
Objective-Optimal Algorithms for
Long-Term Web Prefetching

Bin Wu and Ajay D. Kshemkalyani, Senior Member, IEEE

Abstract—Web prefetching is based on Web caching and attempts to reduce user-perceived latency. Unlike on-demand caching,

Web prefetching fetches objects and stores them in advance, hoping that the prefetched objects are likely to be accessed in the near

future and such accesses would be satisfied from the caches rather than by retrieving the objects from the Web server. This paper

reviews the popular prefetching algorithms based on Popularity, Good Fetch, APL characteristic, and Lifetime, and then makes the

following contributions: 1) The paper proposes a family of linear-time prefetching algorithms, Objective-Greedy prefetching, wherein

each algorithm greedily prefetches those Web objects that most significantly improve the performance as per the targeted metric.

2) The Hit rate-Greedy and Bandwidth-Greedy algorithms are shown to be optimal for their respective objective metrics. A linear-time

optimal prefetching algorithm that maximizes the H/B metric as the performance measure is proposed. 3) The paper shows the results

of a performance analysis via simulations, comparing the proposed algorithms with the existing algorithms in terms of the respective

objectives—the hit rate, bandwidth, and the H/B metrics. The proposed prefetching algorithms are seen to provide better objective-

based performance than any existing algorithms. Further, H/B-Greedy performs almost as well as H/B-Optimal.

Index Terms—Web server, World Wide Web, Web caching, Web prefetching, content distribution, Web object, hit rate, bandwidth,

optimal object selection, randomized algorithm.

�

1 INTRODUCTION

WEB caches are widely used in the current Internet
environment to reduce the user-perceived latency of

object requests. One example is a proxy server that
intercepts the requests from the clients and serves the
clients with the requested objects if it has the objects stored
in it; if the proxy server does not have the requested objects,
it then fetches those objects from the Web server and caches
them and serves the clients from its cache. Another example
is local caching that is implemented in Web browsers. In the
simplest cases, these caching techniques may store the most
recently accessed objects in the cache and generally use an
LRU replacement algorithm that does not take into account
the object size and object download cost. Cao and Irani [5]
developed a Greedy Dual-Size algorithm that is a general-
ization of the LRU replacement algorithm to deal with
variable object sizes and download times and it was shown
to achieve better performance than most other Web cache
evicting algorithms in terms of hit rate, latency reduction,
and network traffic reduction. However, all these techni-
ques use on-demand caching or short-term caching and the
objects to be cached are determined by the recent request
patterns of the clients. Long-term prefetching, on the other
hand, is a mechanism that allows clients to subscribe to
Web objects to increase the cache hit rates and thus reduce
user latency. The Web servers or Web object hosts
proactively “push” fresh copies of the subscribed objects
into Web caches or proxy servers whenever such objects are

updated. This makes the user hit rates for these objects
always 1. The selection of the prefetched objects is based on
the long-term (statistical) characteristics of the Web objects,
such as their (average) access frequencies, update intervals,
and sizes, rather than the short-term (recent) access patterns
at individual caches [20]. The long-term characteristics are
obtained and maintained by collaboration among content
distribution servers. The statistics may be collected and
published within a specific domain, such as a news Website
and its subscribed customers. A prefetching mechanism
may be applied in this domain to increase the performance.
Intuitively, to increase the hit rate, we want to prefetch
those objects that are accessed most frequently; to minimize
the bandwidth consumption, we want to choose those
objects with longer update intervals. We assume unlimited
cache sizes for both on-demand and prefetching cases in
this paper.

This paper first reviews the popular prefetching algo-

rithms based on Popularity [17], Good Fetch [20], APL

characteristic [13], and Lifetime [13]. Their performance can

be measured using the different criteria discussed. The

paper then makes the following contributions:

1. The paper proposes a family of prefetching algo-
rithms, Objective-Greedy prefetching, that are direc-
ted to improve the performance in terms of the
various objectives that each algorithm is aimed at
—hit rate, bandwidth, or H/B metric. Each of the
Objective-Greedy prefetching algorithms, Hit rate-
Greedy, Bandwidth-Greedy, and H/B-Greedy has linear-
time complexity OðnÞ and is easy to implement. The
H/B-Greedy prefetching aims to improve the H/B
metric, which combines the effect of increasing hit
rate (H) and limiting the extra bandwidth (B)
consumed by prefetching. This criterion was first

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 1, JANUARY 2006

. The authors are with the Department of Computer Science (MC 152), 851
South Morgan Street, University of Illinois at Chicago, Chicago, IL 60607-
7053. E-mail: {bwu, ajayk}@cs.uic.edu.

Manuscript received 4 Nov. 2004; revised 29 May 2005; accepted 9 Aug.
2005; published online 22 Nov. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0354-1104.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

proposed by Jiang et al. [13] as a performance metric in
terms of both hit rate and bandwidth usage. Jiang et al.
[13] compared different algorithms, i.e., Prefetch by
Popularity [17], Good Fetch [20], APL characteristic [13],
and Lifetime [13], using this criterion, but did not give
any algorithm to target this criterion. We hypothesize
that our H/B-Greedy prefetching achieves close-to-
optimal H/B-performance and this is justified by our
simulation results. The Hit rate-Greedy and Bandwidth-
Greedy, as presented in Sections 4.3 and 4.4, are
actually optimal in terms of Hit rate and Bandwidth,
respectively, as the performance metric.

2. By studying and solving the maximum weighted
average problem with preselected items, we propose an
H/B-Optimal prefetching algorithm that maximizes
the H/B metric. This randomized algorithm also has
a time complexity of OðnÞ, but with a larger constant
factor than that of H/B-Greedy. We use H/B-Optimal
prefetching to obtain an upper bound for the
H/B metric and this upper bound can be used to
evaluate the performance of other prefetching algo-
rithms in terms of this objective metric.

3. The paper shows the results of a simulation analysis
comparing the performance of all the above algo-
rithms in terms of the hit rate, bandwidth, and H/B
metrics.

. Each of the proposed prefetching algorithms is
seen to provide better performance than any
existing algorithms based on the respective
prefetching objective. In particular, the best
trade-off between increasing hit rate and redu-
cing extra bandwidth usage is obtained when
the H/B metric is used.

. Our simulation results show that the proposed
H/B-Greedy algorithm offers reasonable im-
provement of the H/B metric over the best
known algorithm and it is a good approximation
to the optimal solution. The H/B-Greedy algo-
rithm has two significant implementation-re-
lated advantages over the H/B-Optimal. 1) Even
though they both have time complexity of OðnÞ,
the constant factor for H/B-Greedy is much
smaller than that of H/B-Optimal. 2) In dynamic
situations where object characteristics change
with time, H/B-Greedy adapts to the changes
more conveniently than H/B-Optimal.

The performance comparison based on the simula-

tions is summarized in Table 4 in Section 6.

Section 2 provides an overview of the Web object access

model and other characteristics. It also reviews the known

prefetching algorithms that are based on different object

selection criteria. Section 3 gives a simple theoretical

analysis of the steady state hit rate and bandwidth

consumption, as well as a description of the H/B metric

and the metrics derived from it. The discussion in this

section is based on [13], [20]. Section 4 proposes the

Objective-Greedy prefetching algorithms based on the objec-

tive metrics to be improved. Section 5 gives a detailed

formulation of our H/B-Optimal prefetching algorithm.

Section 6 presents the simulation results comparing the
proposed algorithms with other known algorithms.
Section 7 gives the concluding remarks.

2 PRELIMINARIES

The summary of notations for the web prefetching analysis
is listed in Table 1.

2.1 Web Object Properties

To determine which objects to prefetch, we need to have some
information about the characteristics of Web objects, such as
their access frequencies, sizes, and lifetimes. Researchers
have found that the object access model roughly follows Zipf-
like distributions [2], which state that pi, the access frequency
of the ith popular object within a system, can be expressed as
k
i, where k is a constant and k ¼ 1P

i
ð1iÞ

.

Using Zipf-like distributions to model the Web page
requests, Glassman [12] found that they fit k

i quite well,
based on his investigation of a collection of 100,000 HTTP
requests. A better approximation provided by Bestavros
et al. [1] generalizes the Web objects’ access frequency pi as
following a form of Zipf-like distribution:

pi ¼ k=i�; where k ¼ 1P
ið 1
i�Þ
: ð1Þ

The value of � varies in different traces. Bestavros et al. [1]
recommend a value of 0.986 and Nishikawa et al. [18] suggest
� ¼ 0:75, based on their 2,000,000 requests access log.

Another characteristic that affects the hit rate and
network bandwidth consumption is the Web object’s
lifetime. Web objects are generally dynamic since they are
updated from time to time. An access to a cached object that
is obsolete would lead to a miss and, in turn, require
downloading the updated version from the Web server [10],
[15]. An object’s lifetime is described as the average time
interval between consecutive updates to the object. A
prefetching algorithm should take into account each object’s
lifetime in the sense that objects with a longer lifetime are
better candidates to be prefetched in order to minimize the
extra bandwidth consumption.

