, two robots

ai, aj perform the same connections using Algorithm 1 while

constructing a connected component they belong to and hence

they ends up forming the same connected component. 
�
Component Spanning Trees. Given β connected components

CGr = {CG1
r, . . . , CGβ

r }, we will construct β component

spanning trees STr = {ST 1
r , . . . , ST

β
r }, STφ

r corresponding

to CGφ
r , 1 ≤ φ ≤ β. A component spanning tree can be

defined as follows.

Definition 4 (component spanning tree): Consider a con-
nected component CGφ

r = (V φ
r , Eφ

r ). A component spanning

tree STφ
r ⊆ CGφ

r is a tree which includes all of the nodes of
CGφ

r .
Since the nodes of CGφ, r, 1 ≤ i ≤ β, have unique IDs, the

nodes of STφ
r also have unique IDs. Fig. 3(c) depicts the span-

ning trees ST 1
r , ST

2
r constructed for CG1

r, CG2
r (Fig. 3(b)).

Component Spanning Trees Construction. We discuss how

ai that is positioned on node vi ∈ CGφ
r constructs STφ

r

for CGφ
r . The pseudocode is given in Algorithm 2. First,

ai finds a multiplicity node in CGφ
r . (This information is

available due to count(ai) sent in InfoPacketr().) Let that

node be vφr (mult). If no node in CGφ
r is a multiplicity node,

then ai does not construct STφ
r . The reason is that since

no node of CGφ
r has multiple robots, CGφ

r is already in a

DISPERSION configuration. On the other hand, if two or more

nodes in CGφ
r are multiplicity nodes, vφr (mult) is chosen as

the smallest ID node (breaking ties using IDs). Refer the roots

of spanning trees (shown as ©) in Fig. 3 which are the lowest

ID multiplicity nodes in their respective components.

Robot ai uses a simple depth-first search (DFS) approach

(a breadth-first search, BFS, approach can also be used) to

construct STφ
r from CGφ

r . Initially, ai sets vφr (mult) the

root of STφ
r . It then explores the nodes of CGφ

r , starting

from vφr (mult), looping through the neighbors of the vertices

they discover and adding each unexplored neighbor to a data

structure (typically a stack) to be explored later. Robot ai
connects each vertex, other than vφr (mult), to the vertex from

which it was discovered. The tree construction finishes as soon

as the stack becomes empty (no unexplored neighbor).

Observation 3: Each node of component spanning tree STφ
r

has a unique ID and STφ
r has a distinct root node.

Lemma 2: Consider the spanning tree STφ
r for CGφ

r formed
by ai in round r. Suppose aj �= ai is at some node of CGφ

r .
Both ai, aj construct the same spanning tree STφ

r .
Proof. If two robots ai, aj ∈ CGφ

r , then from Lemma 1, both

ai, aj construct the same CGφ
r . Furthermore, the algorithm to

construct STφ
r is deterministic. Therefore, both ai, aj select

the same node vφr (mult) ∈ CGφ
r as the root of the spanning

tree they construct. Now the algorithm proceeds following the

same steps for both ai, aj and hence if an edge is added in

the spanning tree formed by ai, that would also be added in

the spanning tree formed by aj . 
�

VI. ALGORITHM

In this section, we present and analyze an O(k)-time

algorithm solving DISPERSION of k ≤ n robots in any n-

node 1-interval connected dynamic anonymous graph with

global communication and 1-neighborhood knowledge. The

pseudocode is given in Algorithm 4.

High Level Overview of the Algorithm. The idea is to slide

the robots, in every round r, starting from the multiplicity

nodes to reach the empty nodes (that were not previously
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Algorithm 3: DisjointPaths(STφ
r )

1 // Each robot ai ∈ R executes this algorithm in each round r ≥ 0
2 Input: An n-node 1-interval connected dynamic anonymous graph
Gr, r = 0, with k ≤ n robots positioned on the nodes of Gr

arbitrarily. Robots have 1-neighborhood knowledge and global
communication.

