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Abstract: Mobile social network (MoSoN) signifies an 
emerging area in the social computing research built on top 
of the mobile communications and wireless networking. It 
allows virtual community formation among like minded 
users to share data and to organize collaborative social 
activities at commonly agreed upon places and times. Such 
an activity scheduling in real-time is non-trivial as it requires 
tracing multiple users’ profiles, preferences, and other 
spatio-temporal contexts, like location, availability, etc. 
Inherent conflicts among users regarding choices of places 
and time slots further complicates unanimous decision 
making. In this paper, we propose an autonomic system for 
activity scheduling in MoSoN communities. Our system 
allows flexible activity proposition while efficiently handling 
the user conflicts. As evident from our simulation results and 
analysis, our system can schedule multiple simultaneous 
activities in real-time while incurring low message and time 
cost.

Keywords—Mobile social networks; Collaborative event 
scheduling; Virtual communities; Conflict resolution 

I. INTRODUCTION

Mobile social network (MoSoN) [1] is a hybrid of 
mobile communication and social networking technologies 
and provides various mobility and context-aware services. 
In a way, MoSoN aims to improve traditional social 
networking experience with the use of pervasive 
computing [2]. MoSoN users form virtual communities 
[3][4] for several purposes, such as, collaborative student 
environment, mobile music sharing, travel and tourism [5], 
mobile business [6][7], etc. The virtual communities are 
groups of mobile users sharing the same social behaviour, 
interests, or goals. User communities may organize 
activities or events (we shall use these terms 
interchangeably) suited to their interests. One or more 
proposers start event scheduling at same or different times. 
Examples of such community activities are hiking, dining 
out, partying, outing, shopping, going to a movie, and 
many others. But due to the dynamic and loosely-coupled 
nature of such communities, organizing a commonly 
agreed upon event is non-trivial. Below we discuss more 
of the challenges. 

Firstly, event scheduling requires collecting 
information regarding people’s availabilities, time 
schedules, and preferences to join such an event. 
Collecting all the information manually and looking for 

common available time slots to schedule an activity with 
interested users while satisfying all user preferences is a 
daunting task. Secondly, since, there can be multiple 
simultaneous event proposals in a MoSoN community, a 
user may prefer an event proposal received later to an 
earlier one, and hence, may want to alter his earlier 
preferences. This may lead to cancellation of an event due 
to the want of minimum number of participants. Handling 
the complexity arising out of changing preferences later 
renders manual event scheduling more difficult. Thirdly, 
event scheduling in MoSoN commonly faces the problem 
of collision of interests. Preferences of users vary from 
each other and sometimes it becomes hard to reconcile 
without proper means of conflict resolution. Finally, 
manual event scheduling, if possible, is time consuming. 
So, rescheduling of an event as a last moment measure 
(due to some urgency in the part of one or more 
prospective participants) or scheduling an altogether 
different event is extremely difficult. 

To address the aforementioned challenges, and to 
facilitate event scheduling, we propose an intelligent agent 
based autonomic event scheduling system for MoSoN 
communities. Every user maintains an intelligent User 
Agent (UA), which resides in the portable smart device 
(laptop, smart phone, tab) of the user and operates with 
minimal user intervention. It is knowledgeable about the 
user’s profile and preferences and keeps track of the user’s 
real time context information, such as, his activity schedule 
(calendar), current location, etc. Armed with all these 
information, UAs of multiple users interact with each other 
to schedule a particular event against a proposal and 
inform other users about the final decision. In case, a UA 
is unsure about the user’s preferences, it can query the 
user. User’s input is then saved by the agent for future use. 
However, user preferences may vary with time and 
situation. 

Earlier there were research carried out in the area of 
collaborative decision making and group consensus. As the 
name suggests, they focused on making decision 
favourable to the group members, in general, considering 
both small [8] and large [9][10][11] social groups. Usually, 
they work by developing an ideal solution based on pre-
collected user’s knowledge and by modelling user 
objective functions. Then they check existing solutions to 
find out the one closest to the ideal solution. However, all 
such works have focused on offline learning over collected 
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data using AI, fuzzy logic [12][13], argumentation [14], 
machine learning based techniques, or optimization 
approaches  and seem unfit to be directly applied to our 
problem. Our approach is more application-oriented and 
light-weight. Users use their mobile handheld devices to 
schedule an activity by collecting information and making 
a final decision in real time and on-the-fly. To the best of 
our knowledge, there is still no research focusing on event 
scheduling in MoSoN communities. 

To summarize, in this paper, we make the following 
contributions. 

• We propose the first (to the best of our knowledge) 
autonomic event scheduling system for MoSoN 
which works by collecting and analyzing profiles, 
preferences, and other spatio-temporal context 
information of social peers, without any user 
intervention. 

• We propose four different parameter specification 
models with varied flexibility for the event 
proposer and they become instrumental in 
resolving conflicts between multiple users. 