Crovella and Bestavros [7] have shown that the sizes of
static Web objects follow a Pareto distribution characterized

WU AND KSHEMKALYANI: OBJECTIVE-OPTIMAL ALGORITHMS FOR LONG-TERM WEB PREFETCHING 3

TABLE 1
Notations for Web Prefetching Analysis

by a heavy tail. Crovella and Barford [8] showed that the
actual sizes of dynamic Web objects follow a mixed
distribution of heavy-tailed Pareto and lognormal distribu-
tion. Breslau et al. [2] showed that the distribution of object
size has no apparent correlation with the distribution of
access frequency and lifetime. Using this observation, Jiang
et al. [13] simply assumed all objects to be of constant size in
their experiment. However, a more reasonable approach
assumes a random distribution of object sizes and is used in
this paper.

2.2 Existing Prefetching Algorithms

Prefetch by Popularity. Markatos and Chironaki [17]
suggested a “Top Ten” criterion for prefetching Web
objects, which keeps in cache the 10 most popular objects
from each Web server. Each server keeps records of accesses
to all objects it holds and the top ten popular objects are
pushed into each cache whenever they are updated. Thus,
those top-ten objects are kept “fresh” in all caches. A slight
variance of the “Top Ten” approach is to prefetch the
m most popular objects from the entire system. Since
popular objects account for more requests than less popular
ones, Prefetch by Popularity is expected to achieve the highest
hit rate [13].

Prefetch by Lifetime. Prefetching objects leads to extra
bandwidth consumption since, in order to keep a pre-
fetched object “fresh” in the cache, it is downloaded from
the Web server whenever the object is updated. Starting
from the point of view of bandwidth consumption, it is
natural to choose those objects that are less frequently
updated. Prefetch by Lifetime [13], as its name indicates,
selects m objects that have the longest lifetime and, thus,
intends to minimize the extra bandwidth consumption.

Good Fetch. Venkataramani et al. [20] proposed a Good
Fetch criterion that balances the access frequency and
update frequency (or lifetime) of Web objects. In the Good
Fetch algorithm, the objects that have the highest probability
of being accessed during their average lifetime are selected
for prefetching. Assuming the overall object access rate to
be a, the frequency of access to object i to be pi, and the
average lifetime of this object to be li, the probability that
object i is accessed during its lifetime can be expressed as

Pgoodfetch ¼ 1� ð1� piÞali : ð2Þ

The Good Fetch algorithm prefetches a collection of objects
whose Pgoodfetch exceeds a certain threshold. The intuition
behind this criterion is that objects with relatively higher
access frequencies and longer update intervals are more
likely to be prefetched and this algorithm tends to balance
the hit rate and bandwidth in that it increases the hit rate
with a moderate increase of bandwidth usage. Venkatar-
amani et al. [20] argued that this algorithm is optimal to
within a constant factor of approximation. However, it
could behave inefficiently under some specific access-
update patterns (see Section 4.1).

APL Algorithm. Jiang et al. [13] provided another
approach for choosing prefetched objects. Again by assum-
ing a, pi, and li as in Good Fetch, they used apili as the
criterion. Those objects whose apili value exceeds a given
threshold will be selected for prefetching. The apili value of

an object i represents the expected number of accesses to
this object during its lifetime. The higher this value, the
greater the chances (and, possibly, the greater the times)
this object is accessed during its lifetime. Thus, prefetching
such objects seems to have a better effect on improving the
overall hit rate. This algorithm also intends to balance the
hit rate and bandwidth consumption.

3 OBJECTIVE METRICS

3.1 Steady State Hit Rate

The access pattern of an object i is assumed to follow the
Poisson distribution with the average access rate being api,
and the update interval is assumed to follow the exponen-
tial distribution with the average interval being li [20]. As
per the analysis in [20], we define PAi

ðtÞ as the probability
that the last access occurs within time t in the past and
PBi
ðtÞ as the probability that no update occurs within time t

in the past. Then, the following hold:

PAi
ðtÞ ¼ 1� e�apit; ð3Þ

PBiðtÞ ¼ e�t=li : ð4Þ

For an object i that is not prefetched, a current access is a
hit if the last access occurred after the last update and the
probability of an access being a hit is given as follows:

PhitðiÞ ¼
Z 1

0

PAi
ðtÞdPBi

ðtÞ ¼ apili
apili þ 1

: ð5Þ

This probability is the hit rate of an object under on-
demand caching and is also named the freshness factor of
object i, or f(i). For the prefetched objects, the hit rate is 1.
So, the hit rate of object i is expressed as:

hi ¼
apili
apiliþ1 ; i is not prefetched
1; i is prefetched:

�
ð6Þ

The overall hit rate resulting from a prefetching mechan-
ism is thus:

Hitpref ¼
X
i

pihi: ð7Þ

Note that the overall on-demand hit rate is
P

i pifðiÞ.

3.2 Steady State Bandwidth Consumption

Let si be the size of object i. If object i is not prefetched, then
only when an access results in a cache miss would this
object be retrieved from the Web server. Thus, the
bandwidth for this object is apið1� fðiÞÞsi. If object i is
prefetched, then this object is downloaded from its Web
server to the cache each time it is updated in the server and
the bandwidth is si

li
. So, we have the bandwidth consump-

tion for object i [20]:

bi ¼
apið1� fðiÞÞsi; i is not prefetched
si
li
; i is prefetched:

�
ð8Þ

The total bandwidth resulting from prefetching is:

BWpref ¼
X
i

bi: ð9Þ

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 1, JANUARY 2006

3.3 H/B Model

Venkataramani et al. [20] did the performance evaluation of
their Good Fetch algorithm based on computational simula-
tions as well as trace-based experiments. The effects of
prefetching were demonstrated with hit rate improvement
and increase of bandwidth under various threshold values.
A smaller threshold value for Pgoodfetch results in a higher hit
rate and more bandwidth consumption because more
objects are prefetched. According to how important the
user-perceived latency is relative to the bandwidth con-
sumption, different threshold values may be adopted in this
algorithm. For example, if the waiting time is a critical
requirement and there is adequate available bandwidth and
hardware resources, a smaller threshold value could be
chosen to achieve a higher hit rate.

A balanced measure of the prefetching algorithms was
proposed by Jiang et al. [13]. It is called the H/B metric and
is defined as:

H=B ¼ Hitpref=Hitdemand
BWpref=BWdemand

: ð10Þ

Here, Hitpref and Hitdemand are the overall hit rate, with and
without prefetching, respectively; BWpref and BWdemand are
the total bandwidth with and without prefetching.

The H/B metric expresses the ratio of hit rate improve-
ment over the bandwidth increase. It is a quantitative
evaluation of the hit rate improvement a prefetching
algorithm can bring relative to excessive bandwidth
consumption. In addition, a more generalized form, Hk=B
[13], can be used to give relative importance to hit rate or
bandwidth by varying the value of k.

Hk=B ¼ ðHitpref=HitdemandÞ
k

BWpref=BWdemand
: ð11Þ

With this form of the H/B metric, k > 1 indicates an
environment with abundant available bandwidth and
hardware resources and the improvement of hit rate is
more favored than the economy on bandwidth. When the
network bandwidth is limited, a smaller k (possibly k < 1)
is used instead.

Jiang et al. [13] used the H/B metric and its Hk=B form to
evaluate the performance of Good Fetch [20] and Popularity
[17], as well as the Lifetime and APL algorithms that they
proposed. However, Jiang et al. did not propose any
algorithm that directly targeted either the H/B or the
Hk=B metric.

4 OBJECTIVE-GREEDY PREFETCHING

In this section, we first discuss some drawbacks of
existing algorithms (Section 4.1). In Sections 4.2, 4.3, and
4.4, we provide a detailed explanation and theoretical
analysis of our Objective-Greedy prefetching algorithms.
This family of algorithms is greedy because each
algorithm always chooses to prefetch those objects that
would most significantly improve the performance metric
it is aimed at. In Section 4.2, we formulate the theory for
and then derive the H/B-Greedy algorithm that greedily
improves the performance as measured by the H/B metric.
In Sections 4.3 and 4.4, the Hit Rate-Greedy and the

Bandwidth-Greedy prefetching algorithms, which are shown

to be special cases of the Hk=B-Greedy prefetching with k

set to infinity and to 0, respectively, are proposed.

4.1 Problems with Existing Algorithms

The existing prefetching algorithms (Good Fetch [20] and

APL [13]) stemmed from intuition that balances the hit rate

and bandwidth. However, they are actually far from being

ideal in choosing the prefetched objects to achieve the

optimal performance with regard to hit rate or bandwidth.

. For an object i that is not prefetched, for example, if
the accesses and updates to this object are alternated
(i.e., there is exactly one access between every two
consecutive updates to object i), the on-demand hit
rate is 0 and the bandwidth consumption of this
object is si

li
. If we prefetch object i, the hit rate of this

object is improved to 1 and the bandwidth is
unchanged, which indicates that object i is an ideal
object to prefetch. However, this “perfect” candidate
is not always favored by Good Fetch or APL since
Pgoodfetch or apl of this object is not always high
compared to other objects. Note that this special
access-update pattern cannot be captured by the long-
term characteristics p and l of the system model.

