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Abstract—Advances in clock synchronization techniques allow an approximated

global time in ubiquitous environments. This paper presents an event stream-

based online algorithm that fuses the data reported from the processors in such a

network to detect time-based predicates. The algorithm has low space, time, and

message complexities. The paper also considers the detection of simultaneous

events as a special case.

Index Terms—Event streams, sensor networks, ad hoc networks, data fusion,

time, synchronized clocks, intervals.

Ç

1 INTRODUCTION

ADVANCES in wireless communication and sensor and actuator
technologies have given rise to ubiquitous systems, e.g., ad hoc
networks and sensor networks [1], [25]. Here, numerous small
devices operate collectively and form a dynamic ambient network
that connects each device to more powerful networks and
processing resources. Monitoring events in such resource-con-
strained environments is a challenge. Event-based data streams
represent relevant state changes at the processes that are
monitored [10], [15], [20]. This paper gives an online algorithm to
detect predicates defined on the relative occurrence of events from event
streams that are reported by the various components.

Examples. Consider a study of wildlife habitat that monitors the

activity of different animal and bird species at a watering hole

or at a river. The study is interested in inferring relationships

such as: (tigers drink before deer) or (tigers drinking overlaps

with lions drinking) or (elephants and storks drink concur-

rently). The period for which a sensor senses a particular species

visiting the watering hole is an interval of interest at that sensor.

Such intervals from different sensors, reporting data about

various species, are reported in data streams to a central

processor. At this processor, the data from the interval streams

is fused to detect the predicates of interest.
As another example, consider a secure banking application,

where entry into the bank vault is possible only by a set S of
two or more simultaneous biometric passwords for authentica-
tion. Here, the authorized people concerned must simulta-
neously and remotely present their passwords to gain entry to
the vault. Here, the predicate for success is (S1 and S2 and
. . .Sn) simultaneously. When a biometric password is applied
at sensor i, the corresponding time interval gets reported to a
central monitoring process, which fuses similar interval
information it receives from the other biometric sensors. The
combined information from all of the sensors is fused to detect
the predicate for successful access to the bank vault.

A formal model specification and problem definition are given

in Section 2. Section 3 describes the related work. Section 4 gives

the processing at the sensors/processes. Sections 5 and 6 give two
algorithms to detect predicates defined on the relative occurrence
of events. Section 7 gives the algorithm to detect simultaneous
events by deriving it from the predicate detection algorithms.
Section 8 presents a discussion.

2 SYSTEM MODEL AND PROBLEM DEFINITION

The process execution model is as follows: Ei is the linearly
ordered set of discrete events executed by process Pi in an
execution. Variable x local to process Pi is denoted as xi. The
control program at Pi monitors a “local predicate.”

Definition 1. A local predicate �i at Pi is any predicate defined on
variables local to process Pi and that can be evaluated by Pi.

In general, the local predicate can include references to physical
time as well as temporal logic operators, as long as the predicate
can be locally evaluated. The monitoring program at each process
tracks the local time intervals of interest, which are the durations
during which the local predicate is true. Such an interval at
process Pi is identified by the (totally ordered) corresponding
adjacent events within Ei for which the local predicate is true.
Intervals are denoted by capitals X, Y , and Z. Fig. 1a shows
processes P1 . . .Pn. Fig. 1b is a timing diagram that shows the
intervals during which the local predicates are true.

Event streams from the processes report intervals in which the
local predicates are true to a central data fusion server P0 (see
Fig. 1a). Information about the reported intervals is “fused” and
examined to detect global states of the execution that satisfy a given
global predicate. In this paper, we consider global predicates that
are defined on the relative timing occurrences of intervals across
different processes. Furthermore, the global predicate must be
expressible in conjunctive form, i.e., � ¼

Vt
i �i, which is thus a

conjunct over the local predicates �i, and timing relationships are
included in the conjunction operation

Vt . The following examples
are different formulations of a predicate to detect an explosion:

. (tempi > 80�C and audioi > 45 decibels) AFTER
(lumensj > 1000L). This predicate denotes an explosion
at Pj of a certain intensity that is also detected by Pi some
distance away. The light is seen at explosion location j,
while the corresponding noise and temperature increases
are experienced some time later at a location i.