• We propose a distributed event scheduling 
algorithm and provide thorough analysis of time 
and message costs required. Our simulation results 
corroborate with our theoretical analysis and show 
that our message and time costs are significantly 
low. 

II. RELATED WORKS 

Applications developed over MoSoN are finding plenty 
of uses in our daily lives. Location based services, such as, 
Foursquare [15], Jiepang [16], and iPhone BreadCrumbs 
[5] are allowing people to socialize while on the move. 
Waze [17] allows social sharing between drivers on the 
highways. There are many media sharing services and 
other related MoSoN applications to carry out plenty of 
tasks. In short, MoSoN connects users through sharing of 
location, communication, proximity, activity, status, 
calendar, and many other contexts. 

MoSoN can also be used to build up several dedicated 
social communities with different goals or objectives. 
Recently, the SOCIETIES project [18] identifies the needs 
of various MoSoN communities with several pervasive 
computing features, like context-awareness; data and 
resource sharing; service provisioning; learning, reasoning 
and predicting; decision-making and pro-activity; security 
and privacy. Examples of such mobile and pervasive 
environments where MoSoN communities will be useful 
consists of scenarios [18] like, researchers in a conference, 
students in a university, search and rescue workers during 
disaster management, social car-pooling between drivers 
and commuters of the same route, patients and care-givers 
in a healthcare facility, etc. Many of the aforementioned 
scenarios require organizing events among community 
members. However, there are no such research works to 
facilitate autonomic event scheduling for MoSoN users.  

Community detection [19][20] is an important and 
crucial research problem in social networks which has 
been extended to community detection in MoSoN [21]. 
This ensures the existence of community behavior in 
mobile social environment. However, so far little attention 
has been paid to schedule group activity in mobile social 
communities.  

As already stated in Section I, during autonomic 
decision making processes, conflicts can often arise 
between several information sources (e.g., profiles and 
preferences of multiple users) on which the decisions are 
based. To the best of our knowledge, no significant 
research work has been carried out to resolve such 
conflicts. This is mainly because, projects that support 
adaptive behaviors, often make decisions based on a single 
information source. Projects such as Ubisec [22][23] and 
Spice [24] make decisions based on individual user’s 
profile (specifically the user's preference set) alone and 
hence multi-user conflicts do not occur. We have, 
however, handled user conflicts in group activity 
scheduling and provided viable solutions for conflict 
resolution. 

III.SYSTEM MODEL AND EVENT DETECTION 
TECHNIQUES

In this section we describe our data structure and 
system models and provide a classification of different 
decision making techniques.  

A. Data structure 
We assume that a pervasive mobile social networking 

environment is composed of multiple mobile users 
equipped with smart devices (e.g., smart mobile phones, 
tabs, laptops, and netbooks) connected wirelessly and they 
communicate through asynchronous message passing. 
Mobile users form a social community of like-minded 
users and schedule different activities and events through 
community-wide group decision making. Now, as already 
discussed in Section I, community-based decision making 
is a non-trivial task due to the several challenges involved.  
As mentioned in Section I, a proposed event is actually a 
group activity like, shopping, hiking, etc. We define an 
event (�) using a sextuple (Uid, A, T, P, N, �), where  

• Uid is the identifier of the user proposing the event 
(�),  

• A is the set {1 to �} of activities,  
• T is the set {1 to �} of available time slots,  
• P is the set {1 to �} of places preferred by the user,  
• N is the minimum number of users required to 

participate in the event (without which the event is 
liable to be cancelled), and  

• � is the set {0 to 9} of integer values 0-9 and 
represents user preference for a particular place 
and/or time slot. 

We assume that the duration of an activity is implicitly 
defined by the activity. E.g., Time to watch a movie is 2 
hours, or hiking requires 6 hours, and so on. We consider 
that a single user can propose one or more events. Multiple 
users can also propose different events at the same time 
and all those events will be circulated across the 
community members in order to gather consensus in favor 
of them. Finally, the event with maximum number of 
participants (N) will be selected as a generally agreed upon 
one, and the information will be circulated to the 
prospective participants. Our proposed system models 
present different combinations of A, P, and T elements to 
account for different levels of flexibility in event 
proposing.  
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B. System Models 
During launching an event, a user mainly considers the 

three major elements, Activity (A), Place (P), and Time (T) 
from the event sextuple along with their corresponding 
values (�). Considering inter-dependence of the A, P, and 
T elements, we propose following two different system 
models for the intelligent agent based event scheduling.  
1) Model I 

In this model (Figure 1) Place (P) is implicitly defined 
by activity (A), as AP. Model I (M1) takes a single input for 
a combined Activity-Place (AP) and Time (T) element, 
where AP and T values are independent of each other. So, 
users can prefer (Movie-Paris, 6 PM) over (Movie-Paris, 2 
PM) by entering suitable values. From Figure 1, we can 
observe that, due to inherent linking up of A and P, the 
local space in M2 is a subset of points on the plane and is 
bounded by: �� � �� � ��� � ��� � ��� � 	 � 
 , where 
��� � ���. 