3 vi ← the node of Gr where ai is currently positioned;
4 Broadcast information packet InfoPacket(vi) and receive

InfoPacket()s broadcast by the robots R\{ai};
5 InfoPacketSet(ai)← all the InfoPacket()s received;

6 CGφ
r ← ConnectedComponent(InfoPacketSet(ai));

7 STφ
r ← ComponentSpanningTree(CGφ

r );

8 vφr (root)← the root node of STφ
r ;

9 LeafNodeSet(STφ
r )← the nodes in STφ

r which have at least an

empty neighbor node, i.e., for each v ∈ LeafNodeSet(STφ
r ),

Nr(v)\Noccupied
r (v) �= ∅;

10 DisjointPathSetφr (ai)← ∅;

11 while LeafNodeSet(STφ
r ) �= ∅

12 vmin ← the smallest ID node in LeafNodeSet(STφ
r );

13 RootPathφ
r (vmin)← the path that connects vmin to vφr (root);

14 if RootPathφ
r (vmin) shares no node and edge with any of the

paths already in DisjointPathSetφr (ai) then
15 DisjointPathSetφr (ai)← RootPathφ

r (vmin);

16 LeafNodeSet(STφ
r )← LeafNodeSet(STφ

r )\{vmin};

17 return DisjointPathSetφr (ai);

Algorithm 4: Dispersion Dynamic(k)

1 input: An n-node 1-interval connected dynamic anonymous graph G0

with k ≤ n robots initially positioned arbitrarily on the nodes of G0.
2 while k robots are on α < k nodes of Gr, r ≥ 0

3 compute DisjointPathSetφr (ai) using Algorithm 3;
4 count(vroot)← the number of robots on the root node vroot of

STφ
r ;

5 if |DisjointPathSetφr (ai)| ≥ count(vroot) then
6 order the paths in DisjointPathSetφr (ai) in the increasing

order of the IDs (of the last nodes in each path) and only
keep count(vroot)− 1 paths in the order in

DisjointPathSetφr (ai);
7 if ai (at node vi) belongs to a path

RootPathφ
r (v) ∈ DisjointPathSetφr (ai) then

8 if ai is not on v (the last node) then
9 succ← the next node in RootPathφ

r (v) towards v;
10 ai moves to succ;
11 else
12 succ← a node in Nr(v)\Noccupied

r (v) which has the
smallest port connection from v;

13 ai moves to succ;

occupied). Consider a path path(vq) = v1, v2, . . . , vq−1, vq
such that v1 is a multiplicity node, v2, . . . , vq−1 has a robot

each, and vq is an empty node. Given path(vq), sliding means

that a robot from node vi moves to node vi+1, for 1 ≤ i < q.

After this sliding, node vq in path(vq) which previously was

empty, now has a robot positioned on it. The algorithm finishes

solving DISPERSION when there is no multiplicity node. The

main challenge is how to compute such paths to perform

sliding and guaranteeing that eventually a DISPERSION con-

figuration is achieved. Particularly, robots have to agree on the

paths to slide robots. This is difficult since the computation

of such paths is done by robots individually based on the

information they collect through global communication and

1-neighborhood knowledge. The key idea is the disjoint path
computation framework that allows the robots to agree on the

paths to slide the robots to reach at least a new empty node in

every round. This altogether guarantees O(k)-round runtime

of the algorithm, despite the graph being dynamic.

We continue to discuss disjoint paths computation and then

the details of the algorithm and its analysis. We use connected

components and spanning trees constructed in Section V.

Disjoint Paths. Notice that each component spanning tree

STφ
r ∈ STr has a distinct root node. Furthermore, all the

nodes in STφ
r have at least a robot positioned on it with the

root vφr (mult) as a multiplicity node. There is a unique path

following the edges in STφ
r to reach the root vφr (mult) from

any node vST �= vφr (mult) of STφ
r . Let the unique path for

vST �= vφr (mult) from vST to the root vφr (mult) be denoted

as RootPathφ
r (vST ).