. The APL algorithm, for example, prefers those
objects with a larger product of lifetime and access
frequency. Consider two objects, A and B, of the
same size; the access rate for A is 30 accesses/day
and that for B is three accesses/day, the average
lifetime for A is one day and that for B is 15 days.
Which object should APL choose to prefetch? This
algorithm would more likely choose B rather than A,
but a careful analysis shows that, to achieve a higher
hit rate, we should choose A, for less bandwidth, we
should choose B, and, for a higher value of the
H/B metric, we need to know the characteristics of all
other objects before making a decision!

Analysis: Suppose pA ¼ 30c, pB ¼ 3c, where c is a

constant. We have

ðAPLÞA ¼ a � 30c � 1 ¼ 30ac;

ðAPLÞB ¼ a � 3c � 15 ¼ 45ac:

B is more preferred by APL since ðAPLÞB > ðAPLÞA.

The overall hit rate improvements, respectively, by

prefetching objects A and B are:

ð�HÞA ¼ pAð1� fðAÞÞ ¼
30c

30acþ 1
;

ð�HÞB ¼ pBð1� fðBÞÞ ¼
3c

45acþ 1
:

As ð�HÞA > ð�HÞB, prefetching A achieves higher

hit rate improvement than prefetching B.
The extra bandwidth consumptions imposed by

prefetching objects A and B are:

ð�BWÞA ¼
sA
lA
ð1� fðAÞÞ ¼ sA

30acþ 1
;

ð�BWÞB ¼
sB
lB
ð1� fðBÞÞ ¼ sB

15ð45acþ 1Þ :

WU AND KSHEMKALYANI: OBJECTIVE-OPTIMAL ALGORITHMS FOR LONG-TERM WEB PREFETCHING 5

As sA ¼ sB, we have ð�BW ÞA > ð�BWÞB and

prefetching B would cause less bandwidth con-

sumption than prefetching A.

The problems mentioned here are primarily due to the

fact that the existing prefetching algorithms simply choose

to prefetch an object based on its individual characteristics

with no consideration for issues having broader impact,

such as the following: 1) How much effect would prefetch-

ing a specific object have on the overall performance?

2) Between two objects with different access-update char-

acteristics, which one, if prefetched, would have a greater

influence on the total hit rate and bandwidth?
Another problem worth noting is the actual sizes of

objects. The existing algorithms simplified the object sizes to

be constant. However, a random distribution may reflect a

better approximation of object sizes in the Internet.

4.2 H/B-Greedy Prefetching

Note that a prefetching algorithm selects a subset of objects

from the cache. When an object i is prefetched, the hit rate is

increased from apili
apiliþ1 to 1, which is 1

fðiÞ times that of on-

demand caching; the bandwidth for object i is increased

from si
liþ 1

api

to si
li
, which is also 1

fðiÞ times the bandwidth for

object i under on-demand caching. Prefetching an object

leads to the same relative increase in its hit rate and

bandwidth consumption.
Recall the H/B metric (10) that measures the balanced

performance of a prefetching algorithm. We observe that

this measure uses the hit rate and bandwidth of on-demand

caching as a baseline for comparison and, as they are

constants, the H/B metric is equivalent to:

H

B

� �
pref

¼ Hitpref
BWpref

¼
P

i pihiP
i bi

; ð12Þ

where hi and bi are the hit rate and bandwidth of object i,

respectively, as described in Section 3.
Consider the H/B ratio under on-demand caching:

H

B

� �
demand

¼ Hitdemand
BWdemand

¼
P

i pifðiÞP
i
si
li
fðiÞ : ð13Þ

A prefetching algorithm chooses an appropriate subset

of objects from the entire collection and, for each of these

prefetched objects, say object i, we simply change the

corresponding f(i) term to 1 in (13) to obtain ðH=BÞpref . Our

H/B-Greedy algorithm aims to select a group of objects to be

prefetched such that the H/B metric would achieve a better

value than that obtained by the existing algorithms. Since

the object characteristics, such as access frequencies, life-

times, and object sizes, are all known to the algorithm, it is

possible that, given a number m, we could select m objects

to prefetch such that ðH=BÞpref reaches the maximum

possible value. This optimization problem can be forma-

lized as finding a subset S0 of size m from the entire

collection of objects, S, such that ðH=BÞpref is maximized:

S0 ¼ argmaxS0�S;jS0 j¼m
H

B

� �
pref

" #

¼ argmaxS0�S;jS0 j¼m
P

i2S pifðiÞ þ
P

j2S0 pjð1� fðjÞÞP
i2S

si
lifðiÞ þ

P
j2S0

sj
lj
ð1� fðjÞÞ

2
64

3
75:
ð14Þ

This is a variation of the maximum weighted average
(MWA) problem proposed by Eppstein and Hirschberg [11].
The maximum weighted average problem is best explained by
the example of course selection for maximizing the GPA:
“Given an academic record of a student’s curriculum with a
total of n courses, select a subset of k courses (each with
different score and credit hours) from the record that would
obtain the highest weighted average (GPA) among all
subsets of k courses.” Eppstein and Hirschberg gave an
algorithm to solve this problem with an expected time
complexity of OðnÞ. If we introduce the constraint that,
among the k courses, c (c < k) specific courses must be
included (i.e., preselected), we now have an MWA problem
of choosing ðk� cÞ courses such that the weighted average
of the k courses is maximized. Similarly, our optimal object
selection problem has to deal with the on-demand hit rate
Hitdemand and bandwidth BWdemand, where Hitdemand and
BWdemand correspond to the sum of weighted scores and
sum of weights of the preselected courses, respectively. This
makes our problem equivalent to the course selection
problem with preselected courses. In Section 5, we modify
Eppstein and Hirschberg’s algorithm and present a linear
time algorithm that solves this optimal object selection
problem, described in (14).

In this section, we introduce a greedy algorithm, the H/B-
Greedy prefetching algorithm, as a first solution toward
designing an optimal solution to the problem in (14). It aims
to improve H/B by greedily choosing objects based on their
individual characteristics. The H/B-Greedy algorithm at-
tempts to select those objects that, if prefetched, would have
the most benefit for H/B. For example, suppose, initially, no
object is prefetched and the H/B value is expressed as
ðHBÞdemand; now, if we prefetch object j, the H/B value will be
updated to:P

i2S pifðiÞ þ pjð1� fðjÞÞP
i2S

si
li
fðiÞ þ sj

lj
ð1� fðjÞÞ ¼

H

B

� �
demand

�
1þ pjð1�fðjÞÞP

i2S pifðiÞ

� �

1þ
sj
lj
ð1�fðjÞÞP
i2S

si
li
fðiÞ

� � ¼ H

B

� �
demand

�incrðjÞ:
ð15Þ

Here, incr(j) is the factor that indicates the amount by
which H/B can be increased if object j is prefetched. We call
incr(j) the increase factor of object j.

Our H/B-Greedy prefetching algorithm (Algorithm 1) thus
uses increase factor as a selection criterion and chooses to
prefetch those objects that have the greatest increase factors.
We hypothesize that this algorithm is an approximation to
the optimal solution because, in real-life prefetching, due to
the bandwidth constraints, the number of prefetched objects
m is usually small. Furthermore, the increase factors of

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 1, JANUARY 2006

individual objects are generally very close to 1 due to the
large number of objects in the system. Thus, previous
selection of prefetched objects is expected to have little
effect on subsequent selections in terms of improving H/B.
This hypothesis is verified by our simulations described in
Section 6.

Procedure H/B-Greedy in Algorithm 1 takes the set of all
objects in the Web servers—S, the number of objects to be
prefetched—m, and the total access rate—a, as the inputs.
Each object i is represented by a tuple hpi; li; sii, where pi, li,
and si denote the access frequency, the lifetime, and size of
the object, respectively.

Algorithm 1 H/B-Greedy prefetching

1: procedure H/B-Greedy(S, m, a)

2: Inputs:

3: a set of objects of type hpi; li; sii: S
4: number of objects to be prefetched: n

5: the total access rate: a

6:

7: for each object i 2 S do

8: compute the freshness factor: fðiÞ ¼ apili
apiliþ1

9: end for

10: compute the on-demand overall hit rate

Hitdemand ¼
P

i2S pifðiÞ
11: compute the on-demand overall bandwidth

BWdemand ¼
P

i2S
si
li
fðiÞ

12: for each object i 2 S do

13: compute the increase factor incrðiÞ as defined in (15)
14: end for

15: select m objects with the largest increase factors using

randomized selection

16: mark the selected objects “prefetched”

17:

18: Hitpref ¼ Hitdemand
19: BWpref ¼ BWdemand

20: for each object j that is prefetched do

21: Hitpref ¼ Hitpref þ pjð1� fðjÞÞ
22: BWpref ¼ BWpref þ sj

lj
ð1� fðjÞÞ

23: end for

24: return
Hitpref
BWpref

Analysis: The computation of freshness factor fðiÞ and
increase factor incrðiÞ each take constant time. Hence, the
for-loops in lines 7-9 and lines 12-14 each take OðjSjÞ time.
The computation in line 10 and line 11 also takes OðjSjÞ time
each. In line 15, we use randomized selection to select m
objects with the greatest increase factors. The expected time
for this selection operation is OðjSjÞ. Selecting the
mth largest value using randomized selection takes
expected time of OðjSjÞ [6]. The m� 1 largest values get
moved by the partitioning process to one side of the
selected value (the mth largest value) in the array after the
selection completes; thus, these m values are explicitly
identified. Line 16 and the loop in lines 20-23 each take
OðmÞ time (m < jSj). Thus, the total expected time complex-
ity of the H/B-Greedy algorithm is OðjSjÞ.

