
Automatic Event Scheduling in Mobile Social Network Communities

Vaskar Raychoudhury Ajay D. Kshemkalyani Daqing Zhang Jiannong Cao
Department of CSE,
IIT Roorkee, India

Department of CS, Univ.
of Illinois at Chicago,

USA

Department RST, Télécom
SudPais, Evry, France

Department of Computing,
HK PolyU, Hong Kong

vaskar@ieee.org ajay@uic.edu Daqing.Zhang@it-
sudparis.eu

csjcao@comp.polyu.edu.hk

Mohit Bakshi Kanik Gupta Vishal Mittal Siddharth Maheshwari
Department of CSE
IIT Roorkee, India

Department of CSE
IIT Roorkee, India

Department of CSE
IIT Roorkee, India

Department of CSE
IIT Roorkee, India

mohitbakshi2205@gmail.com kaniktopper@gmail.com coolvishal0812@gmail.com siddharthm.iitr@gmail.com

Abstract: Mobile social network (MoSoN) signifies an
emerging area in the social computing research built on top
of the mobile communications and wireless networking. It
allows virtual community formation among like minded
users to share data and to organize collaborative social
activities at commonly agreed upon places and times. Such
an activity scheduling in real-time is non-trivial as it requires
tracing multiple users’ profiles, preferences, and other
spatio-temporal contexts, like location, availability, etc.
Inherent conflicts among users regarding choices of places
and time slots further complicates unanimous decision
making. In this paper, we propose an autonomic system for
activity scheduling in MoSoN communities. Our system
allows flexible activity proposition while efficiently handling
the user conflicts. As evident from our simulation results and
analysis, our system can schedule multiple simultaneous
activities in real-time while incurring low message and time
cost.

Keywords—Mobile social networks; Collaborative event
scheduling; Virtual communities; Conflict resolution

I. INTRODUCTION

Mobile social network (MoSoN) [1] is a hybrid of
mobile communication and social networking technologies
and provides various mobility and context-aware services.
In a way, MoSoN aims to improve traditional social
networking experience with the use of pervasive
computing [2]. MoSoN users form virtual communities
[3][4] for several purposes, such as, collaborative student
environment, mobile music sharing, travel and tourism [5],
mobile business [6][7], etc. The virtual communities are
groups of mobile users sharing the same social behaviour,
interests, or goals. User communities may organize
activities or events (we shall use these terms
interchangeably) suited to their interests. One or more
proposers start event scheduling at same or different times.
Examples of such community activities are hiking, dining
out, partying, outing, shopping, going to a movie, and
many others. But due to the dynamic and loosely-coupled
nature of such communities, organizing a commonly
agreed upon event is non-trivial. Below we discuss more
of the challenges.

Firstly, event scheduling requires collecting
information regarding people’s availabilities, time
schedules, and preferences to join such an event.
Collecting all the information manually and looking for

common available time slots to schedule an activity with
interested users while satisfying all user preferences is a
daunting task. Secondly, since, there can be multiple
simultaneous event proposals in a MoSoN community, a
user may prefer an event proposal received later to an
earlier one, and hence, may want to alter his earlier
preferences. This may lead to cancellation of an event due
to the want of minimum number of participants. Handling
the complexity arising out of changing preferences later
renders manual event scheduling more difficult. Thirdly,
event scheduling in MoSoN commonly faces the problem
of collision of interests. Preferences of users vary from
each other and sometimes it becomes hard to reconcile
without proper means of conflict resolution. Finally,
manual event scheduling, if possible, is time consuming.
So, rescheduling of an event as a last moment measure
(due to some urgency in the part of one or more
prospective participants) or scheduling an altogether
different event is extremely difficult.

To address the aforementioned challenges, and to
facilitate event scheduling, we propose an intelligent agent
based autonomic event scheduling system for MoSoN
communities. Every user maintains an intelligent User
Agent (UA), which resides in the portable smart device
(laptop, smart phone, tab) of the user and operates with
minimal user intervention. It is knowledgeable about the
user’s profile and preferences and keeps track of the user’s
real time context information, such as, his activity schedule
(calendar), current location, etc. Armed with all these
information, UAs of multiple users interact with each other
to schedule a particular event against a proposal and
inform other users about the final decision. In case, a UA
is unsure about the user’s preferences, it can query the
user. User’s input is then saved by the agent for future use.
However, user preferences may vary with time and
situation.

Earlier there were research carried out in the area of
collaborative decision making and group consensus. As the
name suggests, they focused on making decision
favourable to the group members, in general, considering
both small [8] and large [9][10][11] social groups. Usually,
they work by developing an ideal solution based on pre-
collected user’s knowledge and by modelling user
objective functions. Then they check existing solutions to
find out the one closest to the ideal solution. However, all
such works have focused on offline learning over collected

SocialCom/PASSAT/BigData/EconCom/BioMedCom 2013

978-0-7695-5137-1/13 $26.00 © 2013 IEEE

DOI 10.1109/SocialCom.2013.63

403

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:46:08 UTC from IEEE Xplore. Restrictions apply.

data using AI, fuzzy logic [12][13], argumentation [14],
machine learning based techniques, or optimization
approaches and seem unfit to be directly applied to our
problem. Our approach is more application-oriented and
light-weight. Users use their mobile handheld devices to
schedule an activity by collecting information and making
a final decision in real time and on-the-fly. To the best of
our knowledge, there is still no research focusing on event
scheduling in MoSoN communities.

To summarize, in this paper, we make the following
contributions.

