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ABSTRACT

Cloud computing offers a variable-cost payment scheme that allows cloud customers to specify 
the price they are willing to pay for renting spot instances at much lower costs than fixed payment 
schemes, and depending on the varying demand from cloud customers, cloud platforms could revoke 
spot instances at any time. To alleviate the effect of spot instance revocations, applications often 
employ different fault-tolerance mechanisms to minimize or even eliminate the lost work for each spot 
instance revocation. However, these fault-tolerance mechanisms incur additional overhead related to 
application completion time and deployment cost. This article proposes a novel cloud market-based 
approach for provisioning spot instances using features of cloud markets to reduce the deployment 
cost and completion time of applications. The simulation results show that the approach reduces the 
deployment cost and completion time compared to approaches based on fault-tolerance mechanisms.
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INTRODUCTION

In this section, the authors describe cloud spot markets, discuss different types of fault-tolerance 
mechanisms, and present our major contributions.

Cloud Spot Markets
Cloud computing offers a variable-cost payment scheme that allows cloud customers to specify the 
price they are willing to pay for renting spot instances to run their applications at much lower costs 
than fixed payment schemes, and depending on the varying demand from cloud customers, cloud 
platforms could revoke spot instances at any time. The price of a spot instance can increase if the 
demand increases and the number of available instances that can be supported by a finite number 
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of physical resources in a data center of cloud providers decreases. Conversely, the price of this 
spot instance can decrease if the demand decreases and the number of available instances increases. 
Therefore, if the customer’s price is greater than the cloud provider’s price that depends on the demand, 
a spot instance will be provisioned to cloud customers’ applications at the customer’s price. However, 
when spot instances are already provisioned to cloud customer applications and the cloud provider’s 
price goes above the customer’s price, the cloud providers will terminate those spot instances within 
two minutes by sending termination notification signals. As a result, even though cloud customers 
sometimes rent spot instances at 90% lower prices than on-demand prices (Amazon, 2022), their 
applications that run on spot instances can be terminated based on price fluctuations that happen 
frequently; thus, those applications may incur additional overhead related to application completion 
time and deployment cost from re-executing lost work for each spot instance revocation.

Fault-Tolerance Mechanisms
Applications may benefit from different fault-tolerance mechanisms to alleviate the work lost for 
each spot instance revocation. However, these fault-tolerance mechanisms incur additional overhead 
related to application completion time and deployment cost. Fault-tolerance mechanisms are typically 
divided into three types: migration, checkpointing, and replication. First, migration mechanisms are 
often employed to reactively migrate the state of an application (i.e., memory and local disk state) to 
another instance prior to a spot instance revocation (Goundar et al., 2018), as illustrated in Figure 1. 
The overhead of a migration mechanism is determined based on the migration time of an application 
and the number of spot instance revocations during the application execution. The migration time of 
an application mostly depends on the resource usage of the application, whereas the number of spot 
instance revocations depends on the volatility of cloud spot markets (i.e., availability zones in AWS 
regions). A larger resource usage of an application often results in a higher overhead of a migration 
mechanism. Conversely, a smaller resource usage of an application often results in a lower overhead 
of a migration mechanism. A similar explanation is applicable for the volatility of cloud spot markets; 
thus, a higher overhead of a migration mechanism will lead to a higher overhead of an application’s 
completion time and deployment cost.

Second, checkpointing mechanisms are often employed to proactively checkpoint an application’s 
state to remote storage (e.g., AWS S3) (Jaswal et al., 2022), as illustrated in Figure 2. The overhead 
of a checkpointing mechanism is specified based on the time to checkpoint an application’s state 
and the number of checkpoints, which represents how often an application’s state is stored in remote 

Figure 1. An overview of a migration mechanism

Figure 2. An overview of a checkpointing mechanism
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storage during the application execution, along with the time to re-execute the lost work from the 
last checkpoint for each spot instance revocation. The checkpointing time of an application relies 
on the resource usage of the application and the number of checkpoints typically specified by 
engineers who maintain applications deployed on spot instances. If engineers specify a large number 
of checkpoints, the overhead time to re-execute the lost work from the last checkpoint for each spot 
instance revocation will likely decrease, whereas the overhead time to checkpoint the state of an 
application will likely increase. Conversely, if engineers specify a small number of checkpoints, the 
overhead time to checkpoint the state of an application will likely decrease, whereas the overhead 
time to re-execute the lost work from the last checkpoint for each spot instance revocation will likely 
increase. Hence, checkpointing mechanisms require analyzing cloud spot markets and the resource 
usage of applications to optimize the tradeoff between the overhead of actual checkpoints and the 
overhead of re-executing lost work.

Third, replication mechanisms are often employed to replicate the computations of an application 
among different instances (Panda et al., 2018), as illustrated in Figure 3. The overhead of a replication 
mechanism is based on the degree of replication (i.e., the number of replicated instances) and the 
number of revocations that depends on the volatility of cloud spot markets and is independent 
of the resource usage of an application. As a result, a higher overhead of these fault-tolerance 
mechanisms leads to a higher overhead related to application completion time and deployment cost. 
The motivation behind this work is that spot instance revocations are rare in practice (Sharma et al., 
2017). Although the availability of spot instances cannot be guaranteed, the authors provision a spot 
instance with a significantly large lifetime resulting in lower deployment costs compared to fault-
tolerance mechanisms.

Major Contributions
The authors address a challenging problem for applications deployed on cloud spot instances that 
results from the overhead of employing fault-tolerance mechanisms. The authors propose a novel 
cloud market-based approach for Provisioning Spot Instances using FEatures of cloud Markets 
(P-SIFEM) to reduce the deployment cost and completion time of applications. P-SIFEM is composed 
of two key ideas. (1) A key idea is that the authors can eliminate the additional overhead resulting 
from employing fault-tolerance mechanisms by provisioning a spot instance with a high likelihood 
of completing jobs before revocation. (2) Another idea is that the authors can reduce consequent 
revocations when a spot instance is revoked by provisioning a new spot instance with the next highest 
lifetime and a high revocation gap with the revoked spot instance. The authors evaluate P-SIFEM in 
simulations and use Amazon spot instances that contain jobs in Docker containers and realistic price 
traces from EC2 markets. Our simulation results show that our approach reduces the deployment cost 
and completion time compared to approaches based on fault-tolerance mechanisms. The P-SIFEM 
code and our simulation results are publicly available.