The space requirement for this algorithm includes the
space for storing fðiÞ, incrðiÞ, and the characteristic triple
hpi; li; sii for each object, which totals up to OðjSjÞ.

4.3 Hit Rate-Greedy Prefetching

Sometimes it is desirable to maximize the overall hit rate

given the number of objects to prefetch, m. Jiang et al. [13]

claimed that Prefetch by Popularity achieves the highest

possible hit rate. However, a special form of our Objective-

Greedy algorithms would actually obtain a higher hit rate

than Prefetch by Popularity.
Observe that the contribution to the overall hit rate by

prefetching object i is:

H contrðiÞ ¼ pið1� fðiÞÞ ¼
pi

apili þ 1
: ð16Þ

Thus, if we choose to prefetch those objects with the

largest hit rate contributions, the resulting overall hit rate

must be maximized. We call this algorithm Hit Rate-Greedy

(or H-Greedy) prefetching and it is obtained from our

Objective-Greedy principle when we try to optimize the

overall hit rate as the objective metric. H-Greedy prefetching

is an extreme case of the Hk=B-Greedy prefetching algo-

rithm: As we care only about the hit rate and the bandwidth

is of no importance, we let k in the Hk=B metric go to

infinity and this metric becomes the hit rate metric:

lim
k!þ1

ðHitpref=HitdemandÞk

BWpref=BWdemand

" #1
k

¼ Hitpref=Hitdemand:

We claim H-Greedy prefetching is H-Optimal since

Hitpref ¼ Hitdemand þ
X
i2S0

H contrðiÞ;

where S0 denotes the set of prefetched objects.

4.4 Bandwidth-Greedy Prefetching

Another optimization problem in prefetching is to minimize

the excessive bandwidth consumption, given the number of

objects to prefetch. Intuition may suggest that Prefetch by

Lifetime has the least bandwidth usage [13]. However, by

applying our Objective-Greedy principle with bandwidth as

the objective, we get an algorithm that results in even less
bandwidth consumption.

Using analogous reasoning to that for the Hit Rate-Greedy

algorithm, the extra bandwidth contributed by prefetching

object i is:

B contrðiÞ ¼ si
li
ð1� fðiÞÞ ¼ si

apil2i þ li
: ð17Þ

Hence, if we prefetch those objects with the least

B_contr(i) values, we could finally expect the minimum
excessive bandwidth given the number of prefetched

objects, m. We call this algorithm the Bandwidth-Greedy (or

B-Greedy) prefetching and it is another extreme case of the

Hk=B-Greedy prefetching algorithm: If we care only about

the bandwidth usage and not the hit rate, we let the

exponent k tend to limit zero and the Hk=B metric becomes

the bandwidth metric. B-Greedy is also B-Optimal since

BWpref ¼ BWdemand þ
X
i2S0

B contrðiÞ;

where S0 denotes the set of prefetched objects.

WU AND KSHEMKALYANI: OBJECTIVE-OPTIMAL ALGORITHMS FOR LONG-TERM WEB PREFETCHING 7

A simulation-based performance comparison of these

two algorithms and all the other algorithms is shown in

Section 6.3.

5 H/B-OPTIMAL PREFETCHING

We now propose an optimal prefetching approach that

achieves the highest H/B value given the number of objects

to prefetch. The goal is to select a subset of m objects to

prefetch such that the objective ðH=BÞpref is maximized.

The objective ðH=BÞpref is defined in (12).

5.1 Designing an Optimal Solution

As mentioned in Section 4.2, this optimization problem is

equivalent to the maximum weighted average problem mod-

ified to deal with preselected items. Eppstein and Hirsch-

berg [11] studied a simpler version, which is the maximum

weighted average problem without preselected items. They used

an example of course selection: From a total of n courses,

each with weight wi and weighted score vi, select m courses

that maximize the weighted average. They proposed a

linear time solution to this course selection problem. We

now require the course selection problem to also model

preselected courses besides the m courses to be chosen.

Thus, the H/B-Optimal prefetching problem is analogous to

the weighted average problem, however, with preselected

courses that must be included besides those m courses.
The analogy between the H/B-Optimal prefetching pro-

blem and the course selection problem, now modified to

model the preselected courses, is given in Table 2.
To be consistent with Eppstein and Hirschberg’s nota-

tions in the problem of choosing optimal subsets, we

rephrase the selection problem as removing k objects from

the entire set of n objects, where k ¼ n�m. In [11], they

defined a characteristic function for course i:

riðxÞ ¼ vi � wix: ð18Þ

riðxÞ represents the weighted difference between the score

of course i and an arbitrary value, x. If a subset of courses

average to x, the sum of riðxÞ over the subset is 0.
The above formulation of riðxÞ did not address preselec-

tion, which we have to take into account in our specifica-

tion. To specify such a characteristic for the case with

preselected items, we redefine riðxÞ as

riðxÞ ¼ vi þ
v0

n� k
� �

� wi þ
w0

n� k
� �

x: ð19Þ

For simplicity, we use the terms vi, wi, v0, w0 borrowed from

the context of course selection. Note that v0 and w0

represent on-demand hit rate and bandwidth, respectively,

in the context of Web prefetching. The terms v0

n�k and w0

n�k are

introduced to account for the effect of preselection, under a

specific case of choosing n� k items. Their significance will

be shown shortly.
We now define a heuristic function F ðxÞ as

F ðxÞ ¼ maxjS0 j¼n�k;S0�S
X
i2S0

riðxÞ
" #

: ð20Þ

By definition, F ðxÞ is the sum of the n� k greatest riðxÞ
values. We have the following properties related to F ðxÞ:
Lemma 1. Suppose A� is the maximum weighted average after

choosing n� k items, with preselected items whose summed

value is v0 and summed weight is w0. Then, for any subset

S0 � S and jS0j ¼ n� k,

ð1Þ
X
i2S0

riðA�Þ � 0;

ð2Þ
X
i2S0

riðA�Þ ¼ 0 iff S0 is the optimal subset:

Proof. Let S0 � S, and jS0j ¼ n� k. Then,X
i2S0

riðA�Þ ¼
X
i2S0

vi þ
v0

n� k
� �

� wi þ
w0

n� k
� �

A�
h i

¼ w0 þ
X
i2S0

wi

 !
v0 þ

P
i2S0 vi

w0 þ
P

i2S0 wi
�A�

� �
:

If S0 is not an optimal subset,
v0þ
P

i2S0 vi

w0þ
P

i2S0 wi
< A�, thusP

i2S0 riðA�Þ < 0. If S0 is an optimal subset, then
v0þ
P

i2S0 vi

w0þ
P

i2S0 wi
¼ A� and we have

P
i2S0 riðA�Þ ¼ 0. tu

Lemma 1 indicates that the optimal subset contains those

items that have the n� k largest values of riðA�Þ. To find the

optimal subset, we can plot the curve for each riðxÞ and

choose the n� k objects with the largest riðA�Þ values.

Example. See Fig. 1. In this example, n ¼ 6 and k ¼ 2. Each
line represents the characteristic function riðxÞ for some

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 1, JANUARY 2006

TABLE 2
Analogy between H=B-Optimal Prefetching and the Maximum Average Course Selection Problem,

Enhanced to Deal with Preselected Courses

object, i. Iði; jÞ denotes the intersection of riðxÞ and rjðxÞ.
If the optimal average A� is known, then the optimal

subset consists of four objects whose intersections with

line x ¼ A� are marked by solid dots.

We cannot directly obtain the optimal subset by plotting

the curve for each riðxÞ and choosing the n� k objects with

the largest riðA�Þ since the value of A� is unknown.

However, we can use the following lemma to limit the

range of A� to a sufficiently small interval so that the total

ordering of riðxÞ values within this small interval can be

determined.

Lemma 2. 1) F ðxÞ > 0 iff x < A�, 2) F ðxÞ < 0 iff x > A�,

3) F ðxÞ ¼ 0 iff x ¼ A�.
Proof. Part 1. Let x < A�. By definition,

F ðxÞ ¼ maxjS0 j¼n�k;S0�S
X
i2S0

riðxÞ
 !

and there exists subset Sx such that F ðxÞ ¼
P

i2Sx riðxÞ.
Let S� be the optimal subset to our selection problem.