. There is an instant at which (tempi > 120�C) SIMULTA-
NEOUSLY (audioj > 50 decibels). This is a simplified form
of the above predicate, specified using only the tempera-
ture and noise parameters at two different locations.

Clocks in sensor networks, ad hoc networks, and wireless
networks [24]—when synchronized via GPS [16], NTP [19], or any
of the many efficient synchronization protocols for wired as well as
wireless media, such as those surveyed in [5], [7], [8], [21], [23]—
allow the assumption about an approximate single global time
axis. With synchronized clocks, a distributed execution can be
modeled as the interleaving of all the local executions Ei on a
common time axis. This simplifies the detection of a global state [4]
in the ubiquitous environment, which is essentially a distributed
asynchronous message-passing system. A global state is defined to
contain one local state of each process. Using a common time axis,
a global state can be specified 1) as occurring at the same time
instant at each process or 2) in terms of specific relationships
among the local states (one local state from each process).

For a single time axis, it has been shown [2], [9] that there are
13 ways in which two time intervals can be related to one another
on that time axis. For intervals X and Y , the 13 relations are
illustrated in Fig. 2. The set of these 13 relations is denoted <. There
are six pairs of inverses as shown and equals is its own inverse.
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Problem Definitions. In this paper, the event streams gener-
ated by processes P1; . . .Pn need to be fused at the central server P0

to solve the following global predicate detection problem [3], [13].
Problem Predicate Rel. Given a relation ri;j from < for each

pair of processes Pi and Pj, identify in an online manner the
earliest intervals (if they exist), one from each process, such that
each relation ri;j is satisfied for the ðPi; PjÞ pair.

Example specification. We assume that intervals Xi, Yj, and Zk
occur at different locations Pi, Pj, and Pk, respectively, but
global time is available in the system at all sites. Two example
specifications of predicates are:

1. (Xi precedes Yj) AND (Xi overlaps Zk) AND (Yj
finishes Zk).

2. (Xi overlaps Yj) AND (Yj contains Zk) AND (Zk met
by Xi).

The problem in each case is to identify the global state in a
distributed execution when the predicate is true. Example
solutions are illustrated in Fig. 3.

Problem Predicate Rel restricts the input to a single relation-
ship ri;j for process pair (Pi; PjÞ. Problem Predicate Rel� allows r�i;j
to be a subset of < and a solution can satisfy any of the relations in
r�i;j for the ðPi; PjÞ pair.

Problem Predicate Rel�. Given a set of relations r�i;j � < for
each pair of processes Pi and Pj, determine online the earliest

intervals, if they exist, one from each process, such that any one of
the relations in r�i;j is satisfied (by the intervals) for each ðPi; PjÞ
pair. If a solution exists, identify the relationship from < for each
pair of intervals in the solution.

Example specification. Assume that intervals Xi, Yj, and Zk
occur at different locations Pi, Pj, and Pk, respectively. Let

r�i;j ¼ fp;m; qg; r�i;k ¼ fo; cg; r�j;k ¼ ff; obg. The set of intervals

in Fig. 3a satisfies this specification, but there may be other

mutual placements of the intervals that can also satisfy this

specification.

To illustrate an application of Predicate Rel�, the paper derives

a solution to the basic task of detecting the simultaneous occurrence

of each local predicate �i (at all i).

Problem Simultaneous. Identify the earliest set of intervals I ¼
fI1; I2; . . . Ing (if such a set exists), where Ii is from process Pi and

�i is true in Ii such that there is some instant of time that belongs

within all of these intervals.

3 RELATED WORK

To our knowledge, the existing approaches on event aggregation
(e.g., [10], [15], [17], [20], [22]), cannot detect distributed predicates
that are defined on the relative timing occurrences of intervals of
interest across different processes. The problems Predicate Rel and
Predicate Rel� [3] were defined earlier to detect predicates in
distributed executions, using logical time-based [14] causality
relationships defined in [12], [13]. As distributed executions
encounter uncertain message propagation times and uncertain
CPU scheduling delays, different executions of the same distributed
program lead to different interleavings of the events. To analyze the
causality relationships among the events across different processes,
vector clock-based1 logical time [6] was necessary [3] to solve
Predicate Rel and Predicate Rel�. In contrast, the objective of this
paper is to capture relative time dependencies among intervals at
different processes. Hence, vector clocks are redundant. To
appreciate the differences, consider these architectures:

. Computer network. Each location Li (1 � i � n) has a
device/processor and a control program that monitors
variables that are defined and used within the code. The
activity of the device/processor is modeled as the activity
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1. Each process stores a vector V T of size n. The jth entry of the vector at
process i tracks the local time of j as known to i. Vector clocks have the
property that, for events e and f , V T ðeÞ < V T ðfÞ if and only if e�!f , where
�! denotes Lamport’s causality relation [14].

Fig. 1. Organization of the network. (a) P1; . . .Pn are processes and P0 is the data fusion server. (b) Timing diagram for a computer network (no sensing). (c) A sensor

network showing processes P1-P4 at sensors S1-S4, respectively, sensing locations L1-L4. (d) Timing diagram for intervals at locations L1-L4, as modeled by processes

P1-P4 in the sensor network.

Fig. 2. The 13 relations < between intervals [2], [9].



of a process Pi. A timing diagram showing the intervals at
each process Pi, when �i is true, is given in Fig. 1b.

Causal relations among the events can be captured

because the monitored variables used in the relations are

internal to the process/device. Relations based on relative

or absolute timing occurrences can also be detected if

(physical) clocks are synchronized.
. Sensor network. Sensors S1; S2; . . .Sn at locations

L1; L2; . . .Ln, respectively, sense physical parameters of
interest (e.g., temperature, pressure, humidity, and chemi-
cal concentrations) at those locations. The sensor Si models
the activity of location Li as a process Pi, appropriately
timestamping relevant events within the process. A timing
diagram for four sensors S1-S4, shown in Fig. 1c, is given in
Fig. 1d.

Causality relations among the events in the environ-

ment at L1 . . .Ln cannot be captured because there is no

mechanism for the processes P1 . . .Pn in the sensors S1 to

Sn to model or capture causal relations in the environment

external to themselves. Thus, an algorithm based on logical

vector time cannot sense causality-based predicates in the

environment, external to the computer network, because

the communication within the environment has no

mechanism to represent causal relations [3].

For both of the architectures, we assume a loosely coupled

ad hoc asynchronous message-passing system in which any two

processes belonging to the process set N ¼ fP1; P2; . . . ; Png can

communicate over logical channels. Each process sends its

gathered data eventually and asynchronously (via any routes) in

a FIFO stream to a data fusion server P0 [10], [15], [20] (see Fig. 1a).

Note that the network may be wired or wireless. The following

gives the differences from [3]:

1. In [3], causality-based predicates were specified. The
solution to Predicate Rel and Predicate Rel� used vector
time (i.e., no single time axis) for the computer network
architecture. Scalar (logical or physical) time, even with
synchronized clocks, is inadequate because it cannot
capture causal dependencies in the distributed program.

In this paper, we adapt the approach of [3] to solve

Predicate Rel and Predicate Rel� for predicates specified

using relative timing constraints (i.e., not causality con-

straints) on a single time scale for the computer network

architecture.
2. Our solution also solves Predicate Rel and Predicate Rel�

in the sensor network architecture when predicates are
specified using relative timing constraints (i.e., not causality
constraints) on a single time scale. Note that the use of
logical vector clocks does not help to solve Predicate Rel
and Predicate Rel� in the sensor network architecture when
predicates are specified using causality relationships.

3. In [3], the set < had 40 orthogonal causality-based
relations. For the predicates specified using relative timing
constraints on a single time axis, this paper considers <
containing 13 orthogonal relations. The structure of the
algorithm is similar to [3]. However, there is no known
mapping between the 40 orthogonal relations of [3] and the
13 orthogonal relations used here. Hence, the details have
to be worked out from scratch.

The relationship of our results to the results of [3] is
summarized in Table 1. In addition, this paper formulates and
solves problem Simultaneous.