Figure 1: Model I Figure 2: Model II 

2) Model II 
Model II (M2) extends M1 by further relaxing the latter. 

It takes two input preferences from user for two 
independent elements, combined Activity-Place (AP) and 
Time (T), and they are represented with the tuples (AP, 
�AP) and (T, �T), respectively. Here, user can specify fixed 
value for a time slot, independent of activity. E.g., a user 
can specify a fixed �T value for some/any relaxing activity 
after working hours. Figure 2 shows the data points user 
needs to choose from while using M2. The local space for 
this model is bounded by: �� � �� � ��� � ��� � ��� �
	 � 
 , where ��� � ���. In M1 and M2, the distinction 
between places and activities has been removed. 

IV.OUR PROPOSED ALGORITHMS

In this section, we present our algorithm for autonomic 
event scheduling in MoSoN. As stated earlier, MoSoN 
operates in a distributed dynamic setting, in which a user 
does not know the preference values of A, T, and P of 
other users. The objective of our algorithm is to facilitate 
distributed coordination among socially connected peers to 
schedule a commonly agreed social activity, at an agreed 
place and time while trying to maximize the number of 
participants.  

A. Assumptions and Variables 
When a user (U) wants to schedule an activity, he can 

do so by launching an event (�). A user can even propose 
an event which is not in his preference list, as long as it is 
popular and social. When event (�) is launched, it invokes 
our social event scheduling algorithm for the MoSoN 
community of U. 

A mobile social network community (C) can be 
represented as an undirected graph G = (V, E), where V is 
the set of users in C and E is the set of social links between 

the users. Here, we assume that G is completely connected, 
so that, each user can directly communicate with every 
other user through asynchronous message passing. In order 
to save message and time costs, we propose to execute our 
algorithm using an overlay constructed over G.  

The overlay is basically a binary tree which considers 
the node ids as the key values. The overlay is a dynamic 
structure created on-the-fly when user, U launches event �, 
and it sets U as the root. Rest of the tree nodes are chosen 
randomly from the set V. The overlay formation precedes 
the event scheduling algorithm. 

We further assume that there can be multiple event 
scheduling going on in MoSoN community (C) at the same 
time. E.g., if a user U2 receives the event �1 proposed by 
U1 and does not feel like participating, he can initiate a 
new event scheduling by launching a separate event �2. In 
order to facilitate multiple parallel event scheduling, we 
allow co-existence of several overlays rooted at individual 
nodes in V. Every root node, i.e., an event proposer 
maintains an array representation of their individual binary 
tree overlay and shares it with the nodes in their overlay in 
the initial stages of our algorithm. 

TABLE I. VARIABLES USED IN EVENT SCHEDULING ALGORITHMS

Variable Significance 

Cm Mobile social community with m members 
u Id of user u 
 Cm

Plist[i] List of i places corresponding to the set P in the event (�) 
sextuple 

Tu[24] Time array of user u with size 24 X 1 (24-slots of 1-hour 
each). Each element is Boolean with values: 0 (user 
available) and 1 (user not available) 

LDMu [i,j] Local data matrix at node u having i rows (Plist.size) and j
columns (Tu[24].size) 

PA Proposer of activity A, root of the binary tree overlay 
BHA[m] Array representation of a binary tree overlay rooted at PA

PARuA Parent of node u in the overlay (for activity A), null for PA

SuccuA Set of successors (two child nodes) of node u in the overlay 
(for activity A), null for the leaf nodes 

RESA List of Pi
Plist and Tj
Tu for which consensus occurs  
FinResA Final result pair from RESA

In Table I, we have listed the variables used for 
describing the pseudo-code of our proposed algorithm. 
LDM is a data matrix created with columns and rows 
corresponding to sizes of time array, Tu[24] (or proposed 
time slots, for model I), and place list, Plist, respectively.  

B. Algorithm Description 
In this section, we shall introduce our proposed 

algorithm for autonomic event scheduling in MoSoN 
communities. We have developed one algorithm each 
based on model I and model II (Section III B). However, 
we present both the algorithms with a single combined 
pseudo-code in Figure 3. The codes within the red square 
brackets ([ ]) are used only for model I and the rest are 
used for model II. Since they are pretty much the same, we 
just consider them together as a single algorithm. 
However, here we shall describe them separately. Our 
proposed algorithm(s) operate in the following three 
phases. 

• Phase 1: Form an overlay and disseminate �. 
Collect global knowledge regarding A, T, P of all 
the users. 

• Phase 2: evaluate most popular activity 
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• Phase 3: distribute the result  

We shall initially describe the algorithm based on 
model II followed by the algorithm based on model I.  
1) Social Event Scheduling Algorithm (Model II) 

We give a brief description of the algorithm for model 
II here. 