Then:

F ðxÞ ¼
X
i2Sx

riðxÞ

�
X
i2S�

riðxÞ ¼
X
i2S�

vi þ
v0

n� k
� �

� wi þ
w0

n� k
� �

x
h i

>
X
i2S�

vi þ
v0

n� k
� �

� wi þ
w0

n� k
� �

A�
h i

¼ F ðA�Þ ¼ 0:

To prove the other direction, assume F ðxÞ > 0. Thus,

F ðxÞ ¼
P

i2Sx riðxÞ > 0.
According to Lemma 1,

P
i2Sx riðA

�Þ � 0.
We have:

X
i2Sx

vi þ
v0

n� k
� �

� wi þ
w0

n� k
� �

x
h i

>
X
i2Sx

vi þ
v0

n� k
� �

� wi þ
w0

n� k
� �

A�
h i

:

Thus, x < A�.
Part 2. Let x > A�, then riðxÞ < riðA�Þ.
Using Lemma 1, we have:

F ðxÞ ¼
X
i2Sx

riðxÞ <
X
i2Sx

riðA�Þ � 0:

Now, let F ðxÞ < 0. We have:

F ðxÞ ¼
X
i2Sx

riðxÞ �
X
i2S�

riðxÞ:

Thus,
P

i2S� riðxÞ < 0 and, hence,X
i2S�

riðxÞ <
X
i2S�

riðA�Þ:

This is expanded as:X
i2S�

vi þ
v0

n� k

� �
� wi þ

w0

n� k

� �
x

h i

<
X
i2S�

vi þ
v0

n� k

� �
� wi þ

w0

n� k

� �
A�

h i
;

which simplifies to x > A�.
Part 3. Follows trivially. tu

Lemma 2 provides a powerful method for searching for
or approaching the maximum average using a binary-like
search: We can narrow the range of A� down to ðxl; xrÞ if we
know F ðxlÞ > 0 and F ðxrÞ < 0. The computation of F ðxÞ
can be performed within OðnÞ time using a randomized
selection procedure.

Since riðxÞ is a linear function, by computing the
intersection of two curves and comparing their slopes, we
can determine the ordering of these two curves within any
interval that does not contain their intersection. If we use
Lemma 2 to narrow down the range of A� to an interval that
contains no intersection, then the total ordering of riðxÞ is
determined within that interval and so is the ordering of
riðA�Þ among all objects i. However, this method requires
Oðn2Þ time, as the computation of intersections needs Oðn2Þ
time; the binary traversal needs OðlgðnÞÞ comparisons and
each comparison needs OðnÞ time, which is too much
overhead. In addition, to find an optimal subset, we do not
need the total ordering among the entire set. We extend the
randomized linear time selection algorithm of Eppstein and
Hirschberg to now account for preselection. This gives the
H/B-Optimal prefetching algorithm, which has the expected
linear time complexity.

5.2 H/B-Optimal Prefetching Algorithm

The structure of the H/B Optimal prefetching algorithm is
based on the Eppstein-Hirschberg algorithm. The difference
is that we use our new definition of the object’s character-
istic function, riðxÞ, to account for the preselection imposed
by the on-demand hit rate and bandwidth in the context of
the Web prefetching problem. In a sense, this transforma-
tion is a linear-time reduction.

WU AND KSHEMKALYANI: OBJECTIVE-OPTIMAL ALGORITHMS FOR LONG-TERM WEB PREFETCHING 9

Fig. 1. Choosing the optimal subset if A� is known.

The algorithm maintains two properties for each object i:

its weighted value vi ¼ H contrðiÞ as given in (16) and

weight wi ¼ B contrðiÞ as given in (17). The value and

weight represent the object’s additional contribution to the

overall hit rate and bandwidth if the object is prefetched.
Function H/B-Optimal tries to find those n� k objects

with the largest rðA�Þ values. The inputs to this function are:

1. S, the entire set of objects,
2. k, the number of objects to be excluded from the

selection,
3. hdemand, the on-demand hit rate, and
4. bdemand, the on-demand bandwidth.

Algorithm 2 H/B-optimal Prefetching (based on the
maximal weighted average algorithm)

1: function H/B-OptimalðS; k; hdemand; bdemandÞ
2: for i 2 S do

3: vi ¼ vi þ hdemand
jSj�k , wi ¼ wi þ bdemand

jSj�k
4: end for

5: if k ¼ 0 then

6: return hdemand
bdemand

7: end if

8: left ¼ 0, right ¼ þ1
9: while jSj > 1 do

10: randomly choose i from S

11: for j 2 S do

12: switch(compare(i,j,left,right))

13: case EQUAL: E ¼ E [fjg, break;

14: case LESS: Y ¼ Y [fjg, break;

15: case LARGER: X ¼ X [fjg, break;
16: case UNKNOWN: Z ¼ Z [fjg, break;

17: end for

18: repeat

19: if jZj > 0 then

20: A = median(i; Z)

21: FA ¼ FðA;S; kÞ
22: if FA ¼ 0 then

23: return A

24: else if FA > 0 then

25: left ¼ A
26: else

27: right ¼ A
28: end if

29: for j 2 Z do

30: switch(compare(i,j,left,right))

31: case LESS: Y ¼ Y [fjg, Z ¼ Z � fjg,
break;

32: case LARGER: X ¼ X [fjg,Z ¼ Z � fjg,
break;

33: end for

34: end if

35: if jXj þ jEj � jSj � k then

36: remove minðjEj; jXj þ jEj � ðjSj � kÞÞ
members of E from S

37: remove Y from S

38: k ¼ k� ðnum of removed objectsÞ
39: else if jY j þ jEj � k then

40: mark (as “prefetched”) and combine

minðjEj; jY j þ jEj � kÞmembers of E
and all members of X into a single

object c

41: X ¼ c
42: S ¼ S � fcombined membersg þ fcg
43: end if

44: until jZj � jSj=32

45: end while {Now jSj ¼ 1 and the only object in S is

referred to as c}
46: return vc=wc

1: function compareði; j; left; rightÞ
2: if wi ¼ wj then

3: � ¼ vj � vi, intersection ¼ �1
4: else

5: � ¼ wi � wj, intersection ¼ vi�vj
wi�wj

6: end if

7: if � ¼ 0 then

8: return EQUAL

9: else if (intersection � left and � > 0) or

(intersection � right and � < 0) then

10: return LARGER

11: else if (intersection � left and � < 0) or

(intersection � right and � > 0) then

12: return LESS

13: else

14: return UNKNOWN

15: end if

16:

17: function medianði; ZÞ
18: for j 2 Z do

19: interðjÞ ¼ vi�vj
wi�wj

20: end for

21: return median value in array inter

22:

23: function FðA;S; kÞ
24: for i 2 S do

25: riðAÞ ¼ vi �Awi
26: end for

27: return
P
ðlargest ðjSj � kÞ riðAÞ valuesÞ

The for-loop in lines 2-4 adjusts the values of vi and wi
for each object, i, to address the issue of preselection, as
described in (19). The notion “value” and “weight” in the
following explanation will therefore denote the adjusted
meanings.

In the outer loop (lines 9-45), we randomly select an

object i from the current set S and compare riðA�Þ value

with rjðA�Þ; 8j 2 S. As A� is unknown, the comparison is

performed indirectly, as implemented in function com-

pare, which is called to compute the ordering between two

linear functions riðxÞ and rjðxÞ within the range (left, right).

If the intersection of riðxÞ and rjðxÞ lies out of this range,

we can decide that one of the lines goes above the other

over the entire range by comparing their slopes. Since this

range always contains A�, the ordering between riðA�Þ and

rjðA�Þ is determined. However, if the intersection lies

within this range, the ordering between riðA�Þ and rjðA�Þ
is undetermined.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 1, JANUARY 2006

The function H/B-Optimal maintains four sets:

. X, contains those objects whose rðA�Þ are known to
be greater than that of object i;

. Y , contains those objects whose rðA�Þ are known to
be less than that of object i;

. E, contains all the objects in S that have the same
value and weight as object i;

. Z, contains those objects for which we currently do
not know whether its rðA�Þ is greater than, less than,
or equal to that of object i.

The range of A� is initially set to ð0;1Þ, which is

apparently true in our context. Then, after calling function

compare to compute the ordering between i and j within

the current range, we insert object j into X, Y , E, or Z

according to the result returned by compare (lines 11-17).
For any object j in Z, the abscissa of the intersection of

rjðxÞ and riðxÞ lies in the current A�-range, (left, right). In the

inner loop (lines 18-44), we select the median value of these

x-coordinates, A. By Lemma 2, if F ðAÞ > 0, it is known that

A < A� and, if F ðAÞ < 0, then A > A�. Thus, we narrow the

range of A� down by roughly a half and can expect to move

some objects from Z into X or Y in each iteration. After the

size of Z is adequately small, say (jSj=32), we may have

enough elements in X or Y to perform the removing or

combination operation that reduces the size of the remaining

problem.