4 PROCESSING AT THE SENSORS/PROCESSES

An interval at Pi begins when the local predicate �i becomes true
and ends when �i becomes false. We assume the physical clock has
infinitely fine granularity so each (event-triggered) state transition
at a process occurs at a distinct tick (local discreteness). There are
two consequences of local discreteness and the model for intervals.
1) An interval has a nonzero duration, implying that point intervals

are not allowed. 2) An interval can begin at Pi only after the
previous interval at Pi ends (see Fig. 1b)—termed the local interval
separation property.

Processes P1; P2; . . . ; Pn track the start and end timestamps of
their local intervals, using the synchronized clocks. t�i and tþi
denote the timestamps at process Pi at the start and at the end of an
interval, respectively. Each process Pi ð1 � i � nÞ maintains the
data structure Logi, shown in Fig. 4. Logi is constructed and sent to
P0 asynchronously over a logical FIFO channel when an interval
completes. P0 then uses the Logs reported to determine the
relationship between interval pairs (see Section 5). The maximum
number of intervals at any process is assumed to be p.

Complexity. Each Log at a process Pi, 1 � i � n, takes two

integers space. As one log message is sent per interval, the number

of messages is p for each Pi ði 6¼ 0Þ. This gives a total number of

messages as np. The total message space overhead for any process

is 2p. Hence, the total message space complexity is 2np.

5 ALGORITHM Predicate Rel

The central data fusion server P0 maintains n queues,Q1; Q2; . . . ; Qn

for Logs from each of the processes. The server runs algorithm

Predicate Rel [3] to process the interval information it receives in

the queues. The algorithm detects a set of intervals, one on each

process, such that each pair of intervals satisfies the relationship

specified for that pair of processes. If no such set of intervals exists,

the algorithm does not return any interval set. If there exists an

interval record at the head of each queue and these interval records

cannot be pruned,2 then these intervals satisfy ri;j 8 i; j, where i 6¼ j
and 1 � i; j � n. Hence, these intervals form a solution set.

Assume that interval X occurs at Pi and interval Y occurs at Pj.

For any two intervals X and X0 that occur at the same process, if

precedesðX;X0Þ, then X is a predecessor of X0 and X0 is a successor of

X. We use variants of the prohibition function Hðri;jÞ, the allows

relation 7!, and the lemmas given in [3] to show the design of the

algorithm. Although the algorithm Predicate Rel is the same [3],

there is no known mapping of the 40 relations in [3] to the

13 relations used here. Hence, the results for the different set <
need to be developed independently from scratch—the domain

and codomain of H, as well as the set <, using which allows is

defined, are different. Thus, the new prohibition function and

allows relation are devised from scratch.
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2. Henceforth, a reference to an interval will be to the record of the
interval, depending on context.

Fig. 3. Example problem specifications. The intervals Xi, Yj, and Zk are at

different processes.



Definition 2. Prohibition function H : < ! 2< is defined to be

Hðri;jÞ ¼ fR 2 < j if RðX; Y Þ is true then ri;jðX;Y 0Þ is false
for all Y 0 that succeed Y g:

Definition 3. The “allows” relation 7! on < � < is such that R0 7!R00 if

the following holds: If R0ðX; Y Þ is true, then R00ðX; Y 0Þ can be true

for some Y 0 that succeeds Y .

Examples (refer to Fig. 2). Assume Y 0 succeeds Y .

1. c 7!o because, if cðX;Y Þ is true, then oðX;Y 0Þ may also
be true.

2. m�1 7!f�1 because, if m�1ðX;Y Þ is true, then fbðX;Y 0Þ
may also be true.

Lemma 1. If R 2 Hðri;jÞ, then R 67! ri;j else if R 62 Hðri;jÞ, then

R 7! ri;j.

Table 2 givesHðri;jÞ for the 13 relations in <. It is constructed by
analyzing each relation pair.

Example. The third row of Table 2 gives Hðri;jÞ for the relations o
and ob.

. In column two, Hðoi;jðXi; YjÞÞ ¼ fp;m; o; s; f; fb; cb; qg.
Hence, pðXi; YjÞ or mðXi; YjÞ or oðXi; YjÞ or sðXi; YjÞ or
fðXi; YjÞ or fbðXi; YjÞ or cbðXi; YjÞ or qðXi; YjÞ implies
that oðXi; Y

0
j Þ can never hold for any successor Y 0j of Yj.