• We propose the first (to the best of our knowledge)
autonomic event scheduling system for MoSoN
which works by collecting and analyzing profiles,
preferences, and other spatio-temporal context
information of social peers, without any user
intervention.

• We propose four different parameter specification
models with varied flexibility for the event
proposer and they become instrumental in
resolving conflicts between multiple users.

• We propose a distributed event scheduling
algorithm and provide thorough analysis of time
and message costs required. Our simulation results
corroborate with our theoretical analysis and show
that our message and time costs are significantly
low.

II. RELATED WORKS

Applications developed over MoSoN are finding plenty
of uses in our daily lives. Location based services, such as,
Foursquare [15], Jiepang [16], and iPhone BreadCrumbs
[5] are allowing people to socialize while on the move.
Waze [17] allows social sharing between drivers on the
highways. There are many media sharing services and
other related MoSoN applications to carry out plenty of
tasks. In short, MoSoN connects users through sharing of
location, communication, proximity, activity, status,
calendar, and many other contexts.

MoSoN can also be used to build up several dedicated
social communities with different goals or objectives.
Recently, the SOCIETIES project [18] identifies the needs
of various MoSoN communities with several pervasive
computing features, like context-awareness; data and
resource sharing; service provisioning; learning, reasoning
and predicting; decision-making and pro-activity; security
and privacy. Examples of such mobile and pervasive
environments where MoSoN communities will be useful
consists of scenarios [18] like, researchers in a conference,
students in a university, search and rescue workers during
disaster management, social car-pooling between drivers
and commuters of the same route, patients and care-givers
in a healthcare facility, etc. Many of the aforementioned
scenarios require organizing events among community
members. However, there are no such research works to
facilitate autonomic event scheduling for MoSoN users.

Community detection [19][20] is an important and
crucial research problem in social networks which has
been extended to community detection in MoSoN [21].
This ensures the existence of community behavior in
mobile social environment. However, so far little attention
has been paid to schedule group activity in mobile social
communities.

As already stated in Section I, during autonomic
decision making processes, conflicts can often arise
between several information sources (e.g., profiles and
preferences of multiple users) on which the decisions are
based. To the best of our knowledge, no significant
research work has been carried out to resolve such
conflicts. This is mainly because, projects that support
adaptive behaviors, often make decisions based on a single
information source. Projects such as Ubisec [22][23] and
Spice [24] make decisions based on individual user’s
profile (specifically the user's preference set) alone and
hence multi-user conflicts do not occur. We have,
however, handled user conflicts in group activity
scheduling and provided viable solutions for conflict
resolution.

III.SYSTEM MODEL AND EVENT DETECTION
TECHNIQUES

In this section we describe our data structure and
system models and provide a classification of different
decision making techniques.

A. Data structure
We assume that a pervasive mobile social networking

environment is composed of multiple mobile users
equipped with smart devices (e.g., smart mobile phones,
tabs, laptops, and netbooks) connected wirelessly and they
communicate through asynchronous message passing.
Mobile users form a social community of like-minded
users and schedule different activities and events through
community-wide group decision making. Now, as already
discussed in Section I, community-based decision making
is a non-trivial task due to the several challenges involved.
As mentioned in Section I, a proposed event is actually a
group activity like, shopping, hiking, etc. We define an
event (�) using a sextuple (Uid, A, T, P, N, �), where

• Uid is the identifier of the user proposing the event
(�),

• A is the set {1 to �} of activities,
• T is the set {1 to �} of available time slots,
• P is the set {1 to �} of places preferred by the user,
• N is the minimum number of users required to

participate in the event (without which the event is
liable to be cancelled), and

• � is the set {0 to 9} of integer values 0-9 and
represents user preference for a particular place
and/or time slot.

We assume that the duration of an activity is implicitly
defined by the activity. E.g., Time to watch a movie is 2
hours, or hiking requires 6 hours, and so on. We consider
that a single user can propose one or more events. Multiple
users can also propose different events at the same time
and all those events will be circulated across the
community members in order to gather consensus in favor
of them. Finally, the event with maximum number of
participants (N) will be selected as a generally agreed upon
one, and the information will be circulated to the
prospective participants. Our proposed system models
present different combinations of A, P, and T elements to
account for different levels of flexibility in event
proposing.

404

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:46:08 UTC from IEEE Xplore. Restrictions apply.

B. System Models
During launching an event, a user mainly considers the

three major elements, Activity (A), Place (P), and Time (T)
from the event sextuple along with their corresponding
values (�). Considering inter-dependence of the A, P, and
T elements, we propose following two different system
models for the intelligent agent based event scheduling.
1) Model I

In this model (Figure 1) Place (P) is implicitly defined
by activity (A), as AP. Model I (M1) takes a single input for
a combined Activity-Place (AP) and Time (T) element,
where AP and T values are independent of each other. So,
users can prefer (Movie-Paris, 6 PM) over (Movie-Paris, 2
PM) by entering suitable values. From Figure 1, we can
observe that, due to inherent linking up of A and P, the
local space in M2 is a subset of points on the plane and is
bounded by: �� � �� � ��� � ��� � ��� � 	 �
 , where
��� � ���.

Figure 1: Model I Figure 2: Model II

2) Model II
Model II (M2) extends M1 by further relaxing the latter.