Definition 5 (disjoint path): Given a spanning tree STφ
r

and two paths RootPathφ
r (v

′), RootPathφ
r (v

′′) from any
two nodes v′, v′′ ∈ STφ

r (except the root vφr (mult) it-
self), RootPathφ

r (v
′), RootPathφ

r (v
′′) are called disjoint if

RootPathφ
r (v

′), RootPathφ
r (v

′′) share no node and edge, i.e.,
for any edge e = (a, b) ∈ STφ

r , (i) if e ∈ RootPath(v′)
then e /∈ RootPath(v′′) (and vice versa), and (ii) if a (or b)
∈ RootPath(v′) then a (or b) /∈ RootPath(v′′).

The computation of disjoint paths uses two concepts we

outlined in Section V: (i) connected components CGφ
r and

(ii) component spanning trees STφ
r .

Disjoint Paths Computation. We are interested to com-

pute the root paths from the all nodes in STφ
r which

have at least an empty neighbor node in Nr(). Let the

nodes in STφ
r that satisfy this empty neighbor condition

be denoted as LeafNodeSet(STφ
r ). For each node v ∈

LeafNodeSet(STφ
r ), it is true that Nr(v)\Noccupied

r (v) �= ∅,
i.e., at least a neighbor with no robot on it.

Robot ai ∈ STφ
r constructs disjoint paths in STφ

r

as follows. The pseudocode is given in Algorithm

3. ai orders the nodes in LeafNodeSet(STφ
r )

in the increasing order of their IDs. Let vmin be

the smallest ID node in LeafNodeSet(STφ
r ). Let

DisjointPathSetφr (ai) denotes the set of disjoint paths

computed by ai. Initially, DisjointPathSetφr (ai) ← ∅.
ai first computes RootPathφ

r (vmin) and adds in the set

DisjointPathSetφr (ai). It then computes RootPathφ
r () for

the nodes in LeafNodeSet(STφ
r ) going in the increasing

order of the IDs and adds to the set DisjointPathSetφr (ai) if

and only if the new root path does not share any node and edge

with the path(s) already included in DisjointPathSetφr (ai).
Fig. 4(a) shows the disjoint paths computed for the spanning

trees of Fig. 3(c) in round r.

Lemma 3: Using Algorithm 3, there is at least a path in
DisjointPathSetφr (ai), i.e, |DisjointPathSetφr (ai)| ≥ 1.
Proof. Assume for a sake of contradiction that

|DisjointPathSetφr (ai)| ≥ 1 is not true. This happens

only when Nr(v)\Noccupied
r (v) = ∅, i.e., there is no neighbor

of any node in STφ
r that is not occupied by a robot. If a node
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(a) Disjoint paths computed on the spanning trees
ST 1

r , ST
r
2 of Fig. 3 in round r

(b) The robots slide on the disjoint paths to
reach an empty node

Fig. 4: An illustration of how connected components and spanning trees are constructed in round r for a 15-node, 17-edge

dynamic graph Gr. The © nodes denote the roots of the respective spanning trees. The port numbers of the edges of Gr are

also shown (small text) and the 14 robots are shown near to the respective nodes (big text).

has all neighbors occupied, it does not compute a root path.

In this case, either (i) all k = n robots must have already

dispersed to n different nodes of Gr or (ii) for k < n, there

is no multiplicity node in STφ
r . Since, STφ

r has a multiplicity

node (the root) and k ≤ n, there must be a node in STφ
r with

Nr(v)\Noccupied
r (v) �= ∅, a contradiction. 
�

Lemma 4: Consider the paths in DisjointPathSetφr (ai)
computed by ai in the tree STφ

r . Suppose aj �= ai is at some
node of STφ

r . DisjointPathSetφr (aj) computed by aj are the
DisjointPathSetφr (ai) computed by ai.
Proof. From Lemma 2, the spanning trees computed by

two robots ai, aj that are in the same component is the

same. Therefore, ai, aj order the nodes of LeafNodeSet()
in the same order. Therefore, in the algorithm, if ai has a

overlap for the new path computed with the path already in

DisjointPathSetφr (ai) then same situation happens for aj
between the new path computed and the path(s) already in

