Temporal Predicate Detection Using Synchronized Clocks

Ajay D. Kshemkalyani, Senior Member, IEEE

Abstract

Advances in clock synchronization techniques allow an approximated global time in ubiquitous environments. This paper presents an event streambased online algorithm that fuses the data reported from the processors in such a network to detect time-based predicates. The algorithm has low space, time, and message complexities. The paper also considers the detection of simultaneous events as a special case.

Index Terms-Event streams, sensor networks, ad hoc networks, data fusion, time, synchronized clocks, intervals.

1 Introduction

ADVANCES in wireless communication and sensor and actuator technologies have given rise to ubiquitous systems, e.g., ad hoc networks and sensor networks [1], [25]. Here, numerous small devices operate collectively and form a dynamic ambient network that connects each device to more powerful networks and processing resources. Monitoring events in such resource-constrained environments is a challenge. Event-based data streams represent relevant state changes at the processes that are monitored [10], [15], [20]. This paper gives an online algorithm to detect predicates defined on the relative occurrence of events from event streams that are reported by the various components.
Examples. Consider a study of wildlife habitat that monitors the activity of different animal and bird species at a watering hole or at a river. The study is interested in inferring relationships such as: (tigers drink before deer) or (tigers drinking overlaps with lions drinking) or (elephants and storks drink concurrently). The period for which a sensor senses a particular species visiting the watering hole is an interval of interest at that sensor. Such intervals from different sensors, reporting data about various species, are reported in data streams to a central processor. At this processor, the data from the interval streams is fused to detect the predicates of interest.

As another example, consider a secure banking application, where entry into the bank vault is possible only by a set S of two or more simultaneous biometric passwords for authentication. Here, the authorized people concerned must simultaneously and remotely present their passwords to gain entry to the vault. Here, the predicate for success is (S_{1} and S_{2} and $\ldots S_{n}$) simultaneously. When a biometric password is applied at sensor i, the corresponding time interval gets reported to a central monitoring process, which fuses similar interval information it receives from the other biometric sensors. The combined information from all of the sensors is fused to detect the predicate for successful access to the bank vault.

A formal model specification and problem definition are given in Section 2. Section 3 describes the related work. Section 4 gives

- The author is with the Department of Computer Science (MC 152), 851 South Morgan Street, University of Illinois at Chicago, Chicago, IL 606077053. E-mail: ajayk@cs.uic.edu.

Manuscript received 20 July 2006; revised 23 Jan. 2007; accepted 15 May 2007; published online 11 June 2007.
Recommended for acceptance by L. Schwiebert.
For information on obtaining reprints of this article, please send e-mail to: tc@computer.org, and reference IEEECS Log Number TC-0281-0706. Digital Object Identifier no. 10.1109/TC.2007.70749.
the processing at the sensors/processes. Sections 5 and 6 give two algorithms to detect predicates defined on the relative occurrence of events. Section 7 gives the algorithm to detect simultaneous events by deriving it from the predicate detection algorithms. Section 8 presents a discussion.

2 System Model and Problem Definition

The process execution model is as follows: E_{i} is the linearly ordered set of discrete events executed by process P_{i} in an execution. Variable x local to process P_{i} is denoted as x_{i}. The control program at P_{i} monitors a "local predicate."

Definition 1. A local predicate ϕ_{i} at P_{i} is any predicate defined on variables local to process P_{i} and that can be evaluated by P_{i}.

In general, the local predicate can include references to physical time as well as temporal logic operators, as long as the predicate can be locally evaluated. The monitoring program at each process tracks the local time intervals of interest, which are the durations during which the local predicate is true. Such an interval at process P_{i} is identified by the (totally ordered) corresponding adjacent events within E_{i} for which the local predicate is true. Intervals are denoted by capitals X, Y, and Z. Fig. 1a shows processes $P_{1} \ldots P_{n}$. Fig. 1b is a timing diagram that shows the intervals during which the local predicates are true.

Event streams from the processes report intervals in which the local predicates are true to a central data fusion server P_{0} (see Fig. 1a). Information about the reported intervals is "fused" and examined to detect global states of the execution that satisfy a given global predicate. In this paper, we consider global predicates that are defined on the relative timing occurrences of intervals across different processes. Furthermore, the global predicate must be expressible in conjunctive form, i.e., $\phi=\bigwedge_{i}^{t} \phi_{i}$, which is thus a conjunct over the local predicates ϕ_{i}, and timing relationships are included in the conjunction operation Λ^{t}. The following examples are different formulations of a predicate to detect an explosion:

- (temp $i_{i}>80^{\circ} \mathrm{C}$ and audio $_{i}>45$ decibels) AFTER (lumens ${ }_{j}>1000 L$). This predicate denotes an explosion at P_{j} of a certain intensity that is also detected by P_{i} some distance away. The light is seen at explosion location j, while the corresponding noise and temperature increases are experienced some time later at a location i.
- There is an instant at which $\left(t e m p_{i}>120^{\circ} \mathrm{C}\right)$ SIMULTANEOUSLY (audio $_{j}>50$ decibels). This is a simplified form of the above predicate, specified using only the temperature and noise parameters at two different locations.
Clocks in sensor networks, ad hoc networks, and wireless networks [24]-when synchronized via GPS [16], NTP [19], or any of the many efficient synchronization protocols for wired as well as wireless media, such as those surveyed in [5], [7], [8], [21], [23]allow the assumption about an approximate single global time axis. With synchronized clocks, a distributed execution can be modeled as the interleaving of all the local executions E_{i} on a common time axis. This simplifies the detection of a global state [4] in the ubiquitous environment, which is essentially a distributed asynchronous message-passing system. A global state is defined to contain one local state of each process. Using a common time axis, a global state can be specified 1) as occurring at the same time instant at each process or 2) in terms of specific relationships among the local states (one local state from each process).

For a single time axis, it has been shown [2], [9] that there are 13 ways in which two time intervals can be related to one another on that time axis. For intervals X and Y, the 13 relations are illustrated in Fig. 2. The set of these 13 relations is denoted \Re. There are six pairs of inverses as shown and equals is its own inverse.