Phase 1: A user, U, launches event � and 
communicates it through the overlay down to the leaf 
nodes along with the array representing the binary tree 
overlay structure. The leaf nodes enter their preference 
values for places (VP) and send it to their parents in the 
tree. Thus, when the pass 1 concludes, every node knows 
their respective position in the overlay and the root node 
has the list (Plist) containing place preferences of all other 
members of his community.  

Phase I @ PA  
1. Propose activity A AND create BHA[m]
2. Suggest preferred place[s] P and add them to Plist
3. [Suggest preferred time slots T and add them to Tlist]
4. �� 
 ������, Send (A, Plist, [Tlist], BHA[m]) tuple to s
5. Wait to receive (A, Plist, [Tlist]) from both child 
6. Start Phase II @ PA

Phase I @ any non-root node u
7. receive (A, Plist, [Tlist], BHA[m]) from PA; PARuA � PA

8. Find out the child nodes from BHA[m] and set to ������
9. ����������� �� ��������
10.         �� 
 ������, send (A, Plist, [Tlist], BHA[m]) to s
11.         node u waits to receive (A, Plist, [Tlist]) from both child and 

merges the Plist(s) [and Tlist(s)]
12. Suggest alternate places (P); ��� ! � ��� ! " �
13. [Suggest alternate Time Slots (T); ��� ! � ��� ! " �]
14. Send (A, Plist, [Tlist]) to PARuA  

Phase II @ PA  
15. �� 
 ������ Send (A, Plist, [Tlist]) to s
16. Wait to receive (A, LDMu) from both children 
17. Invoke LDM_processing ( )
18. GDM � #$%&'
19. Start Phase III @ PA

Phase II @ any non-root node u
20. receive (A, Plist, [Tlist]) from PA

21. ����������� � ��������
22.       �� 
 ������, send (A, Plist, [Tlist]) to s
23.       node u waits to receive (A, [Plist, Tlist], LDMu) from both children
24. invoke LDM_processing ( ) 
25. send (A, [Plist, Tlist], LDMu) to PARuA

LDM_processing ( )
26. ����������� � �����  
27.       Generate LDMu of size (���� !��))����*���� !�+,))
          /*(�-./01��))�23�,)) will be replaced by (�-./01��))�2./01�)) for model I*/

28. else for both the children m and n of u
29.        �4 
 (5� ���� !�, and �6 
 (5� �����*���� !�+,  
                    /*(7� �23�) will be replaced by (7� �2./01�) for model I*/
30.                 LDMu[i, j] = LDMm[i, j] + LDMn[i, j],  
31. �8 
 ��� ! [AND �9 
 ��� !] provide preference rating (Rp,[t]) 

between (0-9)
32. �9: 
 �� if tj = 1 /*not needed for model I algorithm*/
33.        �8� 
 ��� ! [AND �9: 
 ��� !], if ;<=*!>+ ? @
34.                 LDM [i, j] = LDM [i, j]+1 

Phase III @ PA  
35. MAXGDM = MAX(GDM[i, j]) 
36. Add to RESA all (i, j) pairs for which GDM[i, j] = MAXGDM
37. Choose one (i, j) pair from RESA randomly and store in FinResA
38. Disseminate the final result to all the nodes in the overlay

Figure 3: Algorithm for the Model II [Model I]

Phase 2: After the Pass 1 ends, U sends the Plist, to the 
leaf nodes through the overlay. Each leaf node creates a 
GDM and enters their preferences (0-9) for respective 

places, where 0 and 9 represents the user’s absolute 
disapproval and approval for a particular place. If the 
user’s preference rating for the i-th place in the Plist is ‘�’ 
5, then for all free time slots (T[j] = 1) he increases the 
value of LDM [i, j] by 1. After processing for each place in 
the Plist he then sends the processed LDM to his parent 
node in the overlay. The parent node waits to receive LDM 
matrix from both the children and merges them using 
matrix addition to generate the updated LDM. Then it adds 
own preference rating to that one and forwards to own 
parent until it reaches the root. When the root receives 
LDM from its children, it merges them and calls the new 
updated LDM as Global Data Matrix (GDM). GDM[i, j] 
physically signifies the numbers of people who rated the 
corresponding place Plist[i], greater than or equal to 5 and 
are available for the activity at the time T[j]. To find the 
most popular place-time combination for the proposed 
activity, the root node searches for the MAX(GDM[i, j]) 
which might occur for multiple i, j values. In case of 
multiple MAX GDM values, the proposer will have the 
authority to choose a particular place and a particular time. 