It takes two input preferences from user for two
independent elements, combined Activity-Place (AP) and
Time (T), and they are represented with the tuples (AP,
�AP) and (T, �T), respectively. Here, user can specify fixed
value for a time slot, independent of activity. E.g., a user
can specify a fixed �T value for some/any relaxing activity
after working hours. Figure 2 shows the data points user
needs to choose from while using M2. The local space for
this model is bounded by: �� � �� � ��� � ��� � ��� �
	 �
 , where ��� � ���. In M1 and M2, the distinction
between places and activities has been removed.

IV.OUR PROPOSED ALGORITHMS

In this section, we present our algorithm for autonomic
event scheduling in MoSoN. As stated earlier, MoSoN
operates in a distributed dynamic setting, in which a user
does not know the preference values of A, T, and P of
other users. The objective of our algorithm is to facilitate
distributed coordination among socially connected peers to
schedule a commonly agreed social activity, at an agreed
place and time while trying to maximize the number of
participants.

A. Assumptions and Variables
When a user (U) wants to schedule an activity, he can

do so by launching an event (�). A user can even propose
an event which is not in his preference list, as long as it is
popular and social. When event (�) is launched, it invokes
our social event scheduling algorithm for the MoSoN
community of U.

A mobile social network community (C) can be
represented as an undirected graph G = (V, E), where V is
the set of users in C and E is the set of social links between

the users. Here, we assume that G is completely connected,
so that, each user can directly communicate with every
other user through asynchronous message passing. In order
to save message and time costs, we propose to execute our
algorithm using an overlay constructed over G.

The overlay is basically a binary tree which considers
the node ids as the key values. The overlay is a dynamic
structure created on-the-fly when user, U launches event �,
and it sets U as the root. Rest of the tree nodes are chosen
randomly from the set V. The overlay formation precedes
the event scheduling algorithm.

We further assume that there can be multiple event
scheduling going on in MoSoN community (C) at the same
time. E.g., if a user U2 receives the event �1 proposed by
U1 and does not feel like participating, he can initiate a
new event scheduling by launching a separate event �2. In
order to facilitate multiple parallel event scheduling, we
allow co-existence of several overlays rooted at individual
nodes in V. Every root node, i.e., an event proposer
maintains an array representation of their individual binary
tree overlay and shares it with the nodes in their overlay in
the initial stages of our algorithm.

TABLE I. VARIABLES USED IN EVENT SCHEDULING ALGORITHMS

Variable Significance

Cm Mobile social community with m members
u Id of user u Cm

Plist[i] List of i places corresponding to the set P in the event (�)
sextuple

Tu[24] Time array of user u with size 24 X 1 (24-slots of 1-hour
each). Each element is Boolean with values: 0 (user
available) and 1 (user not available)

LDMu [i,j] Local data matrix at node u having i rows (Plist.size) and j
columns (Tu[24].size)

PA Proposer of activity A, root of the binary tree overlay
BHA[m] Array representation of a binary tree overlay rooted at PA

PARuA Parent of node u in the overlay (for activity A), null for PA

SuccuA Set of successors (two child nodes) of node u in the overlay
(for activity A), null for the leaf nodes

RESA List of PiPlist and TjTu for which consensus occurs
FinResA Final result pair from RESA

In Table I, we have listed the variables used for
describing the pseudo-code of our proposed algorithm.
LDM is a data matrix created with columns and rows
corresponding to sizes of time array, Tu[24] (or proposed
time slots, for model I), and place list, Plist, respectively.

B. Algorithm Description
In this section, we shall introduce our proposed

algorithm for autonomic event scheduling in MoSoN
communities. We have developed one algorithm each
based on model I and model II (Section III B). However,
we present both the algorithms with a single combined
pseudo-code in Figure 3. The codes within the red square
brackets ([]) are used only for model I and the rest are
used for model II. Since they are pretty much the same, we
just consider them together as a single algorithm.
However, here we shall describe them separately. Our
proposed algorithm(s) operate in the following three
phases.

• Phase 1: Form an overlay and disseminate �.
Collect global knowledge regarding A, T, P of all
the users.

• Phase 2: evaluate most popular activity

405

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:46:08 UTC from IEEE Xplore. Restrictions apply.

• Phase 3: distribute the result

We shall initially describe the algorithm based on
model II followed by the algorithm based on model I.
1) Social Event Scheduling Algorithm (Model II)

We give a brief description of the algorithm for model
II here.

Phase 1: A user, U, launches event � and
communicates it through the overlay down to the leaf
nodes along with the array representing the binary tree
overlay structure. The leaf nodes enter their preference
values for places (VP) and send it to their parents in the
tree. Thus, when the pass 1 concludes, every node knows
their respective position in the overlay and the root node
has the list (Plist) containing place preferences of all other
members of his community.

Phase I @ PA
1. Propose activity A AND create BHA[m]
2. Suggest preferred place[s] P and add them to Plist
3. [Suggest preferred time slots T and add them to Tlist]
4. �� ������, Send (A, Plist, [Tlist], BHA[m]) tuple to s
5. Wait to receive (A, Plist, [Tlist]) from both child
6. Start Phase II @ PA

Phase I @ any non-root node u
7. receive (A, Plist, [Tlist], BHA[m]) from PA; PARuA � PA

8. Find out the child nodes from BHA[m] and set to ������
9. ����������� �� ��������
10. �� ������, send (A, Plist, [Tlist], BHA[m]) to s
11. node u waits to receive (A, Plist, [Tlist]) from both child and

merges the Plist(s) [and Tlist(s)]
12. Suggest alternate places (P); ��� ! � ��� ! " �
13. [Suggest alternate Time Slots (T); ��� ! � ��� ! " �]
14. Send (A, Plist, [Tlist]) to PARuA