Fig. 1. Organization of the network. (a) $P_{1}, \ldots P_{n}$ are processes and P_{0} is the data fusion server. (b) Timing diagram for a computer network (no sensing). (c) A sensor network showing processes $P_{1}-P_{4}$ at sensors $S_{1}-S_{4}$, respectively, sensing locations $L_{1}-L_{4}$. (d) Timing diagram for intervals at locations $L_{1}-L_{4}$, as modeled by processes $P_{1}-P_{4}$ in the sensor network.

Problem Definitions. In this paper, the event streams generated by processes $P_{1}, \ldots P_{n}$ need to be fused at the central server P_{0} to solve the following global predicate detection problem [3], [13].

Problem Predicate_Rel. Given a relation $r_{i, j}$ from \Re for each pair of processes P_{i} and P_{j}, identify in an online manner the earliest intervals (if they exist), one from each process, such that each relation $r_{i, j}$ is satisfied for the (P_{i}, P_{j}) pair.
Example specification. We assume that intervals X_{i}, Y_{j}, and Z_{k} occur at different locations P_{i}, P_{j}, and P_{k}, respectively, but global time is available in the system at all sites. Two example specifications of predicates are:

1. (X_{i} precedes Y_{j}) AND (X_{i} overlaps Z_{k}) AND $\left(Y_{j}\right.$ finishes Z_{k}).
2. (X_{i} overlaps Y_{j}) AND (Y_{j} contains Z_{k}) AND (Z_{k} met by X_{i}).
The problem in each case is to identify the global state in a distributed execution when the predicate is true. Example solutions are illustrated in Fig. 3.
Problem Predicate_Rel restricts the input to a single relationship $r_{i, j}$ for process pair $\left(P_{i}, P_{j}\right)$. Problem Predicate_Rel ${ }^{*}$ allows $r_{i, j}^{*}$ to be a subset of \Re and a solution can satisfy any of the relations in $r_{i, j}^{*}$ for the $\left(P_{i}, P_{j}\right)$ pair.

Problem Predicate_Rel ${ }^{*}$. Given a set of relations $r_{i, j}^{*} \subseteq \Re$ for each pair of processes P_{i} and P_{j}, determine online the earliest

Fig. 2. The 13 relations \Re between intervals [2], [9].
intervals, if they exist, one from each process, such that any one of the relations in $r_{i, j}^{*}$ is satisfied (by the intervals) for each $\left(P_{i}, P_{j}\right)$ pair. If a solution exists, identify the relationship from \Re for each pair of intervals in the solution.
Example specification. Assume that intervals X_{i}, Y_{j}, and Z_{k} occur at different locations P_{i}, P_{j}, and P_{k}, respectively. Let $r_{i, j}^{*}=\{p, m, q\}, r_{i, k}^{*}=\{o, c\}, r_{j, k}^{*}=\{f, o b\}$. The set of intervals in Fig. 3a satisfies this specification, but there may be other mutual placements of the intervals that can also satisfy this specification.
To illustrate an application of Predicate_Rel ${ }^{*}$, the paper derives a solution to the basic task of detecting the simultaneous occurrence of each local predicate ϕ_{i} (at all i).

Problem Simultaneous. Identify the earliest set of intervals $\mathcal{I}=$ $\left\{I_{1}, I_{2}, \ldots I_{n}\right\}$ (if such a set exists), where I_{i} is from process P_{i} and ϕ_{i} is true in I_{i} such that there is some instant of time that belongs within all of these intervals.

3 Related Work

To our knowledge, the existing approaches on event aggregation (e.g., [10], [15], [17], [20], [22]), cannot detect distributed predicates that are defined on the relative timing occurrences of intervals of interest across different processes. The problems Predicate_Rel and Predicate_Rel ${ }^{*}$ [3] were defined earlier to detect predicates in distributed executions, using logical time-based [14] causality relationships defined in [12], [13]. As distributed executions encounter uncertain message propagation times and uncertain CPU scheduling delays, different executions of the same distributed program lead to different interleavings of the events. To analyze the causality relationships among the events across different processes, vector clock-based ${ }^{1}$ logical time [6] was necessary [3] to solve Predicate_Rel and Predicate_Rel*. In contrast, the objective of this paper is to capture relative time dependencies among intervals at different processes. Hence, vector clocks are redundant. To appreciate the differences, consider these architectures:

- Computer network. Each location $L_{i}(1 \leq i \leq n)$ has a device/processor and a control program that monitors variables that are defined and used within the code. The activity of the device/processor is modeled as the activity

1. Each process stores a vector $V T$ of size n. The j th entry of the vector at process i tracks the local time of j as known to i. Vector clocks have the property that, for events e and $f, V T(e)<V T(f)$ if and only if $e \longrightarrow f$, where \longrightarrow denotes Lamport's causality relation [14].

Fig. 3. Example problem specifications. The intervals X_{i}, Y_{j}, and Z_{k} are at different processes.
of a process P_{i}. A timing diagram showing the intervals at each process P_{i}, when ϕ_{i} is true, is given in Fig. 1b.

Causal relations among the events can be captured because the monitored variables used in the relations are internal to the process/device. Relations based on relative or absolute timing occurrences can also be detected if (physical) clocks are synchronized.

- Sensor network. Sensors $S_{1}, S_{2}, \ldots S_{n}$ at locations $L_{1}, L_{2}, \ldots L_{n}$, respectively, sense physical parameters of interest (e.g., temperature, pressure, humidity, and chemical concentrations) at those locations. The sensor S_{i} models the activity of location L_{i} as a process P_{i}, appropriately timestamping relevant events within the process. A timing diagram for four sensors $S_{1}-S_{4}$, shown in Fig. 1c, is given in Fig. 1d.

Causality relations among the events in the environment at $L_{1} \ldots L_{n}$ cannot be captured because there is no mechanism for the processes $P_{1} \ldots P_{n}$ in the sensors S_{1} to S_{n} to model or capture causal relations in the environment external to themselves. Thus, an algorithm based on logical vector time cannot sense causality-based predicates in the environment, external to the computer network, because the communication within the environment has no mechanism to represent causal relations [3].
For both of the architectures, we assume a loosely coupled ad hoc asynchronous message-passing system in which any two processes belonging to the process set $N=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ can communicate over logical channels. Each process sends its gathered data eventually and asynchronously (via any routes) in a FIFO stream to a data fusion server P_{0} [10], [15], [20] (see Fig. 1a). Note that the network may be wired or wireless. The following gives the differences from [3]:

1. In [3], causality-based predicates were specified. The solution to Predicate_Rel and Predicate_Rel ${ }^{*}$ used vector time (i.e., no single time axis) for the computer network architecture. Scalar (logical or physical) time, even with synchronized clocks, is inadequate because it cannot capture causal dependencies in the distributed program.