Phase 3:  This is the final pass for an activity and it 
involves distributing the results of the processing done in 
Phase 2 to the users by the proposer along with a commit 
deadline for the activity. The user after receiving the result 
has to commit to one proposer within the specified time, in 
case, multiple decision making algorithms are being 
executed in the community parallely.  
2) Social Event Scheduling Algorithm (Model I) 

The algorithm for model I is almost similar to model II 
except for few changes. Model I algorithm does not take 
the available time slot matrix (Tu) as input (See Table IV). 
Instead, the event launcher suggests some time slots and 
forwards it to the peer users. Other users may add other 
favourable time slots if they wish. Otherwise they just 
enter their preferences for the proposed time slots. For 
LDM processing while model II uses the time slot matrix, 
model I uses the preference rating of the user’s against the 
proposed time slot of the event launcher. 
3) Popularity-based and Preference-based Methods 

We want to point out that the pseudo-code presented in 
Figure 3 show only the popularity based place-time 
selection approach where we consider preferences ‘� 5’ as 
valid preferences (Line 33) and any preference input lower 
than 5 as the user’s unwillingness to participate in the 
activity.  

We shall show in the following section using examples 
that there is also a preference-sum based place-time 
selection approach where all input preferences for places 
and time slots are considered. For a particular place and 
time slot, preferences entered by all the users are summed 
up to find the highest total preference, and the 
corresponding place time combination is finally chosen for 
hosting the activity. 

V. EXAMPLE APPLICATIONS

In this Section, we have shown two example 
application execution walkthrough, one for each model I 
and model II. Each example application considers the case 
of 2 parallel activity scheduling. The 2-activity case can be 
easily extended and applied for multi-activity scenarios. 
For each case, there is a popularity-based solution and a 
preference-sum based solution.
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A. Model I: 5 Users and 2 Activities 
Consider a MoSoN with 5 users with node ids 1 to 5. 

We assume that node 1 and 3 launch event scheduling in 
this MoSoN at the same or different times. The details of 
the proposed event are represented with the following 
parameters. The broadcast tree below gives the 
organization of the nodes in the binary tree overlay with 
the event proposer (initiator) as the root. 
Initiator: 1 0 1 0 0 [initiating user ids are identified with 
1, rest are 0 – the initiating users have randomly been 
selected.] 
Name of the activity: Movie (Activity1) & Sightseeing 
(Activity2)
Time Length of the activity: 3 hours and 6 hours 
Name of the places proposed for Movie:  PVR (P1), 
Adlabs (P2), Inox (P3), Fun Cinemas (P4), Cinemax (P5)
Name of the places proposed for Sightseeing: Delhi (P1), 
Agra (P2), Jaipur (P3), Roorkee (P4), Rishikesh (P5) 
Time slots proposed (for Movies): 12 (T1), 15 (T2), 18 
(T3)
Time slots proposed (for Sightseeing):11 (T1), 14 (T2), 17 
(T3)
Broadcast tree1: 1 2 3 5 4   
Broadcast tree 2: 3 4 5 1 2 
User Place-time preference: shown in the Table II (all 
values have been randomly generated).

TABLE II. USER PLACE-TIME PREFERENCES

  Activity 1 Activity 2 
  P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 

U
se

r1 T1 8 9 1 9 6 1 5 0 8 7 
T2 2 6 6 1 1 1 8 6 7 6 
T3 1 7 3 5 1 9 5 9 1 1 

U
se

r2 T1 0 2 5 9 9 9 4 6 8 5 
T2 4 9 3 5 2 5 3 6 1 1 
T3 6 2 6 6 7 2 3 4 3 6 

U
se

r3 T1 1 9 9 4 8 2 9 0 3 9 
T2 7 2 5 6 8 0 9 9 1 4 
T3 4 0 2 9 1 0 4 2 3 1 

U
se

r4 T1 1 4 9 7 9 3 3 1 9 1 
T2 9 5 1 1 2 6 2 7 5 4 
T3 8 5 9 0 4 5 2 1 0 2 

U
se

r5 T1 6 0 8 9 6 3 8 4 6 5 
T2 8 2 8 2 9 2 7 8 7 4 
T3 1 9 0 7 8 5 8 0 9 1 

Our algorithm executes and collects various user 
related information to prepare the final GDM.  
1) Preference Based GDM 

The preference-based (or, preference-sum based) GDM 
is prepared by summing up respective preferences of all 
the users for a particular (place, time) combination. So, for 
activity 1 in Table II, if we add up the preference values 
entered by each user for the (P1, T1) tuple, it will give us 
(8+0+1+1+6) = 16. However, the addition is done from the 
leaf nodes towards the root following the tree structure of 
the overlay. Carrying out in the similar manner, the final 
GDM will look like the one in Table III. In Table III, the 
maximum value is 38 corresponding to tuples (P4, T1) and 
(P5, T1). The root node can choose either tuple and declare 
it as the final result, which says that, the users can go for a 
movie at 12 noon either at the Fun Cinemas or at the 
Cinemax. Similarly, for activity 2, the maximum value is 
36 corresponding to tuple (P3, T2), which says that, the 
users can go for sightseeing at 3 PM in Jaipur. 