1. If jXj þ jEj > jSj � k: All members in Y and some
members in E can be ranked within the k objects
with the least rðA�Þ values. These objects can be
removed from our selection and the remaining
problem has a smaller size.

2. If jY j þ jEj > k: All members in X and some in E can
be ranked as within the jSj � k objects with the
greatest rðA�Þ values and they must be selected.

Once we determine that some objects must be selected,

we combine them into a single member of S by adding their

values and weights, as the value and weight of the combined

object.
Suppose the number of those selected object is p, then the

remaining selection domain reduces to jSj � pþ 1 and the

number of objects to be selected reduces to jSj � pþ 1� k.
Finally, when there is only one member remaining in S,

this is the combination of n� k objects with the highest rðA�Þ
values. These objects constitute the optimal subset S�ðjS�j ¼
n� kÞ and the return value

vc
wc
¼ v0 þ

P
i2S� vi

w0 þ
P

i2S� wi

is the optimal ðH=BÞpref we are seeking.
In the implementation of the prefetching operation, for

each object that is to be combined as mentioned above, we

mark it as “prefetched” before it is removed from the

selection domain S.
Complexity: The expected time complexity of H/B-

Optimal is OðjSjÞ; see the Appendix.

5.3 H/B-Optimal versus H/B-Greedy Prefetching

H/B-Greedy prefetching is useful even though we have

found the H/B-Optimal prefetching algorithm. The following

are the reasons:

1. Our simulation experiments (Section 6) confirm the
hypothesis (Section 4.2) that H/B-Greedy behaves
almost as well as H/B-Optimal prefetching and H/B-
Greedy is easier to implement. Note that, although
both H/B-Optimal and H/B-Greedy have a time
complexity of OðnÞ, the H/B-Optimal prefetching
has a much larger constant factor.

2. H/B-Greedy prefetching is especially convenient in a
dynamic environment where the characteristics of
Web objects could change from time to time. When
such a change occurs, the content distribution server
implementing H/B-Greedy can simply accommodate
this change as follows: Suppose the characteristics of
object i has changed:

. Object i was not prefetched and incr(i) has
increased. Select the minimum increase factor
among those prefetched objects, incr(j). If
incrðiÞ > incrðjÞ, then substitute object j with
object i in the prefetched set.

. Object i was prefetched and incr(i) has de-
creased. If, now, incr(i) is the minimum in the
prefetched set, then select the maximum increase
factor among those objects that are not pre-
fetched, incr(j). If incrðiÞ < incrðjÞ, substitute
object i with object j in the prefetched set.

. Otherwise, do nothing.

The above operations are easy to implement with

little overhead. However, in a content distribution

server that implements H/B-Optimal prefetching,

such a change requires the entire algorithm to

execute again, with considerable overhead.

6 SIMULATIONS AND RESULTS

6.1 Evaluation of H/B-Greedy and H/B-Optimal
Prefetching Algorithms

We ran simulation experiments on the following six

prefetching algorithms: Popularity [17], Good Fetch [20],

APL [13], Lifetime [13], and H/B-Greedy and H/B-Optimal,

which are proposed in this paper. The simulation model

made the following assumptions:

. Object access frequency pi follows Zipf’s distribution
with � ¼ 0:75 [13].

. Object size si is randomly distributed between 1 and
1M bytes. Unlike the previous experiments, which
assumed a fixed object size, this assumption aims to
capture more realistic data on the performance.

. Object lifetime li is randomly distributed between 1
and 100,000 seconds.

. The total access rate a is 0.01/second.

We ran four sets of simulations in which the total

number of objects was set to 103, 104, 105, and 106,

respectively. In each set of simulations, the six prefetching

algorithms were experimented with. For each simulation

WU AND KSHEMKALYANI: OBJECTIVE-OPTIMAL ALGORITHMS FOR LONG-TERM WEB PREFETCHING 11

experiment, the number of prefetched objects was varied
incrementally and we measured the resulting hit rates,
bandwidth consumption, and the H/B metrics. We use the
equivalent expression ðH=BÞpref , as defined in (12), for the
H/B metric in our experiments, since Hitdemand (given by (7)
when no object is prefetched) and BWdemand (given by (9)
when no object is prefetched) are constants in a given
simulation set. For each setting of parameter values, we ran
three runs. The values varied by less than 1 percent and, so,
we report only the mean values. Figs. 2 and 3 show the H/B

values for a total of 103, 104, 105, and 106 objects. The figures
for hit rate and bandwidth for a total of 106 objects are given
in Fig. 4. (The figures for hit rate and bandwidth for 103, 104,
and 105 total objects showed a similar trend.) Note that the
values when Prefetched Objects = 0 correspond to the metrics
under on-demand caching (assuming unlimited cache
sizes). In particular, ðH=BÞdemand is the value as computed
using (13), which also gives the definitions of Hitdemand and
BWdemand.

A little surprisingly, it is found that Good Fetch [20] has
almost the same performance as APL [13]—they appeared
to choose the same group of objects. Hence, the simulation
results in the figures show the same curves for these two
algorithms and we group them as one algorithm (Good

Fetch/APL) in the figures (and later in the performance

summary in Table 4). The almost identical behavior of Good

Fetch and APL can be explained as follows: The selection

criteria of these two algorithms, 1� ð1� pÞal and apl, have

high conformity, that is, sorting objects with these two

criteria, respectively, we get almost the same order. In most

of the cases, these two algorithms choose the same subsets

of objects and are almost equivalent to each other.
It is seen from the simulations that H/B-Greedy prefetch-

ing beats Prefetch by Popularity, Good Fetch, Prefetch by APL,

and Prefetch by Lifetime in terms of H/B for any number of

prefetched objects, as expected. This is because the object

selection in H/B-Greedy prefetching is always guided by the

objective H/B. The gain by H/B-Greedy over Good Fetch (APL)

prefetching is more significant when the number of

prefetched objects is relatively small compared to the total

number of objects. For example, the greatest relative gains

and their occurring positions are approximately:

1. Nineteen percent improvement in H/B at the point
where about 40 percent of objects are prefetched
when the total number of objects is 103.

2. Ninety percent improvement at about 20 percent
prefetched when the total number is 104.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 1, JANUARY 2006

Fig. 2. H/B for a total of (a) 1,000 objects, (b) 10,000 objects.

Fig. 3. H/B for a total of (a) 100,000 objects, (b) 1,000,000 objects.

3. Two hundred thirty-three percent improvement at
about 10 percent prefetched when the total number
is 105.

4. Four hundred seventy-five percent improvement at
about 5 percent prefetched when the total number
is 106.

The curves for Good Fetch (APL), H/B-Greedy, and H/B-
Optimal initially ascend to some highest values as the
number of prefetched objects increases and then gradually
descend and converge with other curves. The reason for this
scenario is that, when the prefetched number is relatively
small, the algorithms that use balanced metrics (Good Fetch
(APL), H/B-Greedy, and H/B-Optimal) have better chances to
choose those objects that contribute the largest goodness for
the balanced metric. Specifically, Good Fetch (APL), H/B-
Greedy, and H/B-Optimal have better chances of choosing
those objects that have the largest values of PgoodfetchðAPLÞ,
the largest values of increase factor, and the best contribution
to improving H=B, respectively. As the number of
prefetched objects grows, we have to include those objects
that have less contribution. When the number of prefetched
objects exceeds some threshold, objects that have a negative
effect on the balanced metric begin getting added, making
the curves go down as the prefetched number continues to
grow. In the meanwhile, the sets of prefetched objects
obtained by different algorithms also begin to have a
greater number of members in common. Thus, the
difference in the performance of various algorithms
diminishes as the number of prefetched objects increases.

Figs. 2 and 3 also show that H/B-Greedy is a good
approximation to H/B-Optimal. When the total number is
103, the difference in performance is almost indistinguisha-
ble—the H/B values differ at most by 0.08 percent. They
differ by at most 1.6 percent in the case of a total of
104 objects, at most 7 percent in the case of a total of
105 objects, and at most 19.2 percent in the case of a total of
106 objects. H/B-Greedy is seen to perform much closer to the
H/B-Optimal than any other algorithm in all cases.

From Fig. 4, observe that the hit rates of the algorithms
differ by a small factor from each other, roughly by a factor
between 1 and 10 for most of the range. Although Popularity
has the highest hit rate, it requires several orders of

magnitude more bandwidth than the other algorithms.
(All algorithms except Popularity take into account band-
width usage.) We also studied the impact of varying the
total number of objects from 103 to 106, on hit rate as well as
bandwidth. We observed that the relative performance of
the algorithms in terms of hit rate as well as bandwidth
stays the same and the graphs are very similar to Fig. 4.

