
Causal Ordering in the Presence of Byzantine
Processes

Anshuman Misra
University of Illinois at Chicago, USA

amisra7@uic.edu

Ajay D. Kshemkalyani
University of Illinois at Chicago, USA

ajay@uic.edu

Abstract—Causal ordering of messages in distributed systems
is important for capturing application-level semantics. To the
best of our knowledge, Byzantine fault-tolerant causal ordering
has not been attempted for point-to-point communication in
an asynchronous setting. In this paper, we first prove that it
is impossible to causally order messages under point-to-point
communication in an asynchronous system with one or more
Byzantine processes. In the face of this impossibility, we then
present an algorithm that can causally order messages under
point-to-point communication in the face of Byzantine failures,
assuming the network provides a known upper bound on the
message latency. We also prove that it is impossible to causally
order multicasts in an asynchronous setting with one or more
Byzantine processes. We then give an extension of our algorithm
for unicasts to provide Byzantine fault-tolerant causal ordering
of multicasts under the assumption of a known upper bound on
the message latency.

Index Terms—Byzantine fault-tolerance, Causal Order,
Causality, Asynchronous message-passing, Unicast, Multicast

I. INTRODUCTION

Causality in distributed systems is important for capturing
application-level semantics and is used to solve several prob-
lems. Causality is defined by the happens before [1] relation
on the set of events. Logical clocks [2], [3], can be used
to timestamp events (messages as well) in order to capture
causality. If message m1 causally precedes m2 and both are
sent to pi, then m1 must be delivered before m2 at pi to
enforce causal order. Causal ordering ensures that causally
related updates to data occur in a valid manner respecting
that causal relation. Causal ordering is used in distributed
data stores, fair resource allocation, and collaborative appli-
cations such as social networking, multiplayer online gaming,
group editing of documents, event notification systems, and
distributed virtual environments.

Recently, Byzantine-tolerant causal broadcasts have been
considered in [4] and the works in [5]–[7] relied on broad-
casts for Byzantine-tolerant shared memory and replicated
databases. To the best of our knowledge, there has been no
work on Byzantine-tolerant causal ordering of unicasts and
multicasts besides our analysis in [8]. It is important to solve
this problem under the Byzantine failure model because it
mirrors the real world.

Contributions:
1) We prove that causal ordering of unicasts in an asyn-

chronous system with even one Byzantine process is

impossible because liveness cannot be guaranteed. The
proof is based on the analysis in [8].

2) In view of the above impossibility result, we propose
the Sender-Inhibition algorithm for Byzantine causal
unicast under a stronger asynchrony model, which has a
known upper bound on message latency. Such a system
is synchronous. The algorithm is simple to understand
and implement. However send events at a process are
blocking with respect to each other. This means that a
process can initiate a message send only after the previ-
ous message it sent has been received at the destination.
The algorithm eliminates the O(n2) message space and
time overhead of [9]–[13], where n is the number of
processes in the system, and uses one control message
of size O(1) per application message sent.

3) We prove that it is impossible to provide causal ordering
for multicasts in an asynchronous system with even
a single Byzantine process because liveness cannot be
guaranteed.

4) We then give an extension of the Sender-Inhibition algo-
rithm to Byzantine fault-tolerant causal multicast, again
assuming there is a known upper bound on message
latency.

Paper Organization. Section II reviews previous work.
Section III gives the system model. Section IV gives the
impossibility result of being unable to provide liveness (while
maintaining safety) for Byzantine causal unicasts in an asyn-
chronous system. Sections V presents the Sender-Inhibition al-
gorithm for solving Byzantine causal unicast in a synchronous
system and its correctness proof. Section VI analyzes Byzan-
tine causal multicast and proves that it is impossible to provide
liveness (while maintaining safety) in an asynchronous system.
Section VII gives the extension of the Sender-Inhibition algo-
rithm for Byzantine causal multicast in a synchronous system
and proves it correct. Section VIII gives a discussion.

II. PREVIOUS WORK

Algorithms for causal ordering of point-to-point messages
under a fault-free model are given in [12], [13]. These algo-
rithms extend to implement causal multicasts in a failure-free
setting [10], [11]. The RST algorithm presented in [12] is a
canonical algorithm for causal ordering.

There has been significant work on causal broadcasts under
various failure models. Causal ordering of broadcast messages

under crash failures in asynchronous systems was introduced
in [9]. This algorithm requires each message to carry the entire
set of messages in its causal past as control information. The
algorithm presented in [14] implements crash fault-tolerant
causal broadcast in asynchronous systems with a focus on
optimizing the amount of control information piggybacked on
each message. An algorithm for causally ordering broadcast
messages in an asynchronous system with Byzantine failures
is proposed in [4]. An analysis of the solvability of Byzantine
causal ordering is given in [8]. There has been recent inter-
est in applying the Byzantine fault model in implementing
causal consistency in distributed shared memory and repli-
cated databases [5]–[7]. In [6], Byzantine causal broadcast
has been used to implement Byzantine eventual consistency.
In [7], Byzantine reliable broadcast [15] is used to remove
misinformation induced by the combination of asynchrony and
Byzantine behaviour. In [5], PBFT (total order broadcast) [16]
is used to achieve consensus among non-Byzantine servers
regarding the order of client requests. To the best of our
knowledge, no other paper has examined the feasibility of or
solved causal ordering of unicasts and multicasts in a system
with Byzantine failures.

III. SYSTEM MODEL

The distributed system is modelled as an undirected graph
G = (P,C). Here P is the set of processes communicating
asynchronously over a geographically dispersed network. Let
n be |P |. C is the set of communication channels over which
processes communicate by message passing. The channels
are assumed to be FIFO. G is a complete graph. A correct
process behaves exactly as specified by the algorithm whereas
a Byzantine process may exhibit arbitrary behaviour including
crashing at any point during the execution. A Byzantine
process cannot impersonate another process or spawn new
processes. We do not consider the use of digital signatures
or cryptographic techniques in the system model because of
their high cost as well as hidden/implicit assumptions such as
bounds on message latency, as in [17], that are inapplicable
to truly asynchronous systems.