TABLE III. GDM FOR PREFERENCE-BASED MODEL I 

 Activity 1 Activity 2 
 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 
T1 16 24 32 38 38 18 29 11 34 27 
T2 30 24 23 15 22 14 29 36 21 19 
T3 20 23 20 23 21 21 22 16 16 11 

2) Popularity based GDM 
Popularity-based GDMs consider a place’s popularity 

before scheduling an activity at that place. This model 
assumes that, if a user prefers a place, he will rate it with 5 
or higher score. So, if a place receives rating ‘� 5’, it is 
considered for user’s ‘YES’ rating about this place and 1 is 
added to the corresponding (place, time) tuple’s current 
value, otherwise a ‘0’ (‘NO’) is added. Calculating in this 
way, we can find that the final result will be that all the 5 
users are ready to go for a movie at 12 noon in Cinemax, 
and/or for sightseeing in Jaipur at 3 PM.

Each of the preference and popularity based methods 
for the current example uses 40 messages to finish decision 
making and 13 logical time units. 

B. Model II: 6 Users and 2 Activities 
Consider the same mobile social network as before, 

only with 6 members instead of 5. The details of the 
proposed activity are represented with the following 
parameters. 
Initiator: 1 0 1 0 0 0 [initiating user ids are identified 
with 1, rest are 0 – the initiating users have randomly 
been selected.] 
Name of the activity: Movie (Activity1) & Sightseeing 
(Activity2)
Time Length of the activity: 3 hours and 6 hours 
Name of the places (Movie): PVR (P1), Adlabs (P2), Inox 
(P3), Fun Cinemas (P4), Cinemax (P5)
Name of the places (Sightseeing): Delhi (P1), Agra (P2), 
Jaipur (P3), Roorkee (P4), Rishikesh (P5) 
Broadcast tree 1 (for Movie): 1 3 6 2 4 5 
Broadcast tree 2 (for Sightseeing): 3 2 4 6 1 5
Available Time slots Matrix for users (Tu[24]): Table IV
Place preference matrix for users: Table V
(All values in Table IV and V have been randomly 
generated) 

TABLE IV. AVAILABLE TIME SLOTS MATRIX

User_Id Time Slots (1-24) 
U1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 
U2 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 0 0 
U3 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 
U4 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 
U5 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 
U6 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0

TABLE V. PLACE PREFERENCE MATRIX

Activity 1 Activity 2 
 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 
U1 8 2 1 7 1 0 6 3 1 1 
U2 0 0 7 8 2 4 6 5 8 3 
U3 5 2 1 3 1 4 8 9 8 4 
U4 4 7 9 0 5 8 7 4 5 7 
U5 0 6 7 9 5 5 0 8 6 5 
U6 4 5 9 0 7 6 0 1 3 0 

�

�
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1) Preference Based GDM 

The preference-based (or, preference-sum based) GDM 
is prepared by summing up respective preference values at 
corresponding positions in specific LDMs following the 
overlay tree structure. Now, the LDM of a specific node 
(say node i) is prepared by taking the cross product of a 
column vector (input preferences of a user for all places) 
and a row vector (available time slots of the same user). 
*ABC3/+ � *-3/+2 � *23/+
� [8 2 1 7 1]T  � [1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 

1 1 1 1 1] 
� LDM for user 1 for activity 1 is as below in Figure 

4. 
 1-1-0-1-1-1-0-1-0-0-1-0-1-1-0-1-1-1-0-1-1-1-1-1 

8 8-8-0-8-8-8-0-8-0-0-8-0-8-8-0-8-8-8-0-8-8-8-8-8 
2 2-2-0-2-2-2-0-2-0-0-2-0-2-2-0-2-2-2-0-2-2-2-2-2 
1 1-1-0-1-1-1-0-1-0-0-1-0-1-1-0-1-1-1-0-1-1-1-1-1 
7 7-7-0-7-7-7-0-7-0-0-7-0-7-7-0-7-7-7-0-7-7-7-7-7 
1 1-1-0-1-1-1-0-1-0-0-1-0-1-1-0-1-1-1-0-1-1-1-1-1 

Figure 4: LDM for (Preference-based) Activity 1 (Model II) 

The preference-based (or, preference-sum based) GDM 
is prepared by summing up respective preference values at 
corresponding positions in specific LDMs following the 
overlay tree structure. E.g., the overlay tree structure for 
the activity 1 is given in Figure 5. The overlay tree 
signifies that node 2 and 4 sends their LDMs to node 3. 
Node 3 adds up the corresponding elements in LDM2 and 
LDM4 and with that adds own preference value to derive 
the LDM3 and so on, until node 1 does the same thing. The 
final LDM at node 1 is called the GDM and is given in 
Figure 7. 

Figure 5: Overlay Tree for 
Activity 1 

Figure 6: Overlay Tree for 
Activity 2

The GDM in Figure 7 shows that the highest value is 
27 which is for the (P4, T21) element. This value is obtained 
by executing the following formula (1). 

DE�F �G �
H

�IJ
E�F �KJF F (5,

where, E�F �G means preference of user Ui for place P4, 
and E�F �KJ�means the availability of user Ui at time slot 
T21. We have considered 6 users for this example.  