In this paper, we adapt the approach of [3] to solve Predicate_Rel and Predicate_Rel ${ }^{*}$ for predicates specified using relative timing constraints (i.e., not causality constraints) on a single time scale for the computer network architecture.
2. Our solution also solves Predicate_Rel and Predicate_Rel* in the sensor network architecture when predicates are specified using relative timing constraints (i.e., not causality constraints) on a single time scale. Note that the use of logical vector clocks does not help to solve Predicate_Rel and Predicate_Rel* in the sensor network architecture when predicates are specified using causality relationships.
3. In [3], the set \Re had 40 orthogonal causality-based relations. For the predicates specified using relative timing constraints on a single time axis, this paper considers \Re containing 13 orthogonal relations. The structure of the algorithm is similar to [3]. However, there is no known mapping between the 40 orthogonal relations of [3] and the 13 orthogonal relations used here. Hence, the details have to be worked out from scratch.
The relationship of our results to the results of [3] is summarized in Table 1. In addition, this paper formulates and solves problem Simultaneous.

4 Processing at the Sensors/Processes

An interval at P_{i} begins when the local predicate ϕ_{i} becomes true and ends when ϕ_{i} becomes false. We assume the physical clock has infinitely fine granularity so each (event-triggered) state transition at a process occurs at a distinct tick (local discreteness). There are two consequences of local discreteness and the model for intervals. 1) An interval has a nonzero duration, implying that point intervals are not allowed. 2) An interval can begin at P_{i} only after the previous interval at P_{i} ends (see Fig. 1b)-termed the local interval separation property.

Processes $P_{1}, P_{2}, \ldots, P_{n}$ track the start and end timestamps of their local intervals, using the synchronized clocks. t_{i}^{-}and t_{i}^{+} denote the timestamps at process P_{i} at the start and at the end of an interval, respectively. Each process $P_{i}(1 \leq i \leq n)$ maintains the data structure $\log _{i}$, shown in Fig. 4. $\log _{i}$ is constructed and sent to P_{0} asynchronously over a logical FIFO channel when an interval completes. P_{0} then uses the Logs reported to determine the relationship between interval pairs (see Section 5). The maximum number of intervals at any process is assumed to be p.

Complexity. Each Log at a process $P_{i}, 1 \leq i \leq n$, takes two integers space. As one log message is sent per interval, the number of messages is p for each $P_{i}(i \neq 0)$. This gives a total number of messages as $n p$. The total message space overhead for any process is $2 p$. Hence, the total message space complexity is $2 n p$.

5 ALgorithm Predicate_Rel

The central data fusion server P_{0} maintains n queues, $Q_{1}, Q_{2}, \ldots, Q_{n}$ for Logs from each of the processes. The server runs algorithm Predicate_Rel [3] to process the interval information it receives in the queues. The algorithm detects a set of intervals, one on each process, such that each pair of intervals satisfies the relationship specified for that pair of processes. If no such set of intervals exists, the algorithm does not return any interval set. If there exists an interval record at the head of each queue and these interval records cannot be pruned, ${ }^{2}$ then these intervals satisfy $r_{i, j} \forall i, j$, where $i \neq j$ and $1 \leq i, j \leq n$. Hence, these intervals form a solution set.

Assume that interval X occurs at P_{i} and interval Y occurs at P_{j}. For any two intervals X and X^{\prime} that occur at the same process, if precedes $\left(X, X^{\prime}\right)$, then X is a predecessor of X^{\prime} and X^{\prime} is a successor of X. We use variants of the prohibition function $\mathcal{H}\left(r_{i, j}\right)$, the allows relation \mapsto, and the lemmas given in [3] to show the design of the algorithm. Although the algorithm Predicate_Rel is the same [3], there is no known mapping of the 40 relations in [3] to the 13 relations used here. Hence, the results for the different set \Re need to be developed independently from scratch-the domain and codomain of \mathcal{H}, as well as the set \Re, using which allows is defined, are different. Thus, the new prohibition function and allows relation are devised from scratch.
2. Henceforth, a reference to an interval will be to the record of the interval, depending on context.

TABLE 1
Objectives of This Paper Compared with Related Problem Specifications

Network architecture	Detect predicates on the relative occurrence of intervals using synchronized (scalar) clocks	Detect predicates on the relative occurrence of intervals, based on causality, captured by logical vector time
Computer network	this paper	solved in [3]
Sensor network	this paper	not solved

Definition 2. Prohibition function $\mathcal{H}: \Re \rightarrow 2^{\Re}$ is defined to be

$$
\begin{aligned}
\mathcal{H}\left(r_{i, j}\right)= & \left\{R \in \Re \mid \text { if } R(X, Y) \text { is true then } r_{i, j}\left(X, Y^{\prime}\right)\right. \text { is false } \\
& \text { for all } \left.Y^{\prime} \text { that succeed } Y\right\} .
\end{aligned}
$$

Definition 3. The "allows" relation \mapsto on $\Re \times \Re$ is such that $R^{\prime} \mapsto R^{\prime \prime}$ if the following holds: If $R^{\prime}(X, Y)$ is true, then $R^{\prime \prime}\left(X, Y^{\prime}\right)$ can be true for some Y^{\prime} that succeeds Y.

Examples (refer to Fig. 2). Assume Y^{\prime} succeeds Y.

1. $c \mapsto o$ because, if $c(X, Y)$ is true, then $o\left(X, Y^{\prime}\right)$ may also be true.
2. $\quad m^{-1} \mapsto f^{-1}$ because, if $m^{-1}(X, Y)$ is true, then $f b\left(X, Y^{\prime}\right)$ may also be true.