DisjointPathSetφr (aj). 
�

Lemma 5: Consider any root path RootPathφ
r (v) ∈

DisjointPathSetφr (ai) at any round r. The node v is such
that Nr(v)\Noccupied

r (v) �= ∅, i.e., there is at least a neighbor
of v which is not occupied at that round.
Proof. RootPath(.)s are computed only for the

nodes of STφ
r that belong to LeafNodeSet(STφ

r ). For

RootPathφ
r (v) to be in DisjointPathSetφr (ai), v must

be in LeafNodeSet(STφ
r ). According to the definition of

LeafNodeSet(STφ
r ), LeafNodeSet(STφ

r ) consists only

the nodes in STφ
r which have at least a neighbor node in Nr()

with no robot on it, i.e., for each w ∈ LeafNodeSet(STφ
r ),

Nr(w)\Noccupied
r (w) �= ∅. 
�

Observation 4: Any node v �= vroot ∈ STφ
r can be in at

most one root path.

Detailed Description of the Algorithm. We are now ready to

describe the algorithm. The pseudocode is in Algorithm 4 for

any robot ai ∈ R in any round r ≥ 0. Algorithm 4 starts at

round r = 0 with k ≤ n robots in R positioned arbitrarily

on one or more nodes of an n-node 1-interval connected

dynamic graph Gr. Each robot operates with 1-neighborhood

knowledge and global communication. Algorithm 4 runs until

there is no multiplicity node on Gr or equivalently a dispersion

configuration is achieved. Each robot can detect the dispersion

configuration due to global communication.

Algorithm 4 does the following in each round r ≥ 0. Sup-

pose robot ai belongs to a connected component CGφ
r . First

of all, ai runs Algorithm 3 to compute a set of disjoint paths,

DisjointPathSetφr (ai), in CGφ
r . Each RootPath(v) =

{vroot, v2, . . . , vl, v} ∈ DisjointPathSetφr (ai) satisfies that

vroot is a multiplicity node and v2, . . . , vl, v have one or more

robots, and v has (at least) a neighbor node that is empty.

Moreover, all the paths in DisjointPathSetφr (ai) have one

end vroot (the root node of STφ
r ).

Let count(vroot) be the number of robots on vroot.
Due to global communication, ai has this information. If

|DisjointPathSetφr (ai)| ≥ count(vroot), then ai only keeps

the count(vroot) − 1 paths in DisjointPathSetφr (ai) by

ordering the paths in DisjointPathSetφr (ai) in the increasing

order of the IDs of the leaf nodes and removing all the paths

that are ordered count(vroot)-th or higher. This is to make

sure that one robot can be slided in each root path.

Robot ai (at node vi) may or may not be on a RootPath(v).
If it is in any RootPath(v), then it cannot be in any other

RootPath(u), u �= v. ai differentiates whether it is at v (the

last node in RootPath(v)) or not. If not at v, ai finds the next

node succ on RootPath(v) and moves to succ, i.e., in round

r+1, ai will be positioned on node succ. If ai is at v (that is,

vi = v), then it finds a node succ ∈ Nr(vi)\Noccupied
r (vi)

such that succ can be reached from vi using the smallest

port among the ports used to connect vi to the nodes in

Nr(vi)\Noccupied
r (vi). ai then moves to succ. Concurrently

with ai, all other robots on the nodes of RootPath(v) move so

their succ nodes. This process repeats every round until there
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is no multiplicity node in graph Gr′ at some round r′. Fig. 4(b)

shows how a robot is slided along the paths computed (from a

multiplicity node to an empty node) in Fig. 4(a). The hashed

nodes receive a robot each and the nodes in the disjoint path

remain occupied. This guarantees that at least a previously-

non-occupied empty node is occupied through sliding.