Phase II @ PA
15. �� ������ Send (A, Plist, [Tlist]) to s
16. Wait to receive (A, LDMu) from both children
17. Invoke LDM_processing ()
18. GDM � #$%&'
19. Start Phase III @ PA

Phase II @ any non-root node u
20. receive (A, Plist, [Tlist]) from PA

21. ����������� � ��������
22. �� ������, send (A, Plist, [Tlist]) to s
23. node u waits to receive (A, [Plist, Tlist], LDMu) from both children
24. invoke LDM_processing ()
25. send (A, [Plist, Tlist], LDMu) to PARuA

LDM_processing ()
26. ����������� � �����
27. Generate LDMu of size (���� !��))����*���� !�+,))
 /*(�-./01��))�23�,)) will be replaced by (�-./01��))�2./01�)) for model I*/

28. else for both the children m and n of u
29. �4 (5� ���� !�, and �6 (5� �����*���� !�+,
 /*(7� �23�) will be replaced by (7� �2./01�) for model I*/
30. LDMu[i, j] = LDMm[i, j] + LDMn[i, j],
31. �8 ��� ! [AND �9 ��� !] provide preference rating (Rp,[t])

between (0-9)
32. �9: �� if tj = 1 /*not needed for model I algorithm*/
33. �8� ��� ! [AND �9: ��� !], if ;<=*!>+ ? @
34. LDM [i, j] = LDM [i, j]+1

Phase III @ PA
35. MAXGDM = MAX(GDM[i, j])
36. Add to RESA all (i, j) pairs for which GDM[i, j] = MAXGDM
37. Choose one (i, j) pair from RESA randomly and store in FinResA
38. Disseminate the final result to all the nodes in the overlay

Figure 3: Algorithm for the Model II [Model I]

Phase 2: After the Pass 1 ends, U sends the Plist, to the
leaf nodes through the overlay. Each leaf node creates a
GDM and enters their preferences (0-9) for respective

places, where 0 and 9 represents the user’s absolute
disapproval and approval for a particular place. If the
user’s preference rating for the i-th place in the Plist is ‘�’
5, then for all free time slots (T[j] = 1) he increases the
value of LDM [i, j] by 1. After processing for each place in
the Plist he then sends the processed LDM to his parent
node in the overlay. The parent node waits to receive LDM
matrix from both the children and merges them using
matrix addition to generate the updated LDM. Then it adds
own preference rating to that one and forwards to own
parent until it reaches the root. When the root receives
LDM from its children, it merges them and calls the new
updated LDM as Global Data Matrix (GDM). GDM[i, j]
physically signifies the numbers of people who rated the
corresponding place Plist[i], greater than or equal to 5 and
are available for the activity at the time T[j]. To find the
most popular place-time combination for the proposed
activity, the root node searches for the MAX(GDM[i, j])
which might occur for multiple i, j values. In case of
multiple MAX GDM values, the proposer will have the
authority to choose a particular place and a particular time.

Phase 3: This is the final pass for an activity and it
involves distributing the results of the processing done in
Phase 2 to the users by the proposer along with a commit
deadline for the activity. The user after receiving the result
has to commit to one proposer within the specified time, in
case, multiple decision making algorithms are being
executed in the community parallely.
2) Social Event Scheduling Algorithm (Model I)

The algorithm for model I is almost similar to model II
except for few changes. Model I algorithm does not take
the available time slot matrix (Tu) as input (See Table IV).
Instead, the event launcher suggests some time slots and
forwards it to the peer users. Other users may add other
favourable time slots if they wish. Otherwise they just
enter their preferences for the proposed time slots. For
LDM processing while model II uses the time slot matrix,
model I uses the preference rating of the user’s against the
proposed time slot of the event launcher.
3) Popularity-based and Preference-based Methods

We want to point out that the pseudo-code presented in
Figure 3 show only the popularity based place-time
selection approach where we consider preferences ‘� 5’ as
valid preferences (Line 33) and any preference input lower
than 5 as the user’s unwillingness to participate in the
activity.

We shall show in the following section using examples
that there is also a preference-sum based place-time
selection approach where all input preferences for places
and time slots are considered. For a particular place and
time slot, preferences entered by all the users are summed
up to find the highest total preference, and the
corresponding place time combination is finally chosen for
hosting the activity.

V. EXAMPLE APPLICATIONS

In this Section, we have shown two example
application execution walkthrough, one for each model I
and model II. Each example application considers the case
of 2 parallel activity scheduling. The 2-activity case can be
easily extended and applied for multi-activity scenarios.
For each case, there is a popularity-based solution and a
preference-sum based solution.

406

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:46:08 UTC from IEEE Xplore. Restrictions apply.

A. Model I: 5 Users and 2 Activities
Consider a MoSoN with 5 users with node ids 1 to 5.

We assume that node 1 and 3 launch event scheduling in
this MoSoN at the same or different times. The details of
the proposed event are represented with the following
parameters. The broadcast tree below gives the
organization of the nodes in the binary tree overlay with
the event proposer (initiator) as the root.
Initiator: 1 0 1 0 0 [initiating user ids are identified with
1, rest are 0 – the initiating users have randomly been
selected.]
Name of the activity: Movie (Activity1) & Sightseeing
(Activity2)
Time Length of the activity: 3 hours and 6 hours
Name of the places proposed for Movie: PVR (P1),
Adlabs (P2), Inox (P3), Fun Cinemas (P4), Cinemax (P5)
Name of the places proposed for Sightseeing: Delhi (P1),
Agra (P2), Jaipur (P3), Roorkee (P4), Rishikesh (P5)
Time slots proposed (for Movies): 12 (T1), 15 (T2), 18
(T3)
Time slots proposed (for Sightseeing):11 (T1), 14 (T2), 17
(T3)
Broadcast tree1: 1 2 3 5 4
Broadcast tree 2: 3 4 5 1 2
User Place-time preference: shown in the Table II (all
values have been randomly generated).