. In column three,

Hðobj;iðYj;XiÞÞ ¼ fp;m;mb; o; ob; s; sb; f; fb; c; cb; qg:

Hence, pðYj;XiÞ ormðYj;XiÞ ormbðYj;XiÞ or oðYj;XiÞ or

obðYj;XiÞ or sðYj;XiÞ or sbðYj;XiÞ or fðYj;XiÞ or

fbðYj;XiÞ or cðYj;XiÞ or cbðYj;XiÞ or qðYj;XiÞ implies

that obðYj;X0iÞ can never hold for any successor X0i of Xi.

As per Theorem 1, if R0 allows R00, R0�1 does not allow R00�1.

Theorem 1. For R0; R00 2 < and R0 6¼ R00, if R0 7!R00, then

R0�1 67! R00�1.

The theorem can be observed to be true from Lemma 1 and
Table 2 by using a case-by-case analysis. Table 3 shows the grid of
the 7! relation for this analysis. A “1” indicates that the relation in
the row header allows the relation in the column header. The
relation is transitive and the transitive dependencies are shown in
Fig. 5. Alternately, this analysis is easier by using the following form
of Theorem 1: “For R0 6¼ R00, if R0 62 HðR00Þ, then R0�1 2 HðR00�1Þ.”

Examples.

1. c7!o) c�1 6 7!o�1, which can be seen to be true.
2. m�1 7!f�1 ) m 67! f , which can be seen to be true.

Note R0 6¼ R00 in Theorem 1; otherwise, R0 7!R0 holds as for p, pb,

and c, leading to R0�1 67! R0�1, a contradiction.

Lemma 2. If the relationship RðX;Y Þ between intervals X at Pi and Y

at Pj is contained in the set Hðri;jÞ and R 6¼ ri;j, then X can be

removed from the queue Qi.

Lemma 3. If the relationship between a pair of intervals X at Pi and Y at

Pj is not equal to ri;j, then either X or Y is removed from the queue.

Lemma 3 guarantees progress; when two intervals are checked,

if the desired relationship is not satisfied, at least one of them can

be discarded.

Example. We want to detect X and Y , where ri;jðX;Y Þ ¼ fb. If

RðX;Y Þ ¼ o, we have that o 67! fb; hence, oðX;Y Þ will not allow

fbðX; Y 0Þ to be true for any Y 0. Hence, the record of X must be

deleted. Further, ob 67! f and, hence, obðY ;XÞ will not allow

fðY ;X0Þ to be true for any X0. Hence, the record of Y must also

be deleted.

Theorem 2. Problem Predicate_Rel is solved by the algorithm in Fig. 6.

Theorem 3. The algorithm in Fig. 6 has the following complexities:

1. The total message space complexity is 2np (proven in
Section 4).

2. The total space complexity at process P0 is 2np (follows
from (1)).

3. The time complexity at P0 is Oðpn2Þ.
Proof. The time complexity is the product of the number of steps

needed to determine a relationship (Oð1Þ follows trivially from

Fig. 2) and the number of relations determined. For each interval

considered from one of the queues in updatedQs (lines 6-12), the

number of relations determined is n� 1. Thus, the number of

relations determined for each iteration of the while loop is

ðn� 1ÞjupdatedQsj. But,
P
jupdatedQsj over all iterations of the

while loop is less than the total number of intervals over all of

the queues. Thus, the total number of relations determined is

less than ðn� 1Þ � x, where x ¼ pn is the upper bound on the

total number of intervals over all the queues. As the time

required to determine a relationship is Oð1Þ, the time complex-

ity is Oðn2pÞ. tu

The performance of the algorithm is given in Table 4.

6 A MORE GENERAL CLASS OF TIMING PREDICATES

In Predicate Rel�, for each pair of processes ðPi; PjÞ, there is a

set r�i;j � < such that some relation in r�i;j must hold. To solve

Predicate Rel�, given an arbitrary r�i;j, a solution based on

algorithm Predicate Rel will not work because, in the crucial tests

in lines 13-14, neither interval may be removable and yet none of

the relations from r�i;j might hold between the two intervals.
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TABLE 1
Objectives of This Paper Compared with Related Problem Specifications

Fig. 4. Data structure and operations to construct Log at Pi (1 � i � n).