We first assume an asynchronous system which is defined
as one in which there is neither any known fixed upper bound
δ on message latency nor any known fixed upper bound ψ
on the relative speeds of processors/processes. In contrast, a
synchronous system assumes both δ and ψ are known. We
prove our impossibility results for Byzantine tolerant causal
unicast and multicast in an asynchronous system. In light of
the impossibility results, we give our algorithms for a system
where δ is known and used by the algorithms; the algorithms
rely on timeouts which can use knowledge of ψ for accuracy.
Thus the algorithms can be said to run in a synchronous
system. Alternate algorithms for the synchronous system with
performance trade-offs are proposed in [18].

Let exi , where x ≥ 0, denote the x-th event executed by
process pi. In order to deliver messages in causal order, we
require a framework that captures causality as a partial order
on a distributed execution. The happens before [1] relation,

denoted →, is an irreflexive, asymmetric, and transitive partial
order defined over events in a distributed execution that
captures causality.

Definition 1. The happens before relation on events consists
of the following rules:

1) Program Order: For the sequence of events ⟨e1i , e2i , . . .⟩
executed by process pi, ∀ j, k such that j < k we have
eji → eki .

2) Message Order: If event exi is a message send event
executed at process pi and eyj is the corresponding
message receive event at process pj , then exi → eyj .

3) Transitive Order: If e→ e′ ∧ e′ → e′′ then e→ e′′.

Next, we define the happens before relation → on the set
of all application-level messages R.

Definition 2. The happens before relation → on messages in
R consists of the following rules:

1) The set of messages delivered from any pi ∈ P by a
process is totally ordered by →.

2) If pi sent or delivered message m before sending mes-
sage m′, then m→ m′.

3) If m→ m′ and m′ → m′′, then m→ m′′.

Definition 3. The causal past of message m is denoted as
CP (m) and defined as the set of messages in R that causally
precede message m under →.

We require an extension of the happens before relation
on messages to accommodate the possibility of Byzantine
behaviour. We present a partial order on messages called
Byzantine happens before, denoted as B−→, defined on S, the
set of all application-level messages that are both sent by and
delivered at correct processes in P .

Definition 4. The Byzantine happens before relation B−→ on
messages in S consists of the following rules:

1) The set of messages delivered from any correct process
pi ∈ P by any correct process is totally ordered by B−→.

2) If pi is a correct process and pi sent or delivered
message m (to/from another correct process) before
sending message m′ to a correct process, then m B−→ m′.

3) If m B−→ m′ and m′ B−→ m′′, then m B−→ m′′.

The Byzantine causal past of a message is defined as
follows.

Definition 5. The Byzantine causal past of message m,
denoted as BCP (m), is defined as the set of messages in
S that causally precede message m under B−→.

The correctness of a Byzantine causal order unicast/multi-
cast/broadcast is specified on (S,

B−→) as follows.

Definition 6. A causal ordering algorithm for unicast/multi-
cast/broadcast messages must ensure the following:

1) Safety: ∀m′ ∈ BCP (m) such that m′ and m are sent to
the same (correct) process, no correct process delivers
m before m′.

2) Liveness: Each message sent by a correct process to
another correct process will be eventually delivered.

When m B−→ m′, then all processes that sent messages along
the causal chain from m to m′ are correct processes.

IV. IMPOSSIBILITY RESULT FOR UNICASTS

All existing causal ordering algorithms for unicast messages
in asynchronous systems use some form of logical timestamps.
This principle is abstracted by the RST algorithm [12]. Each
message m sent to pi is piggybacked with a logical timestamp
in the form of a matrix clock providing information about
messages in the causal past of m. This is to ensure that all
messages m′ ∈ CP (m) whose destination is pi are delivered
at pi before m. The implementation is as follows:

1) Each process pi locally stores (a) a vector Deliveredi of
size n, where Deliveredi[j] is the number of messages
sent by pj and delivered by pi, and (b) a matrix Mi of
size n × n, where Mi[j, k] is the number of messages
sent by pj to pk as known to pi.

2) When pi sends message m to pj , m has a piggybacked
matrix timestamp Mm, which is the value of Mi before
the send event. Then Mi[i, j] =Mi[i, j] + 1.

3) When message m is received by pi, it is delivered only
after the following delivery condition is satisfied:

∀k, Mm[k, i] ≤ Deliveredi[k]

4) After delivering a message m, pi merges the logical
timestamp associated with m into its own matrix clock,
as ∀j, k, Mi[j, k] = max(Mi[j, k],M

m[j, k]).
In order to disrupt causal delivery of messages in asyn-

chronous systems, a Byzantine process may fabricate values
in the logical timestamps of its messages. In general, causal
order of messages can be enforced by either: (a) performing
appropriate actions at the receiver’s end, or (b) taking appro-
priate actions at the sender’s end.

To enforce causal ordering at the receiver’s end, one needs
to track causality, and some form of a logical clock is required
to causally order messages. Traditionally, logical clocks use
transitively collected control information attached to each
incoming message for this purpose. The RST abstraction [12],
described above is used. However, in case there is a single
Byzantine process, it can cause a change in the values of the
matrix timestamp piggybacked on a message it sends. Lemma
1 proves that transitively collected control information by a
receiver can lead to liveness attacks in an asynchronous system
with one or more Byzantine processes.

Next, we examine the possibility of appropriate action at
the sender’s end to ensure causal ordering. Such action is
in the form of constraints on when the sending process can
send messages in order to prevent causal violations. A sender
process would need get an acknowledgement from the receiver
before sending the next message. For increased concurrency
and avoiding deadlocks, while waiting for an acknowledgment,
each process would continue to receive and deliver messages.
This can be implemented by using non-blocking synchronous
sends, with the added constraint that all send events are

atomic with respect to each other. Lemma 2 proves that this
approach is also vulnerable to liveness attacks in the presence
of one or more Byzantine processes. Theorem 1 combines
these results and proves the impossibility of causally ordering
unicast messages in asynchronous systems with Byzantine
processes.