TABLE II. USER PLACE-TIME PREFERENCES

 Activity 1 Activity 2
 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

U
se

r1 T1 8 9 1 9 6 1 5 0 8 7
T2 2 6 6 1 1 1 8 6 7 6
T3 1 7 3 5 1 9 5 9 1 1

U
se

r2 T1 0 2 5 9 9 9 4 6 8 5
T2 4 9 3 5 2 5 3 6 1 1
T3 6 2 6 6 7 2 3 4 3 6

U
se

r3 T1 1 9 9 4 8 2 9 0 3 9
T2 7 2 5 6 8 0 9 9 1 4
T3 4 0 2 9 1 0 4 2 3 1

U
se

r4 T1 1 4 9 7 9 3 3 1 9 1
T2 9 5 1 1 2 6 2 7 5 4
T3 8 5 9 0 4 5 2 1 0 2

U
se

r5 T1 6 0 8 9 6 3 8 4 6 5
T2 8 2 8 2 9 2 7 8 7 4
T3 1 9 0 7 8 5 8 0 9 1

Our algorithm executes and collects various user
related information to prepare the final GDM.
1) Preference Based GDM

The preference-based (or, preference-sum based) GDM
is prepared by summing up respective preferences of all
the users for a particular (place, time) combination. So, for
activity 1 in Table II, if we add up the preference values
entered by each user for the (P1, T1) tuple, it will give us
(8+0+1+1+6) = 16. However, the addition is done from the
leaf nodes towards the root following the tree structure of
the overlay. Carrying out in the similar manner, the final
GDM will look like the one in Table III. In Table III, the
maximum value is 38 corresponding to tuples (P4, T1) and
(P5, T1). The root node can choose either tuple and declare
it as the final result, which says that, the users can go for a
movie at 12 noon either at the Fun Cinemas or at the
Cinemax. Similarly, for activity 2, the maximum value is
36 corresponding to tuple (P3, T2), which says that, the
users can go for sightseeing at 3 PM in Jaipur.

TABLE III. GDM FOR PREFERENCE-BASED MODEL I

 Activity 1 Activity 2
 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5
T1 16 24 32 38 38 18 29 11 34 27
T2 30 24 23 15 22 14 29 36 21 19
T3 20 23 20 23 21 21 22 16 16 11

2) Popularity based GDM
Popularity-based GDMs consider a place’s popularity

before scheduling an activity at that place. This model
assumes that, if a user prefers a place, he will rate it with 5
or higher score. So, if a place receives rating ‘� 5’, it is
considered for user’s ‘YES’ rating about this place and 1 is
added to the corresponding (place, time) tuple’s current
value, otherwise a ‘0’ (‘NO’) is added. Calculating in this
way, we can find that the final result will be that all the 5
users are ready to go for a movie at 12 noon in Cinemax,
and/or for sightseeing in Jaipur at 3 PM.

Each of the preference and popularity based methods
for the current example uses 40 messages to finish decision
making and 13 logical time units.

B. Model II: 6 Users and 2 Activities
Consider the same mobile social network as before,

only with 6 members instead of 5. The details of the
proposed activity are represented with the following
parameters.
Initiator: 1 0 1 0 0 0 [initiating user ids are identified
with 1, rest are 0 – the initiating users have randomly
been selected.]
Name of the activity: Movie (Activity1) & Sightseeing
(Activity2)
Time Length of the activity: 3 hours and 6 hours
Name of the places (Movie): PVR (P1), Adlabs (P2), Inox
(P3), Fun Cinemas (P4), Cinemax (P5)
Name of the places (Sightseeing): Delhi (P1), Agra (P2),
Jaipur (P3), Roorkee (P4), Rishikesh (P5)
Broadcast tree 1 (for Movie): 1 3 6 2 4 5
Broadcast tree 2 (for Sightseeing): 3 2 4 6 1 5
Available Time slots Matrix for users (Tu[24]): Table IV
Place preference matrix for users: Table V
(All values in Table IV and V have been randomly
generated)

TABLE IV. AVAILABLE TIME SLOTS MATRIX

User_Id Time Slots (1-24)
U1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1
U2 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 0 0
U3 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1
U4 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0
U5 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1
U6 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0

TABLE V. PLACE PREFERENCE MATRIX

Activity 1 Activity 2
 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5
U1 8 2 1 7 1 0 6 3 1 1
U2 0 0 7 8 2 4 6 5 8 3
U3 5 2 1 3 1 4 8 9 8 4
U4 4 7 9 0 5 8 7 4 5 7
U5 0 6 7 9 5 5 0 8 6 5
U6 4 5 9 0 7 6 0 1 3 0

�

�

407

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:46:08 UTC from IEEE Xplore. Restrictions apply.