Example. Let r�i;j ¼ fpb; og and let the intervals under consideration

at Pi and Pj be X and Y such that cðX;Y Þ and, hence, cbðY ;XÞ
holds. This is illustrated in Fig. 7.

. c 2 HðpbÞ; cb 62 HðpÞ. Even though X will not form a
part of a solution satisfying relation pb with any future
Y 0, Y can form a solution satisfying relation p with any
future X0, i.e., pðY ;X0Þ may be true. So, the record of Y
must be retained in Qj.

. c 62 HðoÞ; cb 2 HðobÞ. Even though Y will not form a
part of a solution satisfying relations ob with any future
X0, X can form a solution satisfying relation o with any
future Y 0, i.e., oðX; Y 0Þ may be true. So, the record of X
must be retained in Qi.

The records of neither X nor Y can be deleted from Qi or Qj,

respectively.

To avoid tracking multiple intervals in each queue and

examining the exponential number of global states (up to pn), we

assume the CONVEXITY property [3] on r�i;j.

Definition 4.

CONVEXITY :

8R 62 r�i;j : 8ri;j 2 r�i;j; R 2 Hðri;jÞ
_
8rj;i 2 r�j;i; R�1 2 Hðrj;iÞ

� �
:

By this property, there is no relation R outside r�i;j such that, for

any r1; r2 2 r�i;j, R 7! r1 and R�1 7! r2�1. It guarantees that either

X or Y or both get deleted if RðX;Y Þ 62 r�i;j and, hence, there is no

explosion of global states. The following results [3] are used.

Lemma 4. If the relation RðX;Y Þ between intervals X and Y (at

processes Pi and Pj, respectively) is contained in the setT
ri;j2r�i;j

Hðri;jÞ, then interval X can be removed from the queue Qi.

Lemma 5. If the relation RðX;Y Þ between a pair of intervals X and Y

(at processes Pi and Pj, respectively) does not belong to the set r�i;j,

where r�i;j satisfies CONVEXITY, then either interval X or interval Y
is removed from the queue.

Theorem 4. If the set r�i;j satisfies CONVEXITY, then Problem
Predicate Rel� is solved by replacing lines 13 and 15 in algorithm
Predicate Rel in Fig. 6 by lines 13 and 15 in Fig. 8.

The only changes to Algorithm Predicate Rel are in lines 13 and
15. In Algorithm Predicate Rel�, RðX;Y Þ is checked for member-
ship in

T
ri;j2r�i;j

Hðri;jÞ in line 13, instead of membership in Hðri;jÞ.
Both Hðri;jÞ and

T
ri;j2r�i;j

Hðri;jÞ are sets of size between 0 and
j<j ¼ 13. A similar observation holds for the change on line 15.
This gives Corollary 1.

Corollary 1. The time, space, and message complexities of Algorithm
Predicate Rel� are the same as those of Algorithm Predicate Rel, as
stated in Theorem 3.

7 APPLICATION: DETECTING SIMULTANEOUS EVENTS

Consider Problem Simultaneous, introduced in Section 2. Let I ¼
fI1; I2; . . . Ing be a set containing one interval Ii from each process
Pi such that the local predicate �i is true in Ii. As the algorithm for
Predicate Rel� examines a pair of intervals at a time, we show the
following:

Theorem 5. There is a common instant in all of the intervals in I ¼
fI1; I2; . . . Ing if and only if, for each pair of intervals Ii and Ij in I ,
there is a common instant.

Proof sketch. If there is a common instant in all the intervals in I ,
trivially, for each pair of intervals Ii and Ij in I , there is a
common instant. Showing the theorem in the opposite direction
is not as trivial. This result is a variant of the result in [13] and is
hence not proved formally here. Define Ik1 ;...km as the contig-
uous interval

T
i¼k1 ;...km

Ii. Clearly, this is true for m ¼ 2, which
can serve as the base case for an induction-based proof. Now,
the intersection Ik1 ;...km \ Ikmþ1

must be a contiguous nonempty
interval by the following logic:
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TABLE 2
Prohibition Functions Hðri;jÞ for the 13 Relations ri;j in <

p is “precedes,” m is “meets,” o is “overlaps,” s is “starts,” f is “finishes,” c is “contains,” and q is “equals.”