Lemma 1. A single Byzantine process can execute a liveness
attack when control information for causality tracking is
transitively propagated and used by a receiving process for
enforcing safety of causal ordering of unicasts.

Proof. Transitively propagated control information for causal-
ity tracking, whether by explicitly maintaining the counts of
the number of messages sent between each process pair, or by
maintaining causal barriers, or by encoding the dependency
information optimally or by any other mechanism, can be
abstracted by the causal ordering abstraction [12], described
earlier in this section. Each message m sent to pk is accom-
panied with a logical timestamp in the form of a matrix clock
providing an encoding of CP (m). The encoding of CP (m)
effectively maintains an entry to count the number of messages
sent by pi to pj , ∀pi, pj ∈ P . Such an encoding will consist of
a total of n2 entries, n entries per process. Therefore, in order
to ensure that all messages m′ ∈ CP (m) whose destination
is pk are delivered at pk before m, the matrix clock M whose
definition and operation was reviewed earlier in this section is
used to encode CP (m).

Let m′ B−→ m, where m′ and m are sent by pi and pj ,
respectively, to common destination pk. The value Mi[i, k]
after sending m′ propagates transitively along the causal chain
of messages to pj and then to pk. But before pj sends
m to pk, it has received a message m′′ (transitively) from
a Byzantine process px in which Mm′′

[y, k] is artificially
inflated (for a liveness attack using Mm′′

[y, k]). This inflated
value propagates on m from pj to pk as Mm[y, k]. To
enforce safety between m′ and m, pk implements the delivery
condition in rule 3 of the RST abstraction, and will not be
able to deliver m because of px’s liveness attack wherein
Mm[y, k] ̸≤ Deliveredk[y]. pk uniformly waits for messages
from any process(es) that prevent the delivery condition from
being satisfied and thus waits for Mm[y, k]−Deliveredk[y]
messages from py , which may never arrive if they were not
sent. (If pk is not to keep waiting for delivery of the arrived
m, it might try to flush the channel from py to pk by sending
a probe to py and waiting for the ack from py . This approach
can be seen to violate liveness, e.g., when px attacks pk via
pi on Mm′

[j, k] and via pj on Mm[i, k]. When px causes
pi to send Mm′

[j, k] to pk with an inflated value, pk will
send a probe to pj and wait for its ack before delivering m′.
Similarly, when px causes pj to send Mm[i, k] to pk with an
inflated value, pk will send a probe to pi and wait for its ack
before delivering m. As either ack may arrive first, neither
m nor m′ can be delivered; thus this mechanism cannot be
used to provide liveness while guaranteeing safety. Morever,
py may never reply with the ack if it is Byzantine, and pk has

no means of differentiating between a slow channel to/from
a correct py and a Byzantine py that may never reply. So pk
waits indefinitely.) Therefore, the system is open to liveness
attacks in the presence of a single Byzantine process.

Lemma 2. A single Byzantine process can execute a liveness
attack in an asynchronous message passing system even if
a sending process sends a message only when the receiving
process is guaranteed not to be subject to a safety attack,
i.e., only when it is safe to send the message and hence its
delivery at the receiver will not violate safety, on causal order
of unicasts.

Proof. The only way that a sending process pi can ensure
safety of a message m it sends to pj is to enforce that all
messages m′ such that m B−→ m′ and m′ is sent to pj
will reach the (common) destination pj after m reaches pj .
Assuming FIFO delivery at a process based on the order of
arrival, m will be delivered before m′.

The only way the sender pi can enforce that m′ will arrive
after m at pj is not to send another message to any process pk
after sending m until pi knows that m has arrived at pj . pi can
know m has arrived at pj only when pj replies with an ack to
pi and pi receives this ack. However, pi cannot differentiate
between a malicious pj that never replies with the ack and a
slow channel to/from a correct process pj . Thus, pi will wait
indefinitely for the ack and not send any other message to any
other process. This is a liveness attack by a Byzantine process
pj .

Theorem 1. It is impossible to guarantee liveness and safety
while causally ordering point-to-point messages in an asyn-
chronous message passing system with one or more Byzantine
processes.

Proof. From Lemmas 1 and 2, no actions at a receiver or at a
sender can prevent a liveness attack (while maintaining safety).
The theorem follows.

Lemma 1 considers receiver-initiated strategies, Lemma 2
considers sender-initiated strategies. These are the only two
possible options. One cannot use a Byzantine fault-tolerant
(BFT) causal broadcast protocol to implement point-to-point
abstraction by adding recipient id and filtering on arrival only
those messages intended for the local process because the
filtering mechanism at the local process can be voided/com-
promised if the local process is Byzantine. Furthermore, the
BFT causal broadcast execution which is at a lower layer on
top of which the application runs can be peeped into by the
local Byzantine process and it can read a message not intended
for it. A pi to pj unicast must be kept private to the two. This
is not possible without the use of cryptographic primitives,
which are not considered as mentioned in the system model.

Note that we cannot use a protocol that piggybacks on
messages the entire causal history of messages because a
unicast from pi to pj (or a multicast to group G) needs to
be kept private to pj (or to G).

Algorithm 1: Sender-Inhibition Algorithm
Data: Each pi maintains a FIFO queue Q and a lock lck

1 when application is ready to process a message:
▷ Deliver event

2 m = Q.pop()
3 if m ̸= ϕ then
4 deliver m

5 when message m arrives from pj : ▷ Receive event
6 Q.push(m)
7 send(ack, j) to pj

8 when message m is ready to be sent to pj : ▷ Send event
9 lck.acquire() ▷ Executes atomically

10 send(m, j) to pj
11 start timer
12 while (ack for m not arrived from pj ∧ no timeout) do
13 wait in a nonblocking manner

14 lck.release()

V. SENDER-INHIBITION ALGORITHM

As a result of Theorem 1, we know that it is impossible
to maintain both safety and liveness while trying to causally
order messages in an asynchronous system with Byzantine
faults. However, it is possible to extend the idea presented in
Lemma 2 and develop a solution based on timeouts under
a synchronous system model. Under the assumption of a
network guarantee of an upper bound δ on message latency,
we prevent the Byzantine processes from making non-faulty
processes wait indefinitely resulting in a liveness attack. This
prevents a correct process from being unable to send messages
because it is waiting for an acknowledgment from a Byzantine
process. This solution can maintain both safety and liveness.