1) Preference Based GDM

The preference-based (or, preference-sum based) GDM
is prepared by summing up respective preference values at
corresponding positions in specific LDMs following the
overlay tree structure. Now, the LDM of a specific node
(say node i) is prepared by taking the cross product of a
column vector (input preferences of a user for all places)
and a row vector (available time slots of the same user).
*ABC3/+ � *-3/+2 � *23/+
� [8 2 1 7 1]T � [1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0

1 1 1 1 1]
� LDM for user 1 for activity 1 is as below in Figure

4.
 1-1-0-1-1-1-0-1-0-0-1-0-1-1-0-1-1-1-0-1-1-1-1-1

8 8-8-0-8-8-8-0-8-0-0-8-0-8-8-0-8-8-8-0-8-8-8-8-8
2 2-2-0-2-2-2-0-2-0-0-2-0-2-2-0-2-2-2-0-2-2-2-2-2
1 1-1-0-1-1-1-0-1-0-0-1-0-1-1-0-1-1-1-0-1-1-1-1-1
7 7-7-0-7-7-7-0-7-0-0-7-0-7-7-0-7-7-7-0-7-7-7-7-7
1 1-1-0-1-1-1-0-1-0-0-1-0-1-1-0-1-1-1-0-1-1-1-1-1

Figure 4: LDM for (Preference-based) Activity 1 (Model II)

The preference-based (or, preference-sum based) GDM
is prepared by summing up respective preference values at
corresponding positions in specific LDMs following the
overlay tree structure. E.g., the overlay tree structure for
the activity 1 is given in Figure 5. The overlay tree
signifies that node 2 and 4 sends their LDMs to node 3.
Node 3 adds up the corresponding elements in LDM2 and
LDM4 and with that adds own preference value to derive
the LDM3 and so on, until node 1 does the same thing. The
final LDM at node 1 is called the GDM and is given in
Figure 7.

Figure 5: Overlay Tree for
Activity 1

Figure 6: Overlay Tree for
Activity 2

The GDM in Figure 7 shows that the highest value is
27 which is for the (P4, T21) element. This value is obtained
by executing the following formula (1).

DE�F �G �
H

�IJ
E�F �KJF F (5,

where, E�F �G means preference of user Ui for place P4,
and E�F �KJ�means the availability of user Ui at time slot
T21. We have considered 6 users for this example.

� �

Figure 7: GDM for (Preference-based) Activity 1 (Model II)

Replacing respective values in formula (1), gives us the
following: (7*1+8*1+3*1+0*0+9*1+0*0) = 27. So, the
final result says that, the users can go for a movie at 9 PM
(21:00 hrs) at the Fun Cinemas. Here, we assume that all

users will agree to participate and to stay for the entire
duration of the movie.
2) Popularity based GDM
Popularity-based GDM creation for Model II works in the
similar way as preference-based GDM (Section V.B.(1))
with a subtle difference. In this case, the user preference
for a place is considered ‘1’ only if the input preference
value is ‘� 5’. Calculating in this way, we shall obtain the
final results. Similarly, we can calculate the GDM for
activity 2 and find the final result(s) following the overlay
tree at Figure 6. The preference and popularity based
methods for the current example both uses 50 messages to
finish decision making and 16 logical time units.

VI.COMPLEXITY ANALYSIS

In this section we analyze the message and time
complexity of our proposed algorithms. We assume that
there are n users in a mobile social community. We further
assume that the message transmission delay is negligible
compared to the processing time at the nodes. We calculate
the message and time complexity of our algorithms
considering one phase at a time (except the last phase
which is trivial). The binary tree overlay has height h with
i levels, where i varies from 1 to h.

A. Phase I
1) Message Complexity
Bottom to Top

Assuming each user (leaf node) proposes equal number
of places on average, Places proposed per user = K/n

So, the average size of a message packet generated at
the leaf node is c *(K/n), where c is some constant.

Any internal node combines the place lists received
from children nodes, and then adds its own place
preferences before sending it further.

So, the average message size at an internal node at
level i: c*(LMN�OJ �P�1)*(K/n)

Summing up, total size of all messages sent from leaf
to root =
Q LM�IJ

�(LMN�OJ P�1)*c *(K/n), where, 2i = number of nodes
at level i.

� (LMOJ * R P (LMOJ �P�2))*c *(K/n)
� (LMOJ(R P1) + 2)*c *(K/n)

Therefore, the total message complexity -

ST U (LMOJ(R P 5, �� L, U VWX � *� U (LMOJ P L, U W+
� �Y(Z.[\]^� ��^],

2) Time Complexity
Top to Bottom

When the message is coming from top to bottom, every
node needs to record its parent and successor nodes from
the array representing the binary tree, which takes constant
time, c’. So, the time complexity from top to bottom is
h*c’.
Bottom to Top

Assuming Tp is the logical time unit to propose a place
and it includes the constant time taken to combine places,
the time taken to propose K/n places per leaf node is
(K/n)*Tp.

408

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:46:08 UTC from IEEE Xplore. Restrictions apply.

Since, internal nodes combine place list received from
their children, the time taken will be proportional to the
size of the place list received. So, for a node at level i, time
taken to combine the place lists is (LMN�OJ �P�2)*(K/n)*Tp.

Adding the time taken to propose a place, time of
processing at a node of level i = (LMN�OJ P 1)*(K/n)*Tp.
Summing up time taken at all levels,

D(LMN�OJ P 5,
M

�IJ
U VW U �<�

�
_
` U �< U (LMOK P R P a,

Summing up time complexity in both top to bottom and
bottom to top cases, total time complexity is:
_
` U �b U (LMOK P R P a, � R U � � � �cdV U �< � efgKWh �
Y(Z � .[\]^,, assuming �< is constant.

B. Phase 2
1) Message Complexity

Message in phase 2 primarily consists of exchanging
the LDM matrix of size = K*T (place-time matrix).
Top to Bottom

The root node sends the place list to leaf nodes through
every internal node in the overlay. So, the message size is
K*c”.

