
Detecting Tree Distributed Predicates

Min Shen, Ajay D. Kshemkalyani, and Ashfaq Khokhar

University of Illinois at Chicago, Chicago, IL 60607, USA
{mshen6,ajay,ashfaq}@uic.edu

Abstract—In a large-scale locality-driven network, knowing
the state of a local area is sometimes necessary due to either
interactions being local and driven by neighborhood proximity
or the users being interested in the state of a certain region.
We propose locality-aware predicates that aim at detecting
a predicate within a specified area. We model the area of
interest as the set of processes that are within distance k from
the initiator process. By associating the predicate with a tree
topology, we force the set of processes satisfying the predicate
to form a tree with height no more than k. This enables the
detection of the predicate within the area of interest. We also
formalize several classes of locality-aware predicates, which deal
with strong stable and stable predicates for both conjunctive
and relational types. The algorithms to detect each class are also
proposed. These algorithms associate a tree topology constraint
with the predicate to be detected. Since a locality-aware
predicate detects predicates only within the specified area, the
complexities of the corresponding algorithms are thus scale-free.
These properties make locality-aware predicate a natural fit
for detecting distributed properties in systems such as modular
robotics and wireless sensor networks.

Keywords - predicate detection; locality-aware; scale-free; mod-
ular robotics; wireless sensor networks

I. INTRODUCTION

In recent years, distributed systems have found applications

in new areas such as modular robotics and wireless sensor

networks (WSNs). These emerging areas share some common

properties such as large scale and dynamic topologies. These

properties lead to the need for robust and scalable algorithms

to manage, monitor, and reason about the distributed execution

in these applications. A major problem in reasoning with a

distributed execution is the detection of distributed properties.

The dynamism and nondeterminism of executions present

challenges to observing the distributed states of the system.

To solve this problem, many distributed predicate detection

algorithms have been proposed [10]. Detecting an unstable

predicate is an NP-complete problem. Thus most of the

research in predicate detection has been on detecting stable

predicates [2], [9].

However, in networks such as modular robots [1], [5],

[6], [7] and WSNs, where the number of processes can be

large and the events are locality driven, users are sometimes

more interested in the state of a local region rather than the

entire network. Hence, it makes sense to detect predicates

based on part of the system rather than its entirety. For this

purpose, we propose the concept of locality-aware predicates.

Locality-aware predicates are similar to classical predicates.

They can also be classified as conjunctive/relational based on

the function on the variables involved in the predicate [4], or be

classified as stable/unstable etc. based on their detectability. (A

stable predicate is a predicate that remains true once it is found

true by a global snapshot [3]. Deadlock, termination, and

garbage collection are examples of stable predicate. A strong
stable predicate is a stable predicate that, if true on some

consistent cut, must remain true on all subsequent consistent

cuts [11]. Termination and deadlock are strong stable, though

distributed garbage collection is not.) The difference lies in

that locality-aware predicates detect a predicate in a sub-

network (area) of the system.

Inspired by the algorithm in [8], which can detect a stable

predicate only on a linear chain or a ring topology, we design

a set of algorithms to detect several classes of locality-aware

predicates: (i) strong stable conjunctive predicates, (ii) strong

stable relational predicates, (iii) stable conjunctive predicates,

and (iv) stable relational predicates.

II. LOCALITY-AWARE PREDICATES

Locality-aware predicates aim at specifying predicates in a

large-scale locality driven network such as WSNs or modular

robotics. In a system like this, the users are usually more

interested in the state of a certain region, rather than the

entire system. This is because: (i) The number of processes

in the system is large, thus knowing the state of the entire

system can be quite costly, (ii) Interactions are local, driven

by neighborhood proximity, (iii) In a large-scale system, the

state of a certain region can contain more information than

that of the entire system. One example is the following. In a

token-passing system, the detection of a predicate Φ =number
of tokens is larger than 5, defined for the global system might

not contain any useful information, since the system contains

many processes and the total number of tokens can easily

exceed 5. However, if Φ is defined on a local region, then

the detection of this predicate provides insight towards this

particular region, thus contains more information. In a large-

scale locality-driven system, such as WSNs, users are usually

interested in such kind of properties within a certain region.

Examples are number of patients in one particular area in a

WSN monitored hospital environment, and number of hostile

entities in a certain region in a WSN monitored battlefield.

The key aspect here is to be able to specify the area of

interest. We want to detect the predicate in an area centered

at the process p the user interacts with and the “radius” of the

area is k, meaning that processes in the area are within distance

k from p. To achieve this, we associate the predicate with a

tree topology rooted at p with height no more than k. This

2012 41st International Conference on Parallel Processing Workshops

1530-2016/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPPW.2012.87

598

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:43:25 UTC from IEEE Xplore. Restrictions apply.

forces the detected set of processes satisfying the predicate

to form such a tree topology. We use tree topology because

for any process located in such a tree, it has to be within the

area of interest. Thus the detected predicate is also within the

area of interest. Notice that the set of processes satisfying the

predicate need not contain all processes in the area of interest.

We note that, the formalism and algorithm given in [8] can

only detect a predicate on a chain or ring topology. This linear

topology is not enough for specifying the area of interest. We

extend the topology to include tree, thus making the topology

constraint a tool to specify the area of interest.