Lemma 1. If $R \in \mathcal{H}\left(r_{i, j}\right)$, then $R \nvdash r_{i, j}$ else if $R \notin \mathcal{H}\left(r_{i, j}\right)$, then $R \mapsto r_{i, j}$.

Table 2 gives $\mathcal{H}\left(r_{i, j}\right)$ for the 13 relations in \Re. It is constructed by analyzing each relation pair.
Example. The third row of Table 2 gives $\mathcal{H}\left(r_{i, j}\right)$ for the relations o and $o b$.

- In column two, $\mathcal{H}\left(o_{i, j}\left(X_{i}, Y_{j}\right)\right)=\{p, m, o, s, f, f b, c b, q\}$. Hence, $p\left(X_{i}, Y_{j}\right)$ or $m\left(X_{i}, Y_{j}\right)$ or $o\left(X_{i}, Y_{j}\right)$ or $s\left(X_{i}, Y_{j}\right)$ or $f\left(X_{i}, Y_{j}\right)$ or $f b\left(X_{i}, Y_{j}\right)$ or $c b\left(X_{i}, Y_{j}\right)$ or $q\left(X_{i}, Y_{j}\right)$ implies that $o\left(X_{i}, Y_{j}^{\prime}\right)$ can never hold for any successor Y_{j}^{\prime} of Y_{j}.
- In column three,

$$
\mathcal{H}\left(o b_{j, i}\left(Y_{j}, X_{i}\right)\right)=\{p, m, m b, o, o b, s, s b, f, f b, c, c b, q\} .
$$

Hence, $p\left(Y_{j}, X_{i}\right)$ or $m\left(Y_{j}, X_{i}\right)$ or $m b\left(Y_{j}, X_{i}\right)$ or $o\left(Y_{j}, X_{i}\right)$ or $o b\left(Y_{j}, X_{i}\right)$ or $s\left(Y_{j}, X_{i}\right)$ or $s b\left(Y_{j}, X_{i}\right)$ or $f\left(Y_{j}, X_{i}\right)$ or $f b\left(Y_{j}, X_{i}\right)$ or $c\left(Y_{j}, X_{i}\right)$ or $c b\left(Y_{j}, X_{i}\right)$ or $q\left(Y_{j}, X_{i}\right)$ implies that $o b\left(Y_{j}, X_{i}^{\prime}\right)$ can never hold for any successor X_{i}^{\prime} of X_{i}.
As per Theorem 1, if R^{\prime} allows $R^{\prime \prime}, R^{\prime-1}$ does not allow $R^{\prime \prime-1}$.
Theorem 1. For $R^{\prime}, R^{\prime \prime} \in \Re$ and $R^{\prime} \neq R^{\prime \prime}$, if $R^{\prime} \mapsto R^{\prime \prime}$, then $R^{\prime-1} \nLeftarrow R^{\prime \prime-1}$.

The theorem can be observed to be true from Lemma 1 and Table 2 by using a case-by-case analysis. Table 3 shows the grid of the \mapsto relation for this analysis. A " 1 " indicates that the relation in the row header allows the relation in the column header. The relation is transitive and the transitive dependencies are shown in Fig. 5. Alternately, this analysis is easier by using the following form of Theorem 1: "For $R^{\prime} \neq R^{\prime \prime}$, if $R^{\prime} \notin \mathcal{H}\left(R^{\prime \prime}\right)$, then $R^{\prime-1} \in \mathcal{H}\left(R^{\prime \prime 1}\right)$."

```
type Log = record
    start : integer;
    end: integer;
end
Start of an interval:
    Log}.,start = ti - 
End of an interval:
    Logi.end = ti
    Send Logi to central process P}\mp@subsup{P}{0}{
```


Examples.

1. $\quad c \mapsto o \Rightarrow c^{-1} \mapsto o^{-1}$, which can be seen to be true.
2. $\quad m^{-1} \mapsto f^{-1} \Rightarrow m \nvdash f$, which can be seen to be true.

Note $R^{\prime} \neq R^{\prime \prime}$ in Theorem 1; otherwise, $R^{\prime} \mapsto R^{\prime}$ holds as for $p, p b$, and c, leading to $R^{\prime-1} \nvdash R^{\prime-1}$, a contradiction.
Lemma 2. If the relationship $R(X, Y)$ between intervals X at P_{i} and Y at P_{j} is contained in the set $\mathcal{H}\left(r_{i, j}\right)$ and $R \neq r_{i, j}$, then X can be removed from the queue Q_{i}.
Lemma 3. If the relationship between a pair of intervals X at P_{i} and Y at P_{j} is not equal to $r_{i, j}$, then either X or Y is removed from the queue.

Lemma 3 guarantees progress; when two intervals are checked, if the desired relationship is not satisfied, at least one of them can be discarded.
Example. We want to detect X and Y, where $r_{i, j}(X, Y)=f b$. If $R(X, Y)=o$, we have that $o \nvdash f b$; hence, $o(X, Y)$ will not allow $f b\left(X, Y^{\prime}\right)$ to be true for any Y^{\prime}. Hence, the record of X must be deleted. Further, $o b \nVdash f$ and, hence, $o b(Y, X)$ will not allow $f\left(Y, X^{\prime}\right)$ to be true for any X^{\prime}. Hence, the record of Y must also be deleted.
Theorem 2. Problem Predicate_Rel is solved by the algorithm in Fig. 6.
Theorem 3. The algorithm in Fig. 6 has the following complexities:

1. The total message space complexity is $2 n p$ (proven in Section 4).
2. The total space complexity at process P_{0} is $2 n p$ (follows from (1)).
3. The time complexity at P_{0} is $O\left(p n^{2}\right)$.

Proof. The time complexity is the product of the number of steps needed to determine a relationship $(O(1)$ follows trivially from Fig. 2) and the number of relations determined. For each interval considered from one of the queues in updated $Q s$ (lines 6-12), the number of relations determined is $n-1$. Thus, the number of relations determined for each iteration of the while loop is $(n-1) \mid$ updated $Q s \mid$. But, $\sum \mid$ updated $Q s \mid$ over all iterations of the while loop is less than the total number of intervals over all of the queues. Thus, the total number of relations determined is less than $(n-1) \cdot x$, where $x=p n$ is the upper bound on the total number of intervals over all the queues. As the time required to determine a relationship is $O(1)$, the time complexity is $O\left(n^{2} p\right)$.