Analysis of the Algorithm. We analyze Algorithm 4 for

correctness, runtime, and memory requirement at each robot.

Lemma 6: Algorithm 4 correctly solves DISPERSION.
Proof. We have from Lemmas 3 and 5 that there is at

least a RootPath() in a connected component CGφ
r that

leads to an empty node. Furthermore, from Lemma 4, all

the robots that belong to CGφ
r compute the same set of

RootPath()s. Moreover, except the node vroot ∈ CGφ
r in

each RootPath()s, all other nodes of CGφ
r belong to at most

one root path. Therefore, robots can figure out how to move

to the next node in the root path they belong to. Additionally,

only at most count(vroot) − 1 robot and at least one robot

moves from vroot at any round. When there is exactly one

robot on vroot at some round r, it never becomes root of STφ
r′

in any round r′ > r. Therefore, the nodes of Gr which are

occupied (with at least a robot) in the beginning of round r
stay occupied (with at least a robot) at the end of round r
and one more not-previously-occupied empty node in Gr is

occupied with at least a robot. Therefore, the occupied set of

nodes in Gr grow until the occupied set has size exactly k. 
�

The following lemma is crucial for the runtime proof.

Lemma 7: Consider any n-node dynamic graph Gr at round
r ≥ 0. If k ≤ n robots are positioned on m nodes of Gr in the
beginning of round r, then at the end of round r, the robots
are positioned on at least m+ 1 nodes of Gr.
Proof. Consider any connected component CGφ

r at any round

r ≥ 0. If there is (at least) a multiplicity node in CGφ
r ,

since k ≤ n and Gr is connected, there must be a node

v ∈ CGφ
r which has a neighbor vempty ∈ Nr(v) that is

not-previously occupied. Furthermore, vempty is not in any

connected component since there is a distance of at least 2-hop

between the nodes of two connected components. Therefore,

there is at least a root path in DisjointPathSetφr () for CGφ
r

which can lead to vempty . When robots slide on that path,

then a robot will reach to vempty and all other nodes on that

path will also have a robot on it coming from the previous

node on the path. The root node vroot will never be vacant

since it will only slide at most count(vroot − 1 robots over

count(vroot−1 disjoint paths at round r. If count(vroot) = 1
at the end of round r, then it does not become a root of STφ

r′

at any round r′ > r. In the worst-case, only single empty node

may be occupied in every round since, all robots slided from

different root paths may reach that node. 
�

Lemma 8: A robot stores O(log k) bits in Algorithm 4.
Proof. A robot needs to differentiate itself from other robots.

Since there are k robots, a robot needs to store log k bits to

be able to do this. The computation within a round happens

in temporary memory. With 1-neighborhood knowledge and

global communication, the information needed to computing

disjoint paths and sliding is available in each round. 
�

Theorem 4 (main result): Given k ≤ n robots placed
initially arbitrary on the nodes of any n-node graph Gr that
dynamically changes in every round r ≥ 0 following the 1-
interval connected dynamic graph model, Algorithm 4 solves
DISPERSION in Θ(k) rounds with Θ(log k) bit at each robot
in the synchronous setting with global communication and 1-
neighborhood knowledge.
Proof. Follows immediately combining Lemmas 7 and 8. 
�

VII. ACCOMMODATING CRASH FAULTS

Crash fault is modeled such that a robot which has ex-

perienced (crash) fault behaves as if it has vanished from the

system. Basically, it does not participate in the communication,

does not move, and no robot can know where it is positioned.

The non-faulty robots behave as described in Section II. The

dispersion problem for crash-faulty robots, called FAULTY-

DISPERSION, can be defined as follows.
Definition 6 (FAULTYDISPERSION): Given an n-node 1-

interval connected dynamic graph G = (V,E) having k ≤
n mobile robots positioned initially arbitrarily on its nodes,
out of which f ≤ k can experience crash-fault, the robots
reposition autonomously to reach a configuration where each
non-faulty robot is on a distinct node of G.