The solution is as follows. Each process maintains a FIFO
queue, Q and pushes messages as they arrive into Q. Whenever
the application is ready to process a message, the algorithm
pops a message from Q and delivers it to the application.
After pushing message m into Q, each process sends an
acknowledgement message to the sending process. Whenever
process pi sends a message to process pj , it waits for an
acknowledgement to arrive from pj before sending another
message. While waiting for pj’s acknowledgement to arrive,
pi can continue to receive and deliver messages. If pi does
not receive pj’s acknowledgement within time 2 ∗ δ (timeout
period), it is certain that pj is faulty and pi can execute its
next send event without violating B−→.

Algorithm 1 consists of three when blocks. The when blocks
execute asynchronously with respect to each other. This means
that either the algorithm switches between the blocks in a fair
manner or executes instances of the blocks concurrently via
multithreading. In case a block has not completed executing
and the process switches to another block, its context is saved
and reloaded the next time it is scheduled for execution.
If multithreading is used, each instance of a when block
spawns a unique thread. This maximizes the concurrency of
the execution. Algorithm 1 ensures that while only one send

event can execute at a given point in time, multiple deliver and
multiple receive events can occur concurrently with a single
send event.

Theorem 2. Under a network guarantee of delivering mes-
sages within δ time, Algorithm 1 ensures liveness while main-
taining safety.

Proof. The send event in Algorithm 1 is implemented by the
when block in lines 8-14. A send event is initiated only after
the previous send has released the lock, which happens when
the sender pi (a) has received an ack from the receiver pj , or
(b) times out.

1) In case (a), the sender learns that pj has queued its
message m in the delivery queue, and the sender can
safely send other messages. Any message m′ such that
m

B−→ m′ and m′ is sent to pj will necessarily be queued
after m in pj’s delivery queue. Due to FIFO withdrawal
from the delivery queue, m is delivered before m′ at pj
and safety is guaranteed. As pi receives the ack before
the timeout, progress occurs at pi. There is no blocking
condition for m at pj and hence progress occurs at pj .

2) In case (b) where a timeout occurs, the lock is released
at pi and there is progress at pi. It is left up to the
application to decide how to proceed at pi. This prevents
a Byzantine process from executing a liveness attack by
making a correct process wait indefinitely for the ack.
It can be assumed that pj is a Byzantine process and so
safety of delivery at pj does not matter under the B−→
relation.

Therefore, Algorithm 1 ensures liveness while maintaining
safety.

In the Sender-Inhibition algorithm, the sender waits for at
most 2 ∗ δ time for the ack to arrive from the receiver before
sending its next message. The timeout period is fixed at 2 ∗ δ
because this is the maximum time an ack can take to arrive
from the point of sending the application message.

VI. IMPOSSIBILITY RESULT FOR BYZANTINE CAUSAL
MULTICASTS

In a multicast, a send event sends a message to multiple
destinations that form a subset of the process set P . Different
send events by the same process can be addressed to different
subsets of P . This models dynamically changing multicast
groups and membership in multiple multicast groups. In the
general case, there are 2|P | − 1 groups. Although there are
several algorithms for causal ordering of messages under
dynamic groups, such as [10], [11], none of them consider
the Byzantine failure model.

Byzantine Reliable Multicast (BRM) [19], [20] has tra-
ditionally been defined based on Bracha’s Byzantine Reli-
able Broadcast (BRB) [15], [21]. These algorithms require
that in every multicast group G, less then |G|/3 processes
are Byzantine. When a process does a multicast, it invokes
br_multicast and when it is to deliver such a message,

it executes br_deliver. In the discussion below, it is
assumed that a message is uniquely identified by a (sender
ID, seq num) tuple. BRM satisfies the following properties.

• Validity: If a correct process br_delivers a message
m from a correct process ps, then ps must have executed
br_multicast(m).

• Integrity: For any message m, a correct process executes
br_deliver at most once.

• Self-delivery: If a correct process executes
br_multicast(m), then it eventually executes
br_deliver(m).

• Reliability (or Termination): If a correct process exe-
cutes br_deliver(m), then every other correct pro-
cess in the multicast group G also (eventually) executes
br_deliver(m).

As causal multicast is an application layer property, it runs
on top of the BRM layer. Byzantine Causal Multicast (BCM)
is invoked as bc_multicast(m) which in turn invokes
br_multicast(m′) to the BRM layer. Here, m′ is m
plus some control information appended by the BCM layer.
A br_deliver(m′) from the BRM layer is given to the
BCM layer which delivers the message m to the application
via bc_deliver(m) after the processing in the BCM layer.

BCM needs to satisfy BC Validity, BC Integrity, BC Self-
Delivery, and BC Reliability which are the counter-
parts of the above four properties with br_multicast
and br_deliver replaced by bc_multicast and
bc_deliver, respectively. In addition to these properties,
BCM must satisfy safety and liveness as described in Sec-
tion III. Observe that safety (+ liveness) needs to hold only
for the B−→ relation on messages, which are the messages sent
by and received by only correct processes.

All the existing algorithms for causal multicast use transi-
tively collected control information about causal dependencies
in the past – they vary in the size of the control information,
whether in the form of causal barriers as in [11], [22] or
in the optimal encoding of the theoretically minimal control
information as in [10], [23]. The RST algorithm still serves
as a canonical algorithm for the causal ordering of multicasts
in the BCM layer, and it can be seen that the same liveness
attack described in Lemma 1 can be mounted on the causal
multicast algorithms.