The performance of the algorithm is given in Table 4.

6 A More General Class of Timing Predicates

In Predicate_Rel*, for each pair of processes $\left(P_{i}, P_{j}\right)$, there is a set $r_{i, j}^{*} \subseteq \Re$ such that some relation in $r_{i, j}^{*}$ must hold. To solve Predicate_Rel ${ }^{*}$, given an arbitrary $r_{i, j}^{*}$, a solution based on algorithm Predicate_Rel will not work because, in the crucial tests in lines 13-14, neither interval may be removable and yet none of the relations from $r_{i, j}^{*}$ might hold between the two intervals.

TABLE 2
Prohibition Functions $\mathcal{H}\left(r_{i, j}\right)$ for the 13 Relations $r_{i, j}$ in \Re

Relation r	$\mathcal{H}\left(r_{i, j}\left(X_{i}, Y_{j}\right)\right)$	$\mathcal{H}\left(r_{j, i}\left(Y_{j}, X_{i}\right)\right)$
$p=p b^{-1}$	\emptyset	$\{p, m, m b, o, o b, s, s b, f, f b, c, c b, q\}$
$m=m b^{-1}$	$\{p, m, o, s, f, f b, c b, q\}$	$\{p, m, m b, o, o b, s, s b, f, f b, c, c b, q\}$
$o=o b^{-1}$	$\{p, m, o, s, f, f b, c b, q\}$	$\{p, m, m b, o, o b, s, s b, f, f b, c, c b, q\}$
$s=s b^{-1}$	$\{p, m, m b, o, o b, s, s b, f, f b, c, c b, q\}$	$\{p, m, m b, o, o b, s, s b, f, f b, c, c b, q\}$
$f=f b^{-1}$	$\{p, m, m b, o, o b, s, s b, f, f b, c, c b, q\}$	$\{p, m, o, s, f, f b, c b, q\}$
$c=c b^{-1}$	$\{p, m, o, s, f, f b, c b, q\}$	$\{p, m, m b, o, o b, s, s b, f, f b, c, c b, q\}$
$q=q^{-1}$	$\{p, m, m b, o, o b, s, s b, f, f b, c, c b, q\}$	$\{p, m, m b, o, o b, s, s b, f, f b, c, c b, q\}$

p is "precedes," m is "meets," o is "overlaps," s is "starts," f is "finishes," c is "contains," and q is "equals."

Example. Let $r_{i, j}^{*}=\{p b, o\}$ and let the intervals under consideration at P_{i} and P_{j} be X and Y such that $c(X, Y)$ and, hence, $c b(Y, X)$ holds. This is illustrated in Fig. 7.

- $\quad c \in \mathcal{H}(p b), c b \notin \mathcal{H}(p)$. Even though X will not form a part of a solution satisfying relation $p b$ with any future Y^{\prime}, Y can form a solution satisfying relation p with any future X^{\prime}, i.e., $p\left(Y, X^{\prime}\right)$ may be true. So, the record of Y must be retained in Q_{j}.
- $\quad c \notin \mathcal{H}(o), c b \in \mathcal{H}(o b)$. Even though Y will not form a part of a solution satisfying relations $o b$ with any future X^{\prime}, X can form a solution satisfying relation o with any future Y^{\prime}, i.e., $o\left(X, Y^{\prime}\right)$ may be true. So, the record of X must be retained in Q_{i}.
The records of neither X nor Y can be deleted from Q_{i} or Q_{j}, respectively.
To avoid tracking multiple intervals in each queue and examining the exponential number of global states (up to p^{n}), we assume the CONVEXITY property [3] on $r_{i, j}^{*}$.

Definition 4.

CONVEXITY:
$\forall R \notin r_{i, j}^{*}:\left(\forall r_{i, j} \in r_{i, j}^{*}, R \in \mathcal{H}\left(r_{i, j}\right) \bigvee \forall r_{j, i} \in r_{j, i}^{*}, R^{-1} \in \mathcal{H}\left(r_{j, i}\right)\right)$.
By this property, there is no relation R outside $r_{i, j}^{*}$ such that, for any $r 1, r 2 \in r_{i, j}^{*}, R \mapsto r 1$ and $R^{-1} \mapsto r 2^{-1}$. It guarantees that either X or Y or both get deleted if $R(X, Y) \notin r_{i, j}^{*}$ and, hence, there is no explosion of global states. The following results [3] are used.
Lemma 4. If the relation $R(X, Y)$ between intervals X and Y (at processes P_{i} and P_{j}, respectively) is contained in the set $\bigcap_{r_{i, j} \in r_{i, j}^{*}} \mathcal{H}\left(r_{i, j}\right)$, then interval X can be removed from the queue Q_{i}.
Lemma 5. If the relation $R(X, Y)$ between a pair of intervals X and Y (at processes P_{i} and P_{j}, respectively) does not belong to the set $r_{i, j}^{*}$,

TABLE 3
The "allows" Relation \mapsto on $\Re \times \Re$, in Matrix Form, to Verify Theorem 1

\mapsto	p	$p b$	m	$m b$	o	$o b$	s	$s b$	f	$f b$	c	$c b$	q
p	1												
$p b$	1	1	1	1	1	1	1	1	1	1	1	1	1
m	1		1		1					1	1		
$m b$	1		1		1								
o	1		1		1				1	1			
$o b$	1		1						1	1			
s	1		1		1				1	1			
$s b$	1		1										
f	1								1	1			
$f b$	1		1		1								
c	1		1										
$c b$	1												
q	1												

where $r_{i, j}^{*}$ satisfies CONVEXITY, then either interval X or interval Y is removed from the queue.

Theorem 4. If the set $r_{i, j}^{*}$ satisfies CONVEXITY, then Problem Predicate_Rel ${ }^{*}$ is solved by replacing lines 13 and 15 in algorithm Predicate_Rel in Fig. 6 by lines 13 and 15 in Fig. 8.