TABLE 3
The “allows” Relation 7! on <� <, in Matrix Form, to Verify Theorem 1

Fig. 5. The transitive relation “allows,” 7!.



. If Ik1 ;...km \ Ikmþ1
were empty (see Fig. 9), then Ikmþ1

and
Ik1 ;...km are separated.

. Hence, Ikmþ1
cannot intersect with at least one interval

among Ik1
; Ik2

; . . . Ikm .
. This leads to a contradiction because, for each pair of

intervals Ii and Ij in I , there is a common instant. tu
Hence, from Theorem 5, to detect a common instant across all

processes, we can examine a pair of intervals at a time for overlap.

For events at Pi and Pj to occur simultaneously, intervals X and Y

must have some common instants. To apply the algorithms

presented in the previous section, we need to identify an

appropriate r�i;j and verify that it satisfies CONVEXITY. We proceed

as follows:

1. Observe from Fig. 2 that, to satisfy the condition
that two intervals overlap with each other,3

r�i;j ¼ fo; ob; s; sb; f; fb; c; cb; qg.
2. For each relation R in < n r�i;j ¼ fp; pb;m;mbg, observe

from Table 2 that R 2 Hð�Þ or R�1 2 Hð��1Þ, where � 2 r�i;j.
So, CONVEXITY is satisfied by r�i;j and algorithm

Predicate Rel� can be used.

Then, from Table 2, we have

\
ri;j2r�i;j

Hðri;jÞ ¼ fp;m; o; s; f; fb; cb; qg; ð1Þ

\
ri;j2r�i;j

Hðri;jÞ n r�i;j ¼

fp;m; o; s; f; fb; cb; qg n fo; ob; s; sb; f; fb; c; cb; qg ¼ fp;mg:
ð2Þ

Substituting the values in lines 13 and 15 in Fig. 8 gives the code

in Fig. 10, which is what we intuitively expect.

8 DISCUSSION

This paper presented an algorithm based on [3] to detect a global
predicate specified using timing relationships across the various
locations, using a single time axis. The proposed algorithm has low
overhead (see Table 4) at the sensor nodes. The data fusion load is
at the back-end server P0, which can be a dedicated powerful
processor. The paper also considered a special case of the
algorithm wherein the simultaneous occurrence of events across
the system can be detected. The space complexity of the algorithms
for Predicate Rel, Predicate Rel�, and Simultaneous is conjectured
to be optimal because each of the p intervals at each of the
n processes needs to be transmitted and then stored in the queues
at P0. Similarly, the time complexity (Oðn2pÞ) is conjectured to be
optimal because each of the p intervals at each of the n processes
needs to be tested with n� 1 other intervals.

We mention some limitations of the approach. 1) Global time is at
best an approximation. Current synchronization techniques achieve
precision of the order of microseconds (see survey [24]). However,
this research assumes global time as an axiom. We do not consider
the bounds on clock drift and skew as these are technology-
dependent and will likely change as better clock synchronization
mechanisms are discovered and implemented. 2) Even with
synchronized clocks, the common time axis is not useful if
predicates based on the causality relation [14] are specified. This is
because causality-based relations cannot be determined based on
physical time relationships, but require logical vector clocks. The
algorithms in [3] can be used instead. 3) The availability of global
time in some scenarios with limited resources and/or constrained
network topologies may not be practical.
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3. We rule out m and mb because of the state transitions of both intervals,
one from true to false and the other from false to true, at the meeting instant.

Fig. 6. Online algorithm at P0 to solve Predicate Rel, based on [3].

TABLE 4
Complexities of Predicate Rel, Predicate Rel�, and Simultaneous

Fig. 7. Illustration of the example of “no queue pruning” when using the algorithm

of Fig. 6.

Fig. 8. Algorithm Predicate Rel�: Changes to Predicate Rel when r�i;j satisfies
CONVEXITY.

Fig. 9. The condition for intersection of intervals in a solution for simultaneous

occurrence when examining intervals pairwise.

Fig. 10. Algorithm Predicate Rel� to detect simultaneous events: Changes to

algorithm Predicate Rel are listed.