The intuitive reason for this is given below before proving
the impossibility result for Byzantine Causal Multicast. A
liveness attack is possible in the point-to-point model because
a “future” message m from pi to pj can be advertised by a
Byzantine process px, i.e., the dependency can be transitively
propagated by px via px1 . . . pxy to pj , without that message
m actually having been sent (created). When the advertisement
reaches pj it waits indefinitely for m. Had a copy of m
also been transitively propagated along with its advertisement,
this liveness attack would not have been possible. But in
point-to-point communication, m must be kept private to pi
and pj and cannot be (transitively) propagated along with its
advertisement. The same logic holds for multicasts – pi can

withold a multicast m to group Gx but advertise it on a later
multicast m′ to group Gy where, say Gx∩Gy = {pi}, even if
using Byzantine Reliable Multicast (BRM) which guarantees
all-or-none delivery to members of Gy . When a member of
Gy receives m′, it also receives the advertisement “m sent to
pj(∈ Gx)”, which may get transitively propagated to pj which
will wait indefinitely. Therefore, results for unicasts also hold
for multicasts.

In contrast, in Byzantine causal broadcast [4], the un-
derlying Byzantine Reliable Broadcast (BRB) layer which
guarantees that a message is delivered to all or none of
the (correct) processes ensures that the message m is not
selectively withheld. This m propagates from pi to pj (directly,
as well as indirectly/transitively in the form of (possibly a
predecessor of) entries in the causal barriers) while simulta-
neously guaranteeing that m is actually eventually delivered
from pi to pj by the BRB layer. Thus a liveness attack is
averted in the broadcast model.

Lemma 3. It is impossible to guarantee BC Reliability and
liveness when transitively propagated control information is
used for ensuring safety while causally ordering multicast
messages in an asynchronous message passing system with
one or Byzantine processes.

Proof. For this proof, we assume the existence of a Byzantine
Reliable Multicast (BRM) primitive that ensures the conditions
of validity, integrity, self-delivery, reliability (or termination).
BRM is invoked by the Byzantine Causal Multicast (BCM)
layer as br_multicast(m), where m is the multicast mes-
sage (along with any associated control information appended
by the sender’s BCM layer). The BCM layer then delivers the
message based on the RST protocol abstraction.

Here, we prove that only four out of six of the essential
properties of Byzantine Causal Multicast can be satisfied.

BC Validity: Since the BRM layer guarantees valid-
ity, if the BCM layer at a correct process executes
bc_deliver(m), it means that the sender which is a cor-
rect process must have executed bc_multicast(m) that
triggered br_multicast(m) at it.

BC Integrity: At a correct process, the BRM layer delivers
messages to the BCM layer. As the BRM layer executes
br_deliver(m) at most once for any message m, the BCM
layer executes bc_deliver(m) at most once since the BCM
layer delivers messages as described by the RST abstraction
protocol.

BC Self-Delivery: If a correct process pi executes
bc_multicast(m), it will certainly execute
br_deliver(m) as a result of the Self delivery property of
the BRM layer. Then, the BCM layer will eventually execute
bc_deliver(m) because ∀x,Mm[x, i] ≤ Deliveredi[x].

BC Reliability: Consider the following counter-example
where only two messages are exchanged: a Byzantine process
pi sends the first multicast message that is delivered at the
BCM layer at pj with a boosted value of Mi[i, x]. Next
pj sends a multicast message m to group G = {px, py}.
py executes bc_deliver(m) since Mm[∗, y] = 0. Al-

though px is guaranteed to execute br_deliver(m), px
will never execute bc_deliver(m) since Mm[i, x] > 0 and
Mm[i, x] > Deliveredx[i] as pi has not sent any messages to
px. Therefore, BC Reliability is violated.

Safety: By definition, correct processes do not artificially re-
duce the values of their local matrix clocks. As a result of that,
m1 ∈ BCP (m2) ensures that ∀x, y,Mm1 [x, y] ≤ Mm2 [x, y]
and ∃x, y such that Mm1 [x, y] < Mm2 [x, y]. By enforcing the
Delivery Condition of the RST abstraction protocol, safety is
seen to be guaranteed.

Liveness: The control information piggybacked by the
BCM layer on each message m is CP (m) in the form of
a matrix clock Mm prior to invoking br_multicast(m).
When a message m from the BRM layer is received by the
BCM layer by executing br_deliver(m), the BCM layer
extracts Mm from m. The BCM layer (at a correct process pk)
is now susceptible to the liveness attack described in Lemma
1.

Lemma 4. A single Byzantine process can execute a liveness
attack in an asynchronous system even if a sending process
multicasts a message only when it is safe to do so.

Proof. We analyze all six properties of Byzantine Causal
Multicast.

Safety: The only way that a sending process pi can ensure
safety of a message m it sends to pj without causality tracking
control information is to enforce that (i) all messages m′

such that m B−→ m′ and m′ is sent to pj will reach the
(common) destination pj after m reaches pj , and (ii) before
sending m, all messages m′′ such that m′′ has been locally
queued for bc_delivery have also been locally queued at
all recipients of that multicast. Here, messages delivered from
the BRM layer are queued and delivered in FIFO order by
the BCM layer. In order to enforce (i) and (ii), pi will require
acknowledgments ack1 confirming that m has been queued for
delivery, from every process in m’s multicast group G, and
then provide these processes with an acknowledgment ack2
that “the multicast message has been queued for delivery at
all members of G” upon receiving the required ack1s. This
means that pi will have to require each recipient px of its
multicast to wait to get an acknowledgment ack2 from pi that
“the multicast has been queued for delivery at each recipient,”
before px issues its next multicast. And upon multicasting m,
pi will also have to wait for an acknowledgement ack1 from
each process in the multicast group of m before executing
its next multicast. Waiting for these acknowledgments ensures
that (i) m arrives in the FIFO queue at each process before
messages m′ that it causally precedes, and (ii) m arrives in the
FIFO queue at each process after messages m′′ that causally
precede it. As a result safety is guaranteed because m will be
delivered before m′ and after m′′.