� �

Figure 7: GDM for (Preference-based) Activity 1 (Model II) 

Replacing respective values in formula (1), gives us the 
following: (7*1+8*1+3*1+0*0+9*1+0*0) = 27. So, the 
final result says that, the users can go for a movie at 9 PM 
(21:00 hrs) at the Fun Cinemas. Here, we assume that all 

users will agree to participate and to stay for the entire 
duration of the movie. 
2) Popularity based GDM 
Popularity-based GDM creation for Model II works in the 
similar way as preference-based GDM (Section V.B.(1)) 
with a subtle difference. In this case, the user preference 
for a place is considered ‘1’ only if the input preference 
value is ‘� 5’. Calculating in this way, we shall obtain the 
final results. Similarly, we can calculate the GDM for 
activity 2 and find the final result(s) following the overlay 
tree at Figure 6. The preference and popularity based 
methods for the current example both uses 50 messages to 
finish decision making and 16 logical time units. 

VI.COMPLEXITY ANALYSIS

In this section we analyze the message and time 
complexity of our proposed algorithms. We assume that 
there are n users in a mobile social community. We further 
assume that the message transmission delay is negligible 
compared to the processing time at the nodes. We calculate 
the message and time complexity of our algorithms 
considering one phase at a time (except the last phase 
which is trivial). The binary tree overlay has height h with 
i levels, where i varies from 1 to h. 

A. Phase I 
1) Message Complexity 
Bottom to Top

Assuming each user (leaf node) proposes equal number 
of places on average, Places proposed per user = K/n

So, the average size of a message packet generated at 
the leaf node is c *(K/n), where c is some constant. 

Any internal node combines the place lists received 
from children nodes, and then adds its own place 
preferences before sending it further. 

So, the average message size at an internal node at 
level i: c*(LMN�OJ �P�1)*(K/n) 

Summing up, total size of all messages sent from leaf 
to root =  
Q LM�IJ

�(LMN�OJ P�1)*c *(K/n), where, 2i = number of nodes 
at level i. 

� (LMOJ * R P (LMOJ �P�2))*c *(K/n)  
� (LMOJ(R P1) + 2)*c *(K/n) 

Therefore, the total message complexity -  

ST U (LMOJ(R P 5, �� L, U VWX � *� U (LMOJ P L, U W+
� �Y(Z.[\]^� ��^],

2) Time Complexity 
Top to Bottom

When the message is coming from top to bottom, every 
node needs to record its parent and successor nodes from 
the array representing the binary tree, which takes constant 
time, c’. So, the time complexity from top to bottom is 
h*c’. 
Bottom to Top

Assuming Tp is the logical time unit to propose a place 
and it includes the constant time taken to combine places, 
the time taken to propose K/n places per leaf node is 
(K/n)*Tp. 
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Since, internal nodes combine place list received from 
their children, the time taken will be proportional to the 
size of the place list received. So, for a node at level i, time 
taken to combine the place lists is (LMN�OJ �P�2)*(K/n)*Tp. 

Adding the time taken to propose a place, time of 
processing at a node of level i = (LMN�OJ P 1)*(K/n)*Tp. 
Summing up time taken at all levels, 

D(LMN�OJ P 5,
M

�IJ
U VW U �<�

�
_
` U �< U (LMOK P R P a,

Summing up time complexity in both top to bottom and 
bottom to top cases, total time complexity is: 
_
` U �b U (LMOK P R P a, � R U � � � �cdV U �< � efgKWh �
Y(Z � .[\]^,, assuming �< is constant.

B. Phase 2 
1) Message Complexity 

Message in phase 2 primarily consists of exchanging 
the LDM matrix of size = K*T (place-time matrix). 
Top to Bottom

The root node sends the place list to leaf nodes through 
every internal node in the overlay. So, the message size is 
K*c”. 

Top-to-bottom message complexity = n*K*c” (one 
message is sent by each node, so total number of messages 
sent is O(n)). 
Bottom to Top

Each node sends a message of size K*T to its parent. 
So, each node receives a message of size K*T. Total 
message complexity =�W U V U �� � �W U V U � �� �
Y(^ U Z U 2,.
2) Time Complexity 
Top to Bottom

Since, we assume that there is no delay in message 
exchange, the time spent is just for processing at a node. 
The nodes just need to send the place list of size K to their 
children. Assuming constant time (say, c”’) for this job, 
the time complexity is h*c”’, where h is the height of the 
tree. 
Bottom to Top

Each node rates the places. Assume time taken to rate a 
place is Tr, the time spent by each node in rating the places 
is K*Tr. Time to process the LDM is K*T*c, where, c is 
some constant. 

Also each internal node combines the LDM received 
from both children. So, the time taken for this is c’*K*T
where c’ is some constant. 