III. ALGORITHMS

Detecting a locality-aware predicate is not a trivial task,

especially for a stable predicate. When detecting a stable

predicate, we need to build a consistent cut among the pro-

cesses over which the predicate is detected. For locality-aware

predicates, the set of processes over which the predicate is to

be detected is not the entire network. Although one trivial

solution is to construct a global consistent cut and detect the

locality-aware predicate based on this cut, the complexity of

such a solution is affected by the size of the network. To better

solve this problem, that is, to design algorithms that are scale-

free, we need to build a consistent cut of only the group of

processes satisfying the predicate within the area of interest.

We propose algorithms TDP-conjunct and TDP-relational
that detect strong stable conjunctive predicates and strong sta-

ble relational predicates, respectively. We then push one step

further by studying the problem of detecting stable locality-

aware predicates, which have stronger detectability compared

to strong stable locality-aware predicates. The satisfiability of

stable predicates depends on channel states [8], unlike the

satisfiability of strong stable predicates which does not depend

on channel states.

TDP-conjunct and TDP-relational both can only detect

predicates whose satisfiability does not depend on channel

state. To capture stable locality-aware predicates using basi-

cally the same algorithms, we need to empty all channels and

inhibit communication message transmission within the area

of interest. By doing this, we guarantee that, for any stable

locality-aware predicate, it now depends purely on process

states. With the help of Channel Freezing algorithm, TDP-
conjunct and TDP-relational can detect stable locality-aware

predicates. Then, we can observe this predicate via a consistent

sub-cut collected by either TDP-conjunct or TDP-relational.

IV. COMPLEXITY ANALYSIS

We analyze the complexity of TDP-conjunct and TDP-
relational. We evaluate their complexities using two metrics:

message complexity and storage cost. The complexity of the

algorithm in [8], which can detect a predicate only on a chain

or ring topology, is shown to be related to the degree of the

network and the associated topology, rather than the size of the

network. Our algorithms share the same scale-free property.

We evaluate the complexity under two different settings of

the network. One is the fully connected network; the other is

TABLE I
COMPLEXITY MEASURES IN FULLY CONNECTED NETWORK.

Metric C-L LDP-Basic TDP-conjunct TDP-relational

Message O(n2) O(nk−1) O(n2) O(n2)
Storage O(n) O(k) O(k) O(k)

TABLE II
COMPLEXITY MEASURES IN DEGREE-d BOUNDED NETWORK.

Metric C-L LDP-Basic TDP-conjunct TDP-relational

Message O(n2) O(dk−1) O(dk+1) O(kdk+1)
Storage O(n) O(k) O(k) O(k)

the degree-d bounded network. To make the analysis more

meaningful, we compare the complexity of our algorithms

with the Chandy-Lamport (CL) snapshot algorithm [3] and

the algorithm (LDP-Basic) proposed in [8].

The size of the network is n, the maximum degree of the

network is d, and the height constraint of TDP is k.

Message complexity is measured by counting the total

number of messages generated by the algorithm. Notice that

the size of the network n has no impact on the message

complexity of both algorithms in the degree-d bounded net-

work. Storage cost measures the space complexity at each

process. This again is independent of n. Thus, unlike classical

snapshot algorithms such as the Chandy-Lamport algorithm,

the complexity of both our algorithms are not affected by n.

Instead, the complexity depends on the degree of the network

(d) and the parameter of the topology (k). Both TDP-conjunct
and TDP-relational share the same scale-free property with

the algorithms in [8]. This property gives system designers the

ability to control the complexity of the algorithm’s execution

by changing parameter k.

REFERENCES

[1] M. Ashley-Rollman, M. De Rosa, S. Srinivasa, P. Pillai, S. Goldstein,
“Declarative programming for modular robots,” IROS Workshop on
Modular Robots, 2007.

[2] Ö. Babaoglu and K. Marzullo, “Consistent global states of distributed
systems: Fundamental concepts and mechanisms,” In: S. Mullender (ed.)
Distributed Systems, 97-145, 1993.

[3] K. M. Chandy, L. Lamport, “Distributed snapshots: Determining global
states in distributed systems,” ACM Transactions on Computer Systems
3, 1, 63-75, February 1985.

[4] R. Cooper, K. Marzullo, “Consistent detection of global predicates,”
Proc. ACM/ONR Workshop on Parallel and Distributed Debugging, 163-
173, May 1991.

[5] M. De Rosa, S. Goldstein, P. Lee, J. Campbell, P. Pillai, “Distributed
watchpoints: Debugging large modular robotic systems,” International
Journal of Robotics Research 27, 3, 2008.

[6] M. De Rosa, S. Goldstein, P. Lee, P. Pillai, J. Campbell, “Programming
modular robots with locally distributed predicates,” IEEE ICRA, 2008.

[7] M. De Rosa, S. Goldstein, P. Lee, P. Pillai, J. Campbell, “A tale of two
planners: Modular robotic planning with LDP,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2009.

[8] M. De Rosa, S. Goldstein, P. Lee, J. Campbell, P. Pillai, “Detecting
locally distributed predicates,” ACM Transactions on Autonomous and
Adaptive Systems, June 2011.

[9] A. Kshemkalyani and B. Wu, “Detecting arbitrary stable properties using
efficient snapshots,” IEEE Transactions on Software Engineering 33, 5,
330-346, 2007.

[10] A. Kshemkalyani, M. Singhal, Distributed Computing: Principles, Al-
gorithms, and Systems, Cambridge University Press, 2008.

[11] A. Schiper, A. Sandoz, “Strong stable properties in distributed systems,”
Distributed Computing 8, 2, 93-103, 1994.

599

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:43:25 UTC from IEEE Xplore. Restrictions apply.