This research considered only conjunctive predicates, whereby
each process can locally determine the start and end of the local
intervals of interest. Hence, the global predicate was a conjunct of
such local predicates. The key here was that any interval was
involved in at most n� 1 comparisons with the intervals from the
heads of other queues, before some interval gets deleted—see the
proof of Theorem 3. More general predicates, such as
xi þ yj þ zk ¼ 40, termed relational predicates, incur exponential
overhead in terms of time complexity at P0 and, hence, are not
considered here. The exponential cost arises because, if a pairwise
comparison fails between a pair of intervals at queue heads, they
may still form part of a solution and, hence, cannot be deleted
from the queues.

Although relational predicates cannot be detected in polyno-
mial time, the following types of queries under the “Simultaneous
occurrence” relationship can be solved. Queries such as xi ¼ yj ¼
zk can be solved with the same overhead as for Predicate Rel. Each
interval is involved in at most n� 1 comparisons, after which at
least one interval is deleted if the solution is not found. (Refer to
the proof of Theorem 3.) This is due to the monotonicity property
of time—the interval that finishes earliest can be deleted if a
solution is not found. Detecting such predicates allows one to
determine whether nearby sensors are simultaneously sensing the
same/similar values, such as of temperatures.

For range predicates where the range is known to the sensors
a priori, each reported interval is the duration in which the sensed
values are within the range. If the range is not known a priori, then
every single change in the sensed variable needs to be reported.
This is not efficient.

Note that negation is easily supported. The global predicate
should be in Conjunctive Normal Form, where each conjunct is
local and may be a negation. Complex predicates such as � =
“tigers drink before deer and no birds drink in-between” can also
be handled. Let T , B, and D denote the intervals in which tigers,
birds, and deer drink. Then, � is detected when T mjojsjcb B AND
B mjojfbjc D AND D pb T . This assumes that there are several
intervals on each process line and all of the intervals and their
negated intervals eventually finish [18]. Further, variable latency
which leads to messages from different nodes not arriving
temporally ordered at P0 is not a problem. There is a separate
queue Qi at P0 for the event stream from each sensor Si.

In sensor networks, a process Pi may batch the transmission of
a sequence of messages for energy conservation, resulting in high
latency. As each message sent to P0 has the start and end
timestamp of the corresponding interval (see the data structure of
Fig. 4), the algorithm is immune to such latencies and jitter.

If a sensor can sense multiple parameters (e.g., MICAz
Crossbow can sense temperature and light), then each parameter
is abstracted as a different process with its own timeline. So, in
Fig. 1c and Fig. 1d, as many different processes as there are
parameters that are sensed would run at the location of such a
sensor. If sensor S4 were a MICAz mote, there would be two
process timelines, P 04 and P 004 , instead of P4, each with their
intervals that get projected separately on the time line L4.

The paper assumed reliable FIFO channels from each Pi to P0. If
a message gets lost and if the interval corresponding to the lost
message was part of a solution, then that solution would go
undetected. That is the price to pay if unreliable delivery is
assumed. There are well-understood mechanisms (such as using
sequence numbers and ACKs) to impose reliable delivery over
unreliable channels. Whether the cost of reliable delivery is
acceptable depends on the application. For messages from Pi
received out of order, the use of sequence numbers can be used to
present a sequential order of the intervals in the queue Qi at P0.

The presented formalism assumed local discreteness, which
implied that the local interval separation property holds and that no
point intervals were allowed. Variations can be handled by adapting
this formalism. For example, if local interval separation is relaxed, an
interval can begin at the same instant at which the previous interval
at the same process ends.X0i would be a successor ofXi ifmðXi;X

0
iÞ

or pðXi;X
0
iÞ. In Table 2, HðmÞ would exclude f; fb; q, and HðsÞ,

HðsbÞ, HðqÞ would each exclude mb. In Table 3, for 7!, there would
be “1” for ðf;mÞ, ðfb;mÞ, ðq;mÞ, ðmb; sÞ, ðmb; sbÞ, and ðmb; qÞ.
Theorem 1 can be seen to still hold. Other variations, such as
allowing points(one point per clock tick) and about clock properties
and time density, can be similarly handled.
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