BC Reliability: The above logic for safety also guarantees
BC Reliability since the BRM layer guarantees reliability,
and all processes that execute br_deliver(m) will execute
bc_deliver(m) once m reaches the head of the FIFO
queue.

Liveness: However, pi cannot differentiate between a ma-
licious pj in the multicast group that never replies with the
ack1 and a slow channel to/from a correct process pj . Thus,
pi and all correct processes in the multicast group will wait
indefinitely for the ack1 and ack2, respectively, and not send
any other message to any other process. This is a liveness
attack (while maintaining safety) by a Byzantine process pj .

BC Validity: Since the BRM layer guarantees valid-
ity, if the BCM layer at a correct process executes
bc_deliver(m), it means that the sender which is a cor-
rect process must have executed bc_multicast(m) that
triggered br_multicast(m) at it.

BC Integrity: At a correct process, the BRM layer delivers
messages to the BCM layer. As the BRM layer executes
br_deliver(m) at most once for any message m, the BCM
layer executes bc_deliver(m) at most once since the BCM
layer enqueues the br_delivered message at most once for
bc_delivery.

BC Self-Delivery: If a correct process pi executes
bc_multicast(m), that will invoke br_multicast(m)
and then it will certainly execute br_deliver(m) as a result
of the Self delivery property of the BRM layer. Then, the
BCM layer will enqueue the message for bc_delivery and
the process will eventually execute bc_deliver(m).

From the above, it follows that liveness cannot be satisfied.

Theorem 3. It is impossible to guarantee liveness and
safety while causally ordering multicast messages in an asyn-
chronous message passing system with one or more Byzantine
processes.

Proof. From Lemmas 3 and 4, no actions at a receiver or
at a sender can prevent a liveness attack while maintaining
safety for causally ordering multicast messages. The theorem
follows.

VII. SENDER-INHIBITION ALGORITHM FOR BYZANTINE
CAUSAL MULTICAST

The idea of the Sender-Inhibition algorithm can be extended
to design an algorithm for Byzantine Causal Multicast, also in
a system that provides a known upper bound δ on the message
latency.

A. Sender-Inhibition Algorithm for Multicast over BRM Layer

Let δBRM denote the maximum time for the BRM protocol.
(δBRM = 3δ when BRM is based on Bracha’s algorithm
[15], [21].) If the four specifications corresponding to those
of BRM are required, the adaptation of the Sender-Inhibition
algorithm (Algorithm 1), as given in Algorithm 2, can be used.
The timer timer s in line (14) is set to δBRM + δ: δBRM

(=3δ for the three phases of Bracha-based BRM) and δ for
the ack r to arrive. The timer timer r in line (8) is set to
δBRM +2δ, because that is the maximum time it can take for
a ack s to arrive from the sender from the time of sending
the multicast. The main modifications to Algorithm 1 are: (a)
the sender waits for all the recipients in the multicast group

Algorithm 2: Byzantine Causal Multicast based on the
Sender-Inhibition Algorithm, on top of BRM layer.

Data: Each pi maintains a FIFO queue Q and a lock lck

1 when application is ready to process a message:
▷ Deliver event

2 m = Q.pop()
3 if m ̸= ϕ then
4 bc_deliver(m)

5 when message m arrives from pj via br_deliver(m,G):
▷ Receive event

6 Q.push(m)
7 send(ack r, j) to pj
8 start timer r

9 when message m is ready to be sent to G via
bc_multicast(m,G): ▷ Send event

10 lck.acquire() ▷ Executes atomically
11 while ∃m′ such that m′ has been bc_delivered prior to

this bc_multicast being issued ∧ (ack s for m′ has
not been received ∧ timer r for m′ has not timed out) do

12 wait in a nonblocking manner

13 br_multicast(m,G)
14 start timer s
15 while ack r for message m not arrived from each pj ∈ G ∧

timer s not timed out do
16 wait in a nonblocking manner

17 if ack r has arrived from each pj ∈ G then
18 send ack s to each pj ∈ G

19 lck.release()

of message m it multicast to receive m and add it to their
delivery queues before initiating the next multicast, and (b) a
receiver waits to know from the sender that the message m
has been added to the delivery queue of each recipient of that
multicast, before that receiver initiates its next multicast. Note
that the acknowledgement messages are not sent via the BRM
layer.

Theorem 4. Under a network guarantee of delivering
messages within δ time, Algorithm 2 ensures BC Validity,
BC Integrity, BC Self-delivery, BC Reliability, safety and
liveness.

Proof. Algorithm 2 utilizes the br_multicast and
br_deliver primitives implementing BRM as the underly-
ing layer. Algorithm 2 guarantees BC Validity, BC Integrity,
BC Self-delivery, BC Reliability by utilizing the correspond-
ing guarantees provided by the BRM layer as follows.

BC Validity: If a correct process executes
br_deliver(m) from a correct process ps, it will
also execute bc_deliver(m) (lines 5-6, 1-4), and since the
BRM layer guarantees validity, the sender (correct) process ps
must have executed br_multicast(m). The sender correct
process ps must then have executed bc_multicast(m)
(from lines 9-13).

BC Integrity: At a correct process, the BRM layer delivers
messages to the BCM layer by pushing messages into a FIFO
queue as seen in lines 5-6. Since the BRM layer executes

br_deliver(m) at most once for any message m, each
message is placed in the queue at most once. Each message
in the queue is delivered by the BCM layer only once as seen
in lines 1-4.

BC Self-Delivery: If a correct process pi executes
bc_multicast(m), and it is present in the multicast group
G, it will br_multicast m to G (lines 9, 13), then it will
br_deliver message m into the FIFO queue in lines 5-6
and eventually bc_deliver m from the queue in lines 1-4.