Top-to-bottom message complexity = n*K*c” (one
message is sent by each node, so total number of messages
sent is O(n)).
Bottom to Top

Each node sends a message of size K*T to its parent.
So, each node receives a message of size K*T. Total
message complexity =�W U V U �� � �W U V U � �� �
Y(^ U Z U 2,.
2) Time Complexity
Top to Bottom

Since, we assume that there is no delay in message
exchange, the time spent is just for processing at a node.
The nodes just need to send the place list of size K to their
children. Assuming constant time (say, c”’) for this job,
the time complexity is h*c”’, where h is the height of the
tree.
Bottom to Top

Each node rates the places. Assume time taken to rate a
place is Tr, the time spent by each node in rating the places
is K*Tr. Time to process the LDM is K*T*c, where, c is
some constant.

Also each internal node combines the LDM received
from both children. So, the time taken for this is c’*K*T
where c’ is some constant.

Total time taken at a node at level i is K*Tr + K*T*c +
K*T*c’ = K*Tr +K*T*c”. Summing up for all nodes,

D(V U �i � V U � U ���,
M

�I0

�� �R U (V U �i � V U � U ���,
Total time complexity is: R U V U (�i � � U � ��, � �R U � ���

� cdefgKW U V U (�i � �,h
� Y(.[\]^ U Z U 2,, assuming �i is constant.

In the following section we shall present our simulation
results and show that they corroborate with the complexity
analysis just presented.

VII. PERFORMANCE EVALUATION

We have carried out extensive simulations to evaluate
the performance of our algorithm. Both versions of our
algorithm (model I and model II) have been simulated and
compared based on proposed performance metrics.

A. Simulation Setup and Metrics
The simulation system consists of two modules: the

network overlay and the social decision making algorithm.
We consider a maximum of 25 users forming a MoSoN.
Since, the MoSoNs are not very large conglomerations; the
number of users considered can ideally model most of the
usual cases.

We have simulated multiple parallel event scheduling
where multiple decision making initiatives are ongoing
parallely within the same MoSoN community. So, we have
total 8 combinations depending on model I/model II
algorithm for popularity-based/preference-based 1-
activity/2-activity cases. Number of places proposed for
each activity is 5. All user preference values in all
experiments have been randomly generated.

We consider that the user devices in a MoSoN form a
completely connected graph. As stated earlier, in order to
keep a check on the number of message exchanged
between users for decision making, we proposed to
develop a tree-structured (binary tree) network overlay.
Our algorithms are implemented as applications running
on top of the network overlay. Each user device houses a
software agent which accepts user input preferences (for
activity, places, and time slots) and other inputs and
communicates with peer agents through message
exchange.

In the simulations, we measure the performance of all
the algorithms using the following metrics:

• Total decision-making time (DMTtot) or simply,
Time is defined as the mean time elapsed between
the instant at which a node launches an event
scheduling process and the instant at which it
knows the identity of the nodes participating in the
proposed activity. Less time to reach a decision is
a measure of how efficient the algorithm is.

• Message Overhead (Mtot) or simply, Message is
defined as the total number of messages
exchanged among all the user nodes in order to
make a final decision. The less is the message
overhead, the more is the saving in resource for a
mobile node.

B. Simulation Results and Analysis
Below we present our simulation results with analysis.

We have simulated different versions of our decision
making algorithms using C++ and labeled them as
M_1_Popu_MII (message cost in popularity based single
activity model I), T_2_Pref_MIII (time cost in preference
based dual activity model II), and similar others, like,
M_2_Popu_MII, M_1_Pref_MII, M_2_Pref_MII,
T_1_Popu_MIII, T_2_Popu_MIII, and T_1_Pref_MIII.

Each simulation is triggered by a single user (for
‘1Act’) launching a new event and forwarding to neighbor
nodes in the overlay. For a multi-activity scenario, any
user not satisfied by the activity proposal s/he received can
propose an alternate activity which will trigger a different
simultaneous activity scheduling.

409

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:46:08 UTC from IEEE Xplore. Restrictions apply.

Each value in the simulation result is obtained by
averaging over 10 different runs. We also tested for 3, 5, 6,
and 30 users, but since, the results are similar, we have just
omitted them. In Figures 8 and 9, we compared simulation
performances of our proposed algorithms with the
theoretical complexity analysis in Section VI.

�

��

���

���

���

���

���

�� �� �� ��

�
��
��
��

�

�

�	�	
��	��� �	�	
��	����
�	�	
��	��� �	�	
��	����
�	�	
���	��� �	�	
���	����
�	�	
���	��� �	�	
���	����

Figure 8: Message Cost vs. N

�

�

��

��

��

��

��

��

��

�� �� �� ��
�	

�

�

�	�	
��	��� �	�	
��	���� �	�	
��	���
�	�	
��	���� �	�	
���	��� �	�	
���	����
�	�	
���	��� �	�	
���	����

Figure 9: Time Cost vs. N

Message Complexity: The total number of messages
increases linearly with the number of users, i.e., O(N),
consistent with the plot results (Fig. 8). Since, the size of
each message is O(N), the total message complexity turns
out to be O(N2) (~ (Klog2N+N2)) as calculated earlier in
Section VI.

Time Complexity: In phase 1, the time complexity as
calculated theoretically comes out to be O (K+log2N). Now
in our tests, K is almost constant, so the results of the
testing must show a complexity of O(log2N) which can be
seen clearly in the plots (Fig. 9).