The only changes to Algorithm Predicate_Rel are in lines 13 and 15. In Algorithm Predicate_Rel ${ }^{*}, R(X, Y)$ is checked for membership in $\bigcap_{r_{i, j} \in r_{i, j}^{*}} \mathcal{H}\left(r_{i, j}\right)$ in line 13, instead of membership in $\mathcal{H}\left(r_{i, j}\right)$. Both $\mathcal{H}\left(r_{i, j}\right)$ and $\bigcap_{r_{i, j} \in r_{i, j}^{*}} \mathcal{H}\left(r_{i, j}\right)$ are sets of size between 0 and $|\Re|=13$. A similar observation holds for the change on line 15. This gives Corollary 1.
Corollary 1. The time, space, and message complexities of Algorithm Predicate_Rel* are the same as those of Algorithm Predicate_Rel, as stated in Theorem 3.

7 Application: Detecting Simultaneous Events

Consider Problem Simultaneous, introduced in Section 2. Let $\mathcal{I}=$ $\left\{I_{1}, I_{2}, \ldots I_{n}\right\}$ be a set containing one interval I_{i} from each process P_{i} such that the local predicate ϕ_{i} is true in I_{i}. As the algorithm for Predicate_Rel* examines a pair of intervals at a time, we show the following:
Theorem 5. There is a common instant in all of the intervals in $\mathcal{I}=$ $\left\{I_{1}, I_{2}, \ldots I_{n}\right\}$ if and only if, for each pair of intervals I_{i} and I_{j} in \mathcal{I}, there is a common instant.
Proof sketch. If there is a common instant in all the intervals in \mathcal{I}, trivially, for each pair of intervals I_{i} and I_{j} in \mathcal{I}, there is a common instant. Showing the theorem in the opposite direction is not as trivial. This result is a variant of the result in [13] and is hence not proved formally here. Define $I_{k_{1}, \ldots k_{m}}$ as the contiguous interval $\bigcap_{i=k_{1}, \ldots k_{m}} I_{i}$. Clearly, this is true for $m=2$, which can serve as the base case for an induction-based proof. Now, the intersection $I_{k_{1}, \ldots k_{m}} \cap I_{k_{m+1}}$ must be a contiguous nonempty interval by the following logic:

Fig. 5. The transitive relation "allows," \mapsto.

```
queue of \(\log : Q_{1}, Q_{2}, \ldots Q_{n}=\perp\)
set of int: updatedQs, newUpdatedQs \(=\{ \}\)
    On receiving interval from process \(P_{z}\) at \(P_{0}\)
    Enqueue the interval onto queue \(Q_{z}\)
    if (number of intervals on \(Q_{z}\) is 1) then
        updated \(Q s=\{z\}\)
        while (updatedQs is not empty)
            newUpdatedQs=\{\}
            for each \(i \in\) updatedQs
            if ( \(Q_{i}\) is non-empty) then
                \(X=\) head of \(Q_{i}\)
                for \(j=1\) to \(n\)
                    if \(\left(Q_{j}\right.\) is non-empty) then
                    \(Y=\) head of \(Q_{j}\)
                    Test for \(R(X, Y)\) using interval timestamps (Fig. 2)
                    if \(\left(R(X, Y) \in \mathcal{H}\left(r_{i, j}\right)\right)\) and \(R \neq r_{i, j}\) then
                        newUpdatedQs \(=\{i\} \cup\) newUpdatedQs
                    if \(\left(R(Y, X) \in \mathcal{H}\left(r_{j, i}\right)\right)\) and \(R \neq r_{j, i}\) then
                        newUpdatedQs \(=\{j\} \cup\) newUpdatedQs
            Delete heads of all \(Q_{k}\) where \(k \in\) newUpdatedQs
            updatedQs \(=\) newUpdatedQs
        if (all queues are non-empty) then
            Heads of queues identify intervals that form the solution.
```

Fig. 6. Online algorithm at P_{0} to solve Predicate_Rel, based on [3].
TABLE 4
Complexities of Predicate_Rel, Predicate_Rel ${ }^{*}$, and Simultaneous

Time complexity at server P_{0}	Total number of messages	Space at server P_{0} (=total message space)	Space at $P_{i}, i \in[1, n]$ (in integers)
$O\left(n^{2} p\right)$	$n p$	$2 n p$	2

- If $I_{k_{1}, \ldots k_{m}} \cap I_{k_{m+1}}$ were empty (see Fig. 9), then $I_{k_{m+1}}$ and $I_{k_{1}, \ldots k_{m}}$ are separated.
- Hence, $I_{k_{m+1}}$ cannot intersect with at least one interval among $I_{k_{1}}, I_{k_{2}}, \ldots I_{k_{m}}$.
- This leads to a contradiction because, for each pair of intervals I_{i} and I_{j} in \mathcal{I}, there is a common instant.
Hence, from Theorem 5, to detect a common instant across all processes, we can examine a pair of intervals at a time for overlap. For events at P_{i} and P_{j} to occur simultaneously, intervals X and Y must have some common instants. To apply the algorithms presented in the previous section, we need to identify an appropriate $r_{i, j}^{*}$ and verify that it satisfies CONVEXITY. We proceed as follows:

1. Observe from Fig. 2 that, to satisfy the condition that two intervals overlap with each other, ${ }^{3}$ $r_{i, j}^{*}=\{o, o b, s, s b, f, f b, c, c b, q\}$.
2. For each relation R in $\Re \backslash r_{i, j}^{*}=\{p, p b, m, m b\}$, observe from Table 2 that $R \in \mathcal{H}(\theta)$ or $R^{-1} \in \mathcal{H}\left(\theta^{-1}\right)$, where $\theta \in r_{i, j}^{*}$.

So, CONVEXITY is satisfied by $r_{i, j}^{*}$ and algorithm Predicate_Rel* can be used.
Then, from Table 2, we have

$$
\begin{gather*}
\bigcap_{r_{i, j} \in r_{i, j}^{*}} \mathcal{H}\left(r_{i, j}\right)=\{p, m, o, s, f, f b, c b, q\} \tag{1}\\
\bigcap_{r_{i, j} \in r_{i, j}^{*}} \mathcal{H}\left(r_{i, j}\right) \backslash r_{i, j}^{*}= \tag{2}\\
\{p, m, o, s, f, f b, c b, q\} \backslash\{o, o b, s, s b, f, f b, c, c b, q\}=\{p, m\}
\end{gather*}
$$

Substituting the values in lines 13 and 15 in Fig. 8 gives the code in Fig. 10, which is what we intuitively expect.
3. We rule out m and $m b$ because of the state transitions of both intervals, one from true to false and the other from false to true, at the meeting instant.