Total time taken at a node at level i is K*Tr + K*T*c + 
K*T*c’ = K*Tr +K*T*c”. Summing up for all nodes, 

D(V U �i � V U � U ���,
M

�I0

�� �R U (V U �i � V U � U ���,
Total time complexity is: R U V U (�i � � U � ��, � �R U � ���

� cdefgKW U V U (�i � �,h
� Y(.[\]^ U Z U 2,, assuming �i is constant.

In the following section we shall present our simulation 
results and show that they corroborate with the complexity 
analysis just presented. 

VII. PERFORMANCE EVALUATION

We have carried out extensive simulations to evaluate 
the performance of our algorithm. Both versions of our 
algorithm (model I and model II) have been simulated and 
compared based on proposed performance metrics.  

A. Simulation Setup and Metrics 
The simulation system consists of two modules: the 

network overlay and the social decision making algorithm. 
We consider a maximum of 25 users forming a MoSoN. 
Since, the MoSoNs are not very large conglomerations; the 
number of users considered can ideally model most of the 
usual cases.  

We have simulated multiple parallel event scheduling 
where multiple decision making initiatives are ongoing 
parallely within the same MoSoN community. So, we have 
total 8 combinations depending on model I/model II 
algorithm for popularity-based/preference-based 1-
activity/2-activity cases. Number of places proposed for 
each activity is 5. All user preference values in all 
experiments have been randomly generated. 

We consider that the user devices in a MoSoN form a 
completely connected graph. As stated earlier, in order to 
keep a check on the number of message exchanged 
between users for decision making, we proposed to 
develop a tree-structured (binary tree) network overlay. 
Our algorithms are implemented as applications running 
on top of the network overlay. Each user device houses a 
software agent which accepts user input preferences (for 
activity, places, and time slots) and other inputs and 
communicates with peer agents through message 
exchange. 

In the simulations, we measure the performance of all 
the algorithms using the following metrics: 

• Total decision-making time (DMTtot) or simply, 
Time is defined as the mean time elapsed between 
the instant at which a node launches an event 
scheduling process and the instant at which it 
knows the identity of the nodes participating in the 
proposed activity. Less time to reach a decision is 
a measure of how efficient the algorithm is. 

• Message Overhead (Mtot) or simply, Message is 
defined as the total number of messages 
exchanged among all the user nodes in order to 
make a final decision. The less is the message 
overhead, the more is the saving in resource for a 
mobile node. 

B. Simulation Results and Analysis 
Below we present our simulation results with analysis. 

We have simulated different versions of our decision 
making algorithms using C++ and labeled them as 
M_1_Popu_MII (message cost in popularity based single 
activity model I), T_2_Pref_MIII (time cost in preference 
based dual activity model II), and similar others, like, 
M_2_Popu_MII, M_1_Pref_MII, M_2_Pref_MII, 
T_1_Popu_MIII, T_2_Popu_MIII, and T_1_Pref_MIII.  

Each simulation is triggered by a single user (for 
‘1Act’) launching a new event and forwarding to neighbor 
nodes in the overlay. For a multi-activity scenario, any 
user not satisfied by the activity proposal s/he received can 
propose an alternate activity which will trigger a different 
simultaneous activity scheduling. 
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Each value in the simulation result is obtained by 
averaging over 10 different runs. We also tested for 3, 5, 6, 
and 30 users, but since, the results are similar, we have just 
omitted them. In Figures 8 and 9, we compared simulation 
performances of our proposed algorithms with the 
theoretical complexity analysis in Section VI. 
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Figure 8: Message Cost vs. N
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Figure 9: Time Cost vs. N

Message Complexity: The total number of messages 
increases linearly with the number of users, i.e., O(N), 
consistent with the plot results (Fig. 8). Since, the size of 
each message is O(N), the total message complexity turns 
out to be O(N2) (~ (Klog2N+N2)) as calculated earlier in 
Section VI.  

Time Complexity: In phase 1, the time complexity as 
calculated theoretically comes out to be O (K+log2N). Now 
in our tests, K is almost constant, so the results of the 
testing must show a complexity of O(log2N) which can be 
seen clearly in the plots (Fig. 9).  

In phase 2, the logical time complexity comes out to be 
O (K*T*log2N). So, ultimately, the nature of graph is 
O(log2N), assuming K*T constant, i.e., sub-linear which is 
consistent with the plot results (Fig. 9). 

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel and flexible system 
model and an algorithm for real-time autonomic event 
scheduling in MoSoN communities. We considered mainly 
the place and time slots which are agreed upon by all the 
participants and the objective was to maximize the 
participants in a particular social activity. Our in-depth 
analysis and simulation results show that our algorithm is 
useful and practical and incur low cost. In future, we plan 
to implement the algorithm in real mobile social network 
environments to see their usability and performance. Also, 
we want to further the purview of decision making by 
considering cross-community event scheduling which is 
more challenging as the interests and preferences of users 
change. We would like to make the system more 
intelligent, so that, it can proactively inform a member 
about other members’ current activities (e.g., watching a 
movie together, hiking). 
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