6.2 Impact of Access Pattern, Access Frequency,
and Lifetime

Thus far, we have seen the performance of all the
algorithms for the simulation parameter settings: � ¼ 0:75
[13] for the Zipf’s distribution of the object access frequency,
maximum object lifetime lmax = 100,000 seconds, and total
access rate a = 0.01/second. We also tested the algorithms
for various values of these parameters, as shown in Table 3.
The notable observations about the impact on H, B, and H/B
are also briefly summarized in the table. Our observation is
that the relative performance of all the algorithms for all the
metrics (hit rate, bandwidth, and H=B) remains the same as
what we have presented in Section 6.1, over these ranges of
the parameters. The detailed results and graphs can be
found on the Computer Society Digital Library at http://
computer.org/tc/archives.htm.

6.3 Evaluation of the Hit Rate-Greedy and
Bandwidth-Greedy Algorithms

In this part, we set up our simulations to investigate the
performance of our Hit Rate-Greedy and Bandwidth-Greedy
prefetching algorithms in terms of hit rate and bandwidth,
respectively. To show the optimality with regard to their
corresponding performance metrics, we compare them with
all the algorithms we have studied, including H/B-Greedy
and H/B-Optimal.

In this simulation, a total of 106 objects was assumed;
object sizes were randomly distributed between 1 and
1M bytes; object lifetimes were randomly distributed
between 1 and 100,000 seconds and the total access rate
was set to 10.0/second. The results are shown in Fig. 5.
H-Greedy has a slightly higher hit rate than Popularity even
though the curves appear close. The bandwidth differences
among H/B-Greedy, Lifetime, H/B-Optimal, and B-Greedy are
very small compared to the other algorithms. Hence, we

WU AND KSHEMKALYANI: OBJECTIVE-OPTIMAL ALGORITHMS FOR LONG-TERM WEB PREFETCHING 13

Fig. 4. Performance of 106 objects: (a) hit rate and (b) bandwidth.

magnify the differences between B-Greedy and the remain-
ing three algorithms in Fig. 6. The simulation results show
that, as predicted, the Hit Rate-Greedy prefetching achieves
the highest hit rate and Bandwidth-Greedy prefetching results
in the lowest bandwidth usage among all the presented
algorithms. Note that the hit rate increases are comparable
among all the algorithms. However, the bandwidth
requirements for H-Greedy and Popularity are greater by
one to two orders of magnitude than those for the other
algorithms, for most of the range of the number prefetched.
This indicates that H-Greedy and Popularity should be
avoided when seeking to decrease delay without an
unreasonable bandwidth increase, such as when using a
balanced metric like H/B. (Comparing Figs. 4 and 5, the
differences in the on-demand hit rate and bandwidth are
the result of using a different total access rate a (0.01/sec
versus 10.0/sec). The bandwidth when all the objects are
prefetched (right end of the graphs) is not affected by a. See
(8) and (9).)

6.4 Performance Summary

Based on our simulations, the comparative performance

among all the algorithms we studied is summarized in

Table 4. The algorithms are ranked according to their

performances in terms of H, B, and H/B, respectively. A “1”

indicates the best performance among all listed algorithms

and the larger the number, the worse the performance.
Among the eight algorithms listed in Table 4, H-Greedy

(also H-Optimal) attains the highest hit rate, B-Greedy (also

B-Optimal) consumes the least bandwidth, and H/B-Optimal

achieves the highest H/B value in all cases, as expected. H/B-

Greedy performs almost as well as H/B-Optimal for the H/B

metric.
An interesting observation is that, for the various settings

of the total number of objects, when the number of

prefetched objects is small, H/B-Greedy prefetching beats

H/B-Optimal in terms of hit rate; however, when this

number exceeds some value in each case, H/B-Optimal

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 1, JANUARY 2006

TABLE 3
Impact of Varying Access Pattern (Changing �), Lifetime, and Access Rate

Fig. 5. Greedy algorithms: (a) Comparing the hit rate of Hit Rate-Greedy. (b) Comparing the bandwidth of Bandwidth-Greedy.

achieves a higher hit rate than H/B-Greedy prefetching.

Under such behavior, we specify the algorithm that obtains

a higher hit rate on most of the occasions as being a better

algorithm in the table rankings. Hence, we specify H/B-

Optimal as being better than H/B-Greedy for the hit rate

metric. The same rule is used for the other metrics, where

necessary.

7 CONCLUSIONS

This paper surveyed several well-accepted Web prefetching
algorithms—Prefetch by Popularity [17], Prefetch by Lifetime
[13], Prefetch by APL [13], and Good Fetch [20]. It then
proposed a family of algorithms intended to improve the
respective performance metrics under consideration—the
hit rate, the bandwidth, or the H/B ratio. These greedy
algorithms all have linear time complexity and are easy to
implement. H/B-Greedy prefetching achieves significant
improvement of the H/B metric over any existing prefetch-
ing algorithms; Hit Rate-Greedy and Bandwidth-Greedy
prefetching are optimal in terms of Hit Rate and Bandwidth
as objective metrics, respectively.

As H/B-Greedy is not optimal in terms of H/B metric, we
also proposed an expected linear time randomized algo-
rithm H/B-Optimal prefetching that obtains the maximum
H/B ratio given the number of objects to prefetch. Simula-
tions confirmed our hypothesis that H/B-Greedy performs
almost as well as H/B-Optimal. Compared to the H/B-
Optimal prefetching algorithm, H/B-Greedy is easier to
implement and more convenient to adjust to a dynamic
environment where the object characteristics change from
time to time.

Some directions for future work are as follows:

1. For the H/B-Greedy and H/B-Optimal prefetching
algorithms, the simulations showed that, when the
number of prefetched objects is equal to some value
nmax, the H/B metric attains the globally maximum
value. This nmax is helpful in determining how many
objects to prefetch in order to maximize the
efficiency of network resources. It is a challenge to
determine the nmax value for H/B-Greedy and H/B-
Optimal, given the total number of objects.

2. The principles of Web prefetching studied in this
paper have potential applications in the fields of
a) wireless networks where the power control and
bandwidth control are of special importance [3], [4],
[21] and b) P2P networks and networks requiring
dynamic Web access, where the data availability and
load balancing are more important [9], [19], [14]. The
challenge is to adapt and extend the results of this
paper to such networks.

APPENDIX

COMPLEXITY ANALYSIS OF THE

H/B-OPTIMAL ALGORITHM

In the H/B-Optimal algorithm, our adaptation of the function

riðxÞ (19) to deal with preselected items corresponding to

the on-demand hit rate and on-demand bandwidth can be

seen to have OðnÞ time complexity. This adaptation does

not affect the remaining complexity analysis of the Max-

imum Weighted Average solution of Eppstein and Hirsch-

berg [11]. We rephrase and elaborate on the analysis of [11]

for clarity.

Lemma 3. Let n denote the size of S at the beginning of the outer

loop of H/B-Optimal. At the end of that iteration, the

expected number of objects to be removed or combined is at

least 49n=256.

Proof. Sort all objects in S based on their rðA�Þ values in

ascending order. Let the rank of riðA�Þ be p. As object i is

chosen randomly, p is uniformly distributed from 1 to n

(see Fig. 7). We now have six cases.
Case 1. If p falls in area A1, then at least kþ n

32 objects
have their rðA�Þ less than that of object i. After all inner
loops are completed, we would have already determined
at least k objects whose rðA�Þ is less than riðA�Þ. All
objects whose rðA�Þ is determined to be greater than
riðA�Þ can be combined. Considering that there are at
most n=32 objects now in Z, the expected number of
objects that could be combined in this iteration of the
outer loop is at least:

n� 1

2
kþ n

32

� �
þ n� n

32

� �� �� �
� n

32
¼ 1

2
n� k� n

16

� �
:

ð21Þ

WU AND KSHEMKALYANI: OBJECTIVE-OPTIMAL ALGORITHMS FOR LONG-TERM WEB PREFETCHING 15

Fig. 6. Bandwidth for H/B-Greedy, Lifetime, and H/B-Optimal, relative to
that for B-Greedy. (The curves show the difference in bandwidth
between the listed algorithms and B-Greedy.)

TABLE 4
Performance Comparison of Algorithms

in Terms of Various Metrics

A lower value denotes better performance.

Case 2. If p falls in area A2, then at least n� ðk� n
32Þ

objects have a higher rðA�Þ than object i. After all inner
loops are completed, for at most n

32 objects (those in Z),
we do not know the relative rðA�Þ ordering with respect
to object i. Thus, we can determine at least n� k objects
whose rðA�Þ is greater than riðA�Þ, which indicates that
all objects whose rðA�Þ is less than i can be removed. As
at most n

32 objects are in set Z, the number of objects that
can be removed is p� n

32 . As p is uniformly distributed in
range ½1þ n

32 ; k� n
32� 1	, the expected number of objects

that can safely be removed is:

1

2
1þ n

32
� n

32

� �
þ k� n

32
� 1� n

32

� �h i
¼ 1

2
k� n

16

� �
: ð22Þ

Case 3. If p falls within the range ½1; 1þ n
32Þ, then the

number of objects whose rðA�Þ is greater than that of
object i is at least n� n

32 and the number of objects
whose rðA�Þ is less than riðA�Þ is at most n

32. As there are
at most n

32 objects in Z, it is not clear how many objects
can be removed. So, we can only take the worst case: No
objects can be removed.