BC Reliability: When a correct process executes
bc_deliver(m) for any message m, it means that it
must have executed br_deliver(m) as seen in lines 1-8.
By the reliability property provided by the BRM layer, all
correct processes in the group G will eventually execute
br_deliver(m) (lines 5-8) and place m in their FIFO
delivery queues. This means that they will eventually execute
bc_deliver(m) as seen in lines 1-4.

The remainder of this proof accounts for safety and liveness.
Safety: Consider a message m multicast by a correct

process pj in the FIFO delivery queue of a correct process
pi. Consider m′ ∈ BCP (m) such that m′ has been received
by pi and is in the FIFO delivery queue. m′ may be one of
the following:

1) m′ was multicast before m by pj . pj waits for all
(correct) processes to acknowledge that they have re-
ceived m′ or for timer s for m′ to time out before
multicasting m. The correct processes (including pi) in
the multicast group acknowledge the reception of m′

by sending ack r to pj . All ack r will arrive at pj
within the timeout period due to the network guarantee
of delivering messages within a bounded time period or
timer s at pj times out. In either case, m′ arrives before
m in the delivery queue at pi.

2) m′ was multicast by a correct process pk and delivered
by pj before pj multicast m. After multicasting m′, pk
waits for all (correct) processes in the multicast set to
acknowledge that they have received m′ (by sending
ack r to pk) or until its timer s times out. In either
case, correct process pi’s ack r would have reached pk.
If timer s has not timed out, pk informs pj that the
multicast is complete by sending ack s to pj . Once pj
delivers m′, it waits for ack s to arrive from pk or its
timer r to time out before initiating a multicast for
message m. In either case, m′ will arrive at the delivery
queue at pi before m.

3) m′(= m0)
D−→ m1

D−→ ...
D−→ mt−1

D−→ (mt =)m,
where D−→ is a subset of B−→ and mx

D−→ my is defined
as mx was either delivered at or multicast by a process
and my was the next message multicast by the same
process. We now have the following:

a) As m′(= m0)
D−→ m1, one of the following holds

for m1:

i) m1 is multicast by pk after multicasting m0. In
this case, by Observation 1, m1 will arrive at

all its destinations after m0 has arrived at its
destinations.

ii) m1 is multicast by some (correct) process ph
after delivering m0. In this case, by Observation
2, m1 will arrive at its destinations after m0 has
arrived at its destinations.

b) Using logic similar to (a) above, ∀l ∈ [1, t], ml

will arrive at its destinations after ml−1 arrives at
its destinations. Transitively, this implies that mt(=
m) will arrive at pi after m0(= m′) arrives at the
common destination pi.

Since m necessarily arrives after m′ in the FIFO delivery
queue at pi, it will get delivered after m′ ensuring safety
under B−→.

In all the cases, safety is seen to be satisfied.
Liveness: A Byzantine process may try to attack the live-

ness of the system by either:
1) not sending ack r to the multicast sender process after

receiving a multicast, or
2) not sending ack s to one or more receiver processes of

a multicast that it has sent out.
In both of these cases, a correct process waiting for the

acknowledgement message will stop waiting after the timeout
period (timer s or timer r, respectively) expires and will
be free to initiate its next multicast, because messages to/from
Byzantine processes are not part of B−→. In other words, if a
sender process does not receive ack r from a receiver process,
it does not have to worry about a safety violation at/involving
the receiver because messages sent by a Byzantine process are
not part of B−→. Similarly, if a receiver process does not receive
ack s from the sender process of a multicast (because the
sender or one of the receivers is Byzantine), it does not have
to worry about a safety violation because messages sent by a
Byzantine process are not part of B−→ and all correct receivers
are guaranteed to have enqueued the multicast message before
the timeout of timer r.

Therefore, Algorithm 2 guarantees liveness while maintain-
ing safety for multicast messages.

B. Sender-Inhibition Algorithm for Multicast without BRM
Layer

The four specifications of BCM may not strictly be required
because (i) they are expensive to implement, requiring O(|G|2)
messages in the BRM layer and a latency of δBRM to imple-
ment BRM, (ii) the application is interested only in thwarting
Byzantine attacks on the safety and liveness of the multicasts,
and/or (iii) the constraint that less than |G|/3 processes in
each group may be Byzantine cannot be satisfied. If so, the
Sender-Inhibition Algorithm can implement causal order of
multicasts without using the Byzantine Reliable Multicast
primitive. Intuitively, each multicast message m with |G| = k
(k > 1), can be considered as k unicast messages with the
same contents as m each directed to one of the k receivers.
The changes to the unicast algorithm are: (i) the sender waits
for k acks from the k receivers before sending acks to the k

receivers and the next multicast, and (ii) each receiver waits
for an ack from the sender before it can multicast its next
message. This is to avoid the following causality violation. Let
pi multicast m1 to processes pj and pk. When pj delivers m1

and multicasts message m2 to pk (pk is part of the multicast
group), we have m1

B−→ m2. If m2 arrives at pk before m1, it
will get enqueued prior to m1 and therefore will get delivered
before m1 resulting in a causality violation. Therefore, pj must
wait for an acknowledgement from pi informing it that pk has
enqueued m1 before sending its next multicast m2 to avoid
this potential causality violation.

The following changes will need be made to Algorithm 2.
(i) The br_multicast(m,G) in line (13) would be re-
placed by just “send (m,G) to each x ∈ G” and the
br_deliver(m,G) in line (5) would be replaced by ar-
rival of a message (m,G). (ii) timer s would reduce from
δBRM + δ to 2δ and timer r would reduce from δBRM +2δ
to 3δ.

VIII. DISCUSSION

Complexity: The Sender-Inhibition algorithm for unicasts
uses one control message per application message sent. Each
sender has to wait to know that its message has been received
before sending the next message. The Sender-Inhibition algo-
rithm thus requires up to a round-trip message transmission
delay between two consecutive send events at a process.
However it is very easy to implement. For multicasts, we
do not count the message and space overheads of the BRM
layer. The Sender-Inhibition algorithm for multicasts uses 2|G|
point-to-point control messages per multicast to G, a delay up
to δBRM + δ at the sender, and a delay up to δBRM + 2δ at
each receiver. The algorithms for both unicast and multicast
eliminate the O(n2) message space and processing time over-
head of RST and other algorithms [9]–[13], and instead use
very small O(1) control messages.