Fig. 7. Illustration of the example of "no queue pruning" when using the algorithm of Fig. 6.

13:	if $\left(R(X, Y) \in \bigcap_{r_{i, j} \in r_{i, j}^{*}} \mathcal{H}\left(r_{i, j}\right)\right.$ and $\left.R \notin r_{i, j}^{*}\right)$ then
14:	newUpdatedQs $=\{i\} \cup$ newUpdatedQs
15:	if $\left(R(Y, X) \in \bigcap_{r_{j, i} \in r_{j, i}^{*}} \mathcal{H}\left(r_{j, i}\right)\right.$ and $\left.R \notin r_{j, i}^{*}\right)$ then
16:	newUpdatedQs $=\{j\} \cup$ newUpdatedQs

Fig. 8. Algorithm Predicate_Rel*: Changes to Predicate_Rel when $r_{i, j}^{*}$ satisfies CONVEXITY.

Fig. 9. The condition for intersection of intervals in a solution for simultaneous occurrence when examining intervals pairwise.

13:	if $(R(X, Y) \in\{p, m\})$ then
14:	newUpdatedQs=\{i\} \cup newUpdatedQs
15:	if $(R(Y, X) \in\{p, m\})$ then
16:	newUpdatedQs $=\{j\} \cup$ newUpdatedQs

Fig. 10. Algorithm Predicate_Rel ${ }^{*}$ to detect simultaneous events: Changes to algorithm Predicate_Rel are listed.

8 DISCUSSION

This paper presented an algorithm based on [3] to detect a global predicate specified using timing relationships across the various locations, using a single time axis. The proposed algorithm has low overhead (see Table 4) at the sensor nodes. The data fusion load is at the back-end server P_{0}, which can be a dedicated powerful processor. The paper also considered a special case of the algorithm wherein the simultaneous occurrence of events across the system can be detected. The space complexity of the algorithms for Predicate_Rel, Predicate_Rel*, and Simultaneous is conjectured to be optimal because each of the p intervals at each of the n processes needs to be transmitted and then stored in the queues at P_{0}. Similarly, the time complexity $\left(O\left(n^{2} p\right)\right)$ is conjectured to be optimal because each of the p intervals at each of the n processes needs to be tested with $n-1$ other intervals.

We mention some limitations of the approach. 1) Global time is at best an approximation. Current synchronization techniques achieve precision of the order of microseconds (see survey [24]). However, this research assumes global time as an axiom. We do not consider the bounds on clock drift and skew as these are technologydependent and will likely change as better clock synchronization mechanisms are discovered and implemented. 2) Even with synchronized clocks, the common time axis is not useful if predicates based on the causality relation [14] are specified. This is because causality-based relations cannot be determined based on physical time relationships, but require logical vector clocks. The algorithms in [3] can be used instead. 3) The availability of global time in some scenarios with limited resources and/or constrained network topologies may not be practical.

This research considered only conjunctive predicates, whereby each process can locally determine the start and end of the local intervals of interest. Hence, the global predicate was a conjunct of such local predicates. The key here was that any interval was involved in at most $n-1$ comparisons with the intervals from the heads of other queues, before some interval gets deleted-see the proof of Theorem 3. More general predicates, such as $x_{i}+y_{j}+z_{k}=40$, termed relational predicates, incur exponential overhead in terms of time complexity at P_{0} and, hence, are not considered here. The exponential cost arises because, if a pairwise comparison fails between a pair of intervals at queue heads, they may still form part of a solution and, hence, cannot be deleted from the queues.

Although relational predicates cannot be detected in polynomial time, the following types of queries under the "Simultaneous occurrence" relationship can be solved. Queries such as $x_{i}=y_{j}=$ z_{k} can be solved with the same overhead as for Predicate_Rel. Each interval is involved in at most $n-1$ comparisons, after which at least one interval is deleted if the solution is not found. (Refer to the proof of Theorem 3.) This is due to the monotonicity property of time-the interval that finishes earliest can be deleted if a solution is not found. Detecting such predicates allows one to determine whether nearby sensors are simultaneously sensing the same/similar values, such as of temperatures.

For range predicates where the range is known to the sensors a priori, each reported interval is the duration in which the sensed values are within the range. If the range is not known a priori, then every single change in the sensed variable needs to be reported. This is not efficient.

Note that negation is easily supported. The global predicate should be in Conjunctive Normal Form, where each conjunct is local and may be a negation. Complex predicates such as $\phi=$ "tigers drink before deer and no birds drink in-between" can also be handled. Let T, B, and D denote the intervals in which tigers, birds, and deer drink. Then, ϕ is detected when $T m|o| s \mid c b \bar{B}$ AND $\bar{B} m|o| f b \mid c D$ AND $D p b T$. This assumes that there are several intervals on each process line and all of the intervals and their negated intervals eventually finish [18]. Further, variable latency which leads to messages from different nodes not arriving temporally ordered at P_{0} is not a problem. There is a separate queue Q_{i} at P_{0} for the event stream from each sensor S_{i}.

In sensor networks, a process P_{i} may batch the transmission of a sequence of messages for energy conservation, resulting in high latency. As each message sent to P_{0} has the start and end timestamp of the corresponding interval (see the data structure of Fig. 4), the algorithm is immune to such latencies and jitter.

If a sensor can sense multiple parameters (e.g., MICAz Crossbow can sense temperature and light), then each parameter is abstracted as a different process with its own timeline. So, in Fig. 1c and Fig. 1d, as many different processes as there are parameters that are sensed would run at the location of such a sensor. If sensor S_{4} were a MICAz mote, there would be two process timelines, P_{4}^{\prime} and $P_{4}^{\prime \prime}$, instead of P_{4}, each with their intervals that get projected separately on the time line L_{4}.