In phase 2, the logical time complexity comes out to be
O (K*T*log2N). So, ultimately, the nature of graph is
O(log2N), assuming K*T constant, i.e., sub-linear which is
consistent with the plot results (Fig. 9).

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel and flexible system
model and an algorithm for real-time autonomic event
scheduling in MoSoN communities. We considered mainly
the place and time slots which are agreed upon by all the
participants and the objective was to maximize the
participants in a particular social activity. Our in-depth
analysis and simulation results show that our algorithm is
useful and practical and incur low cost. In future, we plan
to implement the algorithm in real mobile social network
environments to see their usability and performance. Also,
we want to further the purview of decision making by
considering cross-community event scheduling which is
more challenging as the interests and preferences of users
change. We would like to make the system more
intelligent, so that, it can proactively inform a member
about other members’ current activities (e.g., watching a
movie together, hiking).

ACKNOWLEDGMENT

This research work has been partially funded by the
Ministry of Human Resources and Development (MHRD),
Government of India through the grant FIG-Scheme-‘A’
100579-ECD and by the EU FP7 through SOCIETIES
project grant.

REFERENCES

[1] N. Kayastha, et al., "Applications, Architectures, and Protocol
Design Issues for Mobile Social Networks: A
Survey," Proceedings of the IEEE, vol.99, no.12, pp.2130-2158,
Dec. 2011.

[2] P. Bellavista, et al., “Mobile social networking middleware: A
survey,” Elsevier PMC Journal, Vol. 9, Issue 4, August 2013, pp.
437–453.

[3] T. Nguyen, et al., “PlaceComm: a framework for context-aware
applications in place-based virtual communities,” IOS Journal of
Ambient Intelligence and Smart Environments Vol. 3, Issue 1,
2011, pp. 51–64.

[4] C. El Morr and J. Kawash, “Mobile virtual communities research:
a synthesis of current trends and a look at future perspectives,”
Inderscience International Journal of Web Based Communities
Vol. 3, Issue 4, 2007, pp. 386–403.

[5] http://www.iphonebreadcrumbs.com/
[6] B.J.F. van Beijnum, et al., “Mobile virtual communities for

telemedicine: research challenges and opportunities,”
International Journal of Computer Science and Applications,
Technomathematics Research Foundation, Vol. 6, Issue 2, 2009,
pp. 19–37.

[7] J. Subercaze, et al., “A service oriented framework for mobile
business virtual communities,” In Proceedings of Pervasive
Collaborative Networks, Springer US, 2008, pp. 493-500.

[8] J. Fjemestad and S. Hiltz, “Experimental Studies of Group
Decision Support Systems: An Assessment of Variables Studied
and Methodology,” In Proceedings of the 30th Hawaii
International Conference on System Sciences: Information
Systems Track-Collaboration Systems and Technology, 1997.

[9] M. Turoff, et al., “Social Decision Support Systems (SDSS)”, In
Proceedings of the 35th Hawaii International Conference on
Systems Science, 2002.

[10] M.A. Rodriguez and D.J. Steinbock, “A Social Network for
Societal-Scale Decision-Making Systems,” North American
Association for Computational Social and Organizational Science
Conference, 2004.

[11] K. Nikos, et al., “Computer-Mediated Collaborative Decision-
Making: Theoretical and Implementation Issues”, Proceedings of
the 32nd Hawaii International Conference on Systems Science,
1999.

[12] F. Herrera, et al., “A model of consensus in group decision
making under linguistic assessments Fuzzy Sets and Systems,”
Volume 78, Issue 1, February 1996, pp. 73–87.

[13] N. Karacapilidis and C. Pappis, “Computer-supported
collaborative argumentation and fuzzy similarity measures in
multiple criteria decision making,” Computers & Operations
Research, Vol. 27, Issues 7–8, June 2000, Pages 653–671.

[14] N. Karacapilidisa and D. Papadias, “Computer supported
argumentation and collaborative decision making: the HERMES
system,” Information Systems, Vol. 26, Issue 4, June 2001, pp.
259–277.

[15] https://foursquare.com/
[16] http://hk.jiepang.com/
[17] http://www.waze.com/
[18] http://www.ict-societies.eu/files/2011/11/SOCIETIES_D22.pdf
[19] S. Fortunato, "Community detection in graphs," In Physics

Reports, Vol. 486, No. 3, 2010, pp. 75-174.
[20] M. Plantié and M. Crampes, "Survey on Social Community

Detection," In Social Media Retrieval, Springer London, 2013, pp.
65-85.

[21] P. Hui, et al., "Bubble rap: social-based forwarding in delay
tolerant networks," In Proceedings of the 9th ACM international
symposium on Mobile ad hoc networking and computing
(MobiHoc), 2008, pp. 241-250.

[22] Ubisec STREP Project, 6th Framework Programme, Homepage
URL: http://www.clab.de/en/researchprojects/completed-research-
projects/ubisec/index.html, January 2004 – February 2006.

[23] J. Groppe, and W. Mueller, “Profile Management Technology for
Smart Customizations in Private Home Applications,” In
Proceedings of the 16th International Workshop on Database and
Expert Systems Applications (DEXA), 2005, pp. 226-230.

[24] C. Cordier, et al., “Addressing the Challenges of Beyond 3G
Service Delivery: the SPICE Service Platform,” Workshop on
Applications and Services in Wireless Networks (ASWN ’06),
2006, Berlin.

410

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:46:08 UTC from IEEE Xplore. Restrictions apply.