We show here that Algorithm 4 can be extended to solve

FAULTYDISPERSION in O(k − f) rounds with O(log k) bits

at each robot in the global model with 1-neighborhood knowl-

edge, for f ≤ k faulty robots. We assume that a robot can crash

at any time, except that if it starts moving from a node then it

does not crash until it reaches the neighbor destination node.

In other words, we assume that the moves are instantaneous.
We describe here how Algorithm 4 behaves in a round r

in case of crashes. The change in the connected component

construction is that CGφ
r may be partitioned into multiple

components due to robot crashes in round r. The overall

implication is that instead of CGr = {CG1
r, . . . , CGβ

r } in the

fault-free case, we may have CGr = {CG1
r, . . . , CGβ′

r }, β′ ≥
β, if crashes happen before Communicate Phase. However,

the robots can compute the (sub) connected components

they belong to without any problem. Note that a connected

component may be partitioned in to two or more connected

sub-components and being able to compute the sub-component

the robot belongs to is enough. The robots do not need to

be aware of the crashed robots to achieve this. The rest

of the algorithm (spanning tree construction, disjoint path,

computation, and sliding) now follows the procedure as in

fault-free case described in Section VI. If crash happens after

Communicate phase, then there is no problem until disjoint

paths computation. During sliding, the faulty robot does not

slide to the successor node (but it receives a robot). The node

that becomes empty (due to a crash robot) then behaves like an

previously unoccupied empty node for round r+1 and hence

the algorithm can proceed as usual. The algorithm stops in
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some round r′ in which there is no multiplicity node (of non-

faulty robots of course due to the fault model).

Theorem 5: Given k ≤ n robots, out of which f ≤ k may
experience crash fault, placed initially arbitrary on the nodes
of any n-node graph Gr that dynamically changes in every
round r ≥ 0 following the 1-interval connected dynamic graph
model, Algorithm 4 solves DISPERSION in O(k − f) rounds
with Θ(log k) bit at each robot in the synchronous setting with
global communication and 1-neighborhood knowledge.
Proof. The memory bound of O(log k) bits follows directly

from fault-free case. We also have the memory lower bound

of Ω(log k) bits from [2, 23]. This is combination gives

Θ(log k) memory bound. For the runtime, notice that if a robot

crashes, then the algorithm behaves like there are only k − 1
robots. Therefore, 1 crash-fault during the execution of the

algorithm means that the algorithm needs at least one less

round. Therefore, for f ≤ k crash-faults, The algorithm needs

O(k − f) rounds. 
�

VIII. CONCLUDING REMARKS

We have presented two impossibility results (one for lo-

cal communication model with 1-neighborhood knowledge

and another for global communication model without 1-

neighborhood knowledge), one time lower bound of Ω(k)
rounds, and a deterministic algorithm with runtime O(k)
rounds for fault-free case and O(k − f) rounds algorithm

for crash faults for solving DISPERSION of k ≤ n robots

on n-node 1-interval connected dynamic anonymous graphs in

global communication model with 1-neighborhood knowledge.

The impossibility results are surprising because they show that

dispersion in dynamic graphs is in sharp contrast to dispersion

in static graphs – it is always solvable in static anonymous

graphs. Our impossibility results use combinatorial arguments

and our algorithms use the novel idea of sliding robots to

occupy empty nodes. For future work, an interesting direction

is to extend our algorithms for T -interval connected dynamic

graphs with T > 1. Second interesting direction will be to

consider other dynamic graph models, such as temporal and

time-varying models [12, 15]. Third interesting direction will

be to consider byzantine faults. Fourth interesting direction

will be to extend our work to solve DISPERSION in dynamic

graphs in semi-synchronous and asynchronous settings.
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