The paper assumed reliable FIFO channels from each P_{i} to P_{0}. If a message gets lost and if the interval corresponding to the lost message was part of a solution, then that solution would go undetected. That is the price to pay if unreliable delivery is assumed. There are well-understood mechanisms (such as using sequence numbers and ACKs) to impose reliable delivery over unreliable channels. Whether the cost of reliable delivery is acceptable depends on the application. For messages from P_{i} received out of order, the use of sequence numbers can be used to present a sequential order of the intervals in the queue Q_{i} at P_{0}.

The presented formalism assumed local discreteness, which implied that the local interval separation property holds and that no point intervals were allowed. Variations can be handled by adapting this formalism. For example, if local interval separation is relaxed, an interval can begin at the same instant at which the previous interval at the same process ends. X_{i}^{\prime} would be a successor of X_{i} if $m\left(X_{i}, X_{i}^{\prime}\right)$
or $p\left(X_{i}, X_{i}^{\prime}\right)$. In Table 2, $\mathcal{H}(m)$ would exclude $f, f b, q$, and $\mathcal{H}(s)$, $\mathcal{H}(s b), \mathcal{H}(q)$ would each exclude $m b$. In Table 3, for \mapsto, there would be " 1 " for $(f, m),(f b, m),(q, m),(m b, s),(m b, s b)$, and $(m b, q)$. Theorem 1 can be seen to still hold. Other variations, such as allowing points(one point per clock tick) and about clock properties and time density, can be similarly handled.

Acknowledgments

Some portions of this paper appear in [11].

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramanian, E. Cayirci, "Wireless Sensor Networks: A Survey," Computer Networks, vol. 38, no. 4, pp. 393-422, 2002.
[2] J. Allen, "Maintaining Knowledge about Temporal Intervals," Comm. ACM, vol. 26, no. 11, pp. 832-843, 1983.
[3] P. Chandra and A.D. Kshemkalyani, "Causality-Based Predicate Detection Across Space and Time," IEEE Trans. Computers, vol. 54, no. 11, pp. 14381453, Nov. 2005.
[4] K.M. Chandy and L. Lamport, "Distributed Snapshots: Determining Global States of Distributed Systems," ACM Trans. Computer Systems, vol. 3, no. 1, pp. 63-75, 1985.
[5] J. Elson and K. Romer, "Wireless Sensor Networks: A New Regime for Time Synchronization," Proc. First Workshop Hot Topics in Networks (HotNets-I), Oct. 2002
[6] C. Fidge, "Logical Time in Distributed Computing Systems," Computer, vol. 24, no. 8, pp. 28-33, Aug. 1991.
[7] S. Ganeriwal, R. Kumar, and M. Srivastava, "Timing-Sync Protocol for Sensor Networks," Proc. ACM Conf. Embedded Networked Sensor Systems, pp. 138-149, Nov. 2003.
[8] S. Ganeriwal, D. Ganesan, H. Sim, V. Tsiatsis, M. Hansen, and M. Srivastava, "Estimating Clock Uncertainty for Efficient Duty-Cycling in Sensor Networks," Proc. Third ACM SenSys Conf., 2005.
[9] C.L. Hamblin, "Instants and Intervals," The Study of Time, pp. 324-332. Springer-Verlag, 1972.
[10] B. Krishnamachari, D. Estrin, and S. Wicker, "The Impact of Data Aggregation in Wireless Sensor Networks," Proc. Int'l Conf. Distributed Computing Systems Workshops, pp. 575-578, 2002.
[11] A.D. Kshemkalyani, "Predicate Detection Using Event Streams in Ubiquitous Environments," Proc. IFIP Conf. Network-Centric Ubiquitous Systems (NCUS), pp. 807-816, Dec. 2005.
[12] A.D. Kshemkalyani, "Temporal Interactions of Intervals in Distributed Systems," J. Computer and System Sciences, vol. 52, no. 2, pp. 287-298, Apr. 1996.
[13] A.D. Kshemkalyani, "A Fine-Grained Modality Classification for Global Predicates," IEEE Trans. Parallel and Distributed Systems, vol. 14, no. 8, pp. 807-816, Aug. 2003.
[14] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System," Comm. ACM, vol. 21, no. 7, pp. 558-565, July 1978.
[15] S. Li, Y. Lin, S. Son, J. Stankovic, and Y. Wei, "Event Detection Services Using Data Service Middleware in Distributed Sensor Networks," Telecomm. Systems, vol. 26, nos. 2-4, pp. 351-368, 2004.
[16] T. Logsdon, The Navstar Global Positioning System. Van Nostrand/Reinhold, 1992.
[17] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, "TAG: A Tiny Aggregation Service for Ad-Hoc Sensor Networks," Proc. Symp. Operating Systems Design and Implementation (OSDI), 2002.
[18] F. Mattern and R. Schwarz, "Detecting Causal Relationships in Distributed Computations: In Search of the Holy Grail," Distributed Computing, vol. 7, no. 3, pp. 149-174, 1994.
[19] D. Mills, "Internet Time Synchronization: The Network Time Protocol," IEEE Trans. Comm., vol. 39, no. 10, pp. 1482-1493, Oct. 1991.
[20] P. Pietzuch, B. Shand, and J. Bacon, "Composite Event Detection as a Generic Middleware Extension," IEEE Network, vol. 18, no. 1, pp. 44-55, Jan./Feb. 2004.
[21] K. Romer, "Time Synchronization in Ad-Hoc Networks," Proc. ACM MobiHoc, 2001.
[22] K. Romer and F. Mattern, "Event-Based Systems for Detecting Real-World States with Sensor Networks: A Critical Analysis," Proc. DEST Workshop Signal Processing in Wireless Sensor Networks, Int'l Conf. Intelligent Sensors, Sensor Networks, and Information Processing, pp. 389-395, Dec. 2004.
[23] W. Su and I. Akyildiz, "Time-Diffusion Synchronization Protocol for Sensor Networks," IEEE/ACM Trans. Networking, vol. 13, no. 2, pp. 384-397, 2005.
[24] B. Sundararaman, U. Buy, and A.D. Kshemkalyani, "Clock Synchronization for Wireless Sensor Networks: A Survey," Ad-Hoc Networks, vol. 3, no. 3, pp. 281-323, May 2005.
[25] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman, "A Taxonomy of Wireless Micro-Sensor Models," ACM Mobile Computing E Comm. Rev., vol. 6, no. 2, Apr. 2002.