Case 4. If p falls in the range ðn� n
32 ; n	, then at most n

32
objects have their rðA�Þ greater than object i. jXj cannot
be determined, so, in the worst case, no objects can be
combined.

Case 5. If p falls in the range ½k; kþ n
32Þ, then the

number of objects whose rðA�Þ is less than riðA�Þ is at
least k and the number of objects whose rðA�Þ is greater
than riðA�Þ is at least n� k� n

32 and at most n� k. In this
case, due to the existence of Z, we are unable to know the
fact “at least k objects whose rðA�Þ is less than riðA�Þ”
and, thus, we do not know whether jY j þ jEj � k is true.
So, we cannot combine any objects.

Case 6. If p falls in ½k� n
32 ; kÞ, then the number of

objects whose rðA�Þ is less than riðA�Þ is at least k� n
32

and at most k. The number of objects whose rðA�Þ is
larger than riðA�Þ is at least n� k. However, since there
exists Z whose size is at most n

32, we do not know this
fact: jXj þ jEj < n� k. Thus, we are unable to perform
the removal operation.

Note that only Cases 1 and 2 can result in a reduced
number of objects. For Case 1, the average number of
objects to be combined is 1

2 ðn� k� n
16Þ and the prob-

ability of occurrence is ðn� k� n
16Þ=n. For Case 2, the

average number of objects to be removed is 1
2 ðk� n

16Þ and
the probability of occurrence is ðk� n

16Þ=n. Thus, the
expected reduction in the number of objects is:

1

2
n� k� n

16

� �
n� k� n

16

� �
=nþ 1

2
k� n

16

� �
k� n

16

� �
=n

¼ 1

2n
n� k� n

16

� �2
þ k� n

16

� �2
� �

:

ð23Þ

This is minimized (worst case) when k ¼ n
2 and, in the

worst case, computes to 49
256n. tu

Lemma 4. Let n denote the size of S at the beginning of the outer

loop of H/B-Optimal. In a single iteration of the outer loop,

the expected time complexity is OðnÞ.
Proof. The for-loop (lines 11-17) takes n time. As the exit

condition for the inner loop is set to jZj � n
32 , the inner

loop can be iterated at most five times within an outer

loop. Initially, let jZj ¼ n.
Note that the call to medianði; ZÞ (line 20) takes time

OðjZjÞ, the call to FðA;S; kÞ (line 21) takes time OðnÞ. In
addition, the call to compareði; j; left; rightÞ (line 30)
takes constant time, so the for-loop (lines 29-33) takes
OðjZjÞ time. The “removing” or “combining” operations
(lines 35-43) take time proportional to the number of
objects removed or combined, which is expected to be
Oð49n=256Þ.

To summarize, a single iteration of the inner loop
takes time OðnÞ and so do five iterations. The total time
for an outer loop is thus OðnÞ. tu

From Lemmas 3 and 4, we can derive the recurrence

relation of the expected time complexity for H/B-Optimal:

T ðnÞ ¼ OðnÞ þ T 207

256
n

� �
: ð24Þ

In this equation, OðnÞ is the expected operation time

within one iteration of the outer loop and the expected

number of objects left in S decreases to 207
256n after an outer

loop iteration. This resolves to a linear expected time

complexity.

ACKNOWLEDGMENTS

An earlier version of these results appeared as “Objective-
Greedy Algorithms for Long-Term Web Prefetching” in the
Proceedings of the IEEE Network Computing and Applications
Conference (NCA), pages 61-68, 2004.

REFERENCES

[1] A. Bestavros, C.R. Cunha, and M.E. Crovella, “Characteristics of
WWW Client-Based Traces,” technical report, Boston Univ., July
1995.

[2] L. Breslau, P. Cao, L. Fan, G. Philips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE Infocom, pp. 126-134, 1999.

[3] G. Cao, L. Yin, and C.R. Das, “Cooperative Cache-Based Data
Access in Ad Hoc Networks,” Computer, vol. 37, no. 2, pp. 32-39,
Feb. 2004.

[4] G. Cao, “Proactive Power-Aware Cache Management for Mobile
Computing Systems,” IEEE Trans. Computers, vol. 51, no. 6,
pp. 608-621, June 2002.

[5] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching
Algorithms,” Proc. USENIX Symp. Internet Technologies and
Systems, pp. 193-206, 1997.

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 1, JANUARY 2006

Fig. 7. The ranking of objects in S in terms of their rðA�Þ values.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, “Selection in
Expected Linear Time,” Introduction to Algorithms, second ed.,
pp. 185-189, 2001.

[7] M.E. Crovella and A. Bestavros, “Self-Similarity in World Wide
Web Traffic: Evidence and Possible Causes,” IEEE/ACM Trans.
Networking, vol. 5, no. 6, pp. 835-846, 1997.

[8] M. Crovella and P. Barford, “The Network Effects of Prefetching,”
Proc. IEEE Infocom, pp. 1232-1239, 1998.

[9] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P.J.
Shenoy, “Adaptive Push-Pull: Disseminating Dynamic Web
Data,” Proc. WWW Conf. 2001, pp. 265-274, 2001.

[10] F. Douglis, A. Feldmann, B. Krishnamurthy, and J.C. Mogul, “Rate
of Change and Other Metrics: A Live Study of the World Wide
Web,” Proc. USENIX Symp. Internet Technologies and Systems,
pp. 147-158, 1997.

[11] D. Eppstein and D.S. Hirschberg, “Choosing Subsets with
Maximum Weighted Average,” J. Algorithms, vol. 24, no. 1,
pp. 177-193, 1997.

[12] S. Glassman, “A Caching Relay for the World Wide Web,”
Computer Networks & ISDN Systems, vol. 27, no. 2, pp. 165-173,
1994.

[13] Y. Jiang, M.Y. Wu, and W. Shu, “Web Prefetching: Cost, Benefits
and Performance,” Proc. 11th World Wide Web Conf. (WWW), 2002.

[14] R. Kokku, P. Yalagandula, A. Venkataramani, and M. Dahlin,
“NPS: A Non-Interfering Deployable Web Prefetching System,”
Proc. USENIX Symp. Internet Technologies and Systems, 2003.

[15] T.M. Kroeger, D.E. Long, and J. Mogul, “Exploring the Bounds of
Web Latency Reduction from Caching and Prefetching,” Proc.
USENIX Symp. Internet Technologies and Systems, pp. 13-22, 1997.

[16] C. Liu and P. Cao, “Maintaining Strong Cache Consistency in the
World-Wide Web,” Proc. IEEE Int’l Conf. Distributed Computing
Systems, pp. 12-21, 1997.

[17] E.P. Markatos and C.E. Chironaki, “A Top 10 Approach for
Prefetching the Web,” Proc. INET ’98: Internet Global Summit, July
1998.

[18] N. Nishikawa, T. Hosokawa, Y. Mori, K. Yoshidab, and H. Tsujia,
“Memory Based Architecture with Distributed WWW Caching
Proxy,” Computer Networks, vol. 30, nos. 1-7, pp. 205-214, 1998.

[19] S. Shah, K. Ramamritham, and P.J. Shenoy, “Resilient and
Coherence Preserving Dissemination of Dynamic Data Using
Cooperating Peers,” IEEE Trans. Knowledge and Data Eng., vol. 16,
no. 7, pp. 799-812, July 2004.

[20] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M.
Dahlin, “The Potential Costs and Benefits of Long-Term Prefetch-
ing,” Computer Comm., vol. 25, no. 4, pp. 367-375, 2002.

[21] L. Yin, G. Cao, C. Das, and A. Ashraf, “Power-Aware Prefetch in
Mobile Environments,” Proc. IEEE Int’l Conf. Distributed Computing
Systems, pp. 571-578, 2002.

Bin Wu received the BS and MS degrees from
the Department of Energy Engineering at Zhe-
jiang University, China, in 1992 and 1995,
respectively. He received the MS degree in
computer science from the University of Illinois
at Chicago in 2002. He is now working toward
the PhD degree in computer science at the
University of Illinois at Chicago. His research
intersts include distributed computing, peer-to-
peer networks, networks protocols and algo-

rithms, and Web-based healthcare systems.

Ajay D. Kshemkalyani received the PhD
degree in computer and information science
from The Ohio State University in 1991 and the
BTech degree in computer science and engi-
neering from the Indian Institute of Technology,
Bombay, in 1987. His research interests are in
computer networks, distributed computing, algo-
rithms, and concurrent systems. He has been an
associate professor at the University of Illinois at
Chicago since 2000, before which he spent

several years at IBM Research Triangle Park working on various
aspects of computer networks. He is a member of the ACM and a senior
member of the IEEE. In 1999, he received the US National Science
Foundation’s CAREER Award. He is currently on the editorial board of
the Elsevier journal, Computer Networks.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WU AND KSHEMKALYANI: OBJECTIVE-OPTIMAL ALGORITHMS FOR LONG-TERM WEB PREFETCHING 17