Synchronization mechanism in the algorithms. In view of
the impossibility results, the algorithms we presented are in a
synchronous system model without the requirement of lock-
step execution. In a step of lock-step execution, a process first
sends messages and then receives messages sent by others in
that very step. After receiving a message in a step, it has to
wait for the start of the next step to send messages. Lock-step
execution can be provided by synchronizers [24] in a fault-free
asynchronous system. It is not possible to design synchronizers
under Byzantine failures. Our algorithms are designed for
asynchronous applications that do not use lock-step in their
code. If lock-step were used, an additional delay of at least
the time needed to emulate a step, which would be at least δ,
would be incurred besides the message latency and wait time
for a send event before the start of the next step, in addition
to the other costs of emulation. In our Sender-Inhibition
Algorithm for unicasts, 2δ is the upper bound on the waiting
time for the sender in case of a Byzantine receiver. This delay
can be as low as 0. Additionally, processes (including senders
waiting for a response) can receive messages without a waiting
period leading to increased concurrency.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM 21, 7, pp. 558–565, 1978.

[2] C. J. Fidge, “Logical time in distributed computing systems,” IEEE
Computer, vol. 24, no. 8, pp. 28–33, 1991.

[3] F. Mattern, “Virtual time and global states of distributed systems,” in
Parallel and Distributed Algorithms. North-Holland, 1988, pp. 215–
226.

[4] A. Auvolat, D. Frey, M. Raynal, and F. Taı̈ani, “Byzantine-tolerant causal
broadcast,” Theoretical Computer Science, vol. 885, pp. 55–68, 2021.

[5] K. Huang, H. Wei, Y. Huang, H. Li, and A. Pan, “Byz-gentlerain: An
efficient byzantine-tolerant causal consistency protocol,” arXiv preprint
arXiv:2109.14189, 2021.

[6] M. Kleppmann and H. Howard, “Byzantine eventual consistency
and the fundamental limits of peer-to-peer databases,” arXiv preprint
arXiv:2012.00472, 2020.

[7] L. Tseng, Z. Wang, Y. Zhao, and H. Pan, “Distributed causal memory
in the presence of byzantine servers,” in IEEE 18th International
Symposium on Network Computing and Applications (NCA), 2019, pp.
1–8.

[8] A. Misra and A. D. Kshemkalyani, “Solvability of byzantine fault-
tolerant causal ordering problems,” in Networked Systems, M.-A.
Koulali and M. Mezini, Eds. Cham: Springer International Publishing,
2022, pp. 87–103. [Online]. Available: https://doi.org/10.1007/978-3-
031-17436-0 7

[9] K. P. Birman and T. A. Joseph, “Reliable communication in the presence
of failures,” ACM Transactions on Computer Systems (TOCS), vol. 5,
no. 1, pp. 47–76, 1987.

[10] A. D. Kshemkalyani and M. Singhal, “Necessary and sufficient
conditions on information for causal message ordering and their
optimal implementation,” Distributed Comput., vol. 11, no. 2, pp. 91–
111, 1998. [Online]. Available: https://doi.org/10.1007/s004460050044

[11] R. Prakash, M. Raynal, and M. Singhal, “An adaptive causal ordering
algorithm suited to mobile computing environments,” J. Parallel Dis-
tributed Comput., vol. 41, no. 2, pp. 190–204, 1997.

[12] M. Raynal, A. Schiper, and S. Toueg, “The causal ordering abstraction
and a simple way to implement it,” Information processing letters,
vol. 39, no. 6, pp. 343–350, 1991.

[13] A. Schiper, J. Eggli, and A. Sandoz, “A new algorithm to implement
causal ordering,” in International Workshop on Distributed Algorithms.
Springer, 1989, pp. 219–232.

[14] A. Mostefaoui, M. Perrin, M. Raynal, and J. Cao, “Crash-tolerant causal
broadcast in o (n) messages,” Information Processing Letters, vol. 151,
p. 105837, 2019.

[15] G. Bracha, “Asynchronous byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[16] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third USENIX Symposium on Operating Systems
Design and Implementation (OSDI), M. I. Seltzer and P. J. Leach, Eds.,
pp. 173–186.

[17] S. Duan, M. K. Reiter, and H. Zhang, “Secure causal atomic broadcast,
revisited,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2017, pp. 61–72.

[18] A. Misra and A. D. Kshemkalyani, “Byzantine fault-tolerant causal
ordering,” in Proceedings of the 24th International Conference on
Distributed Computing and Networking (ICDCN), 2023, to appear.

[19] D. Malkhi, M. Merritt, and O. Rodeh, “Secure reliable multicast pro-
tocols in a WAN,” in Proceedings of the 17th International Conference
on Distributed Computing Systems, 1997, pp. 87–94.

[20] D. Malkhi and M. K. Reiter, “A high-throughput secure reliable multicast
protocol,” J. Comput. Secur., vol. 5, no. 2, pp. 113–128, 1997.

[21] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” J. ACM, vol. 32, no. 4, p. 824–840, Oct. 1985.

[22] V. Hadzilacos and S. Toueg, “A modular approach to fault-tolerant
broadcasts and related problems,” Tech Report 94-1425, Cornell Uni-
versity, p. 83 pages, 1994.

[23] A. D. Kshemkalyani and M. Singhal, “An optimal algorithm for
generalized causal message ordering (abstract),” in Proceedings of
the Fifteenth Annual ACM Symposium on Principles of Distributed
Computing, J. E. Burns and Y. Moses, Eds. ACM, 1996, p. 87.
[Online]. Available: https://doi.org/10.1145/248052.248064

[24] B. Awerbuch, “Complexity of network synchronization,” Journal of the
ACM (JACM), vol. 32, no. 4, pp. 804–823, 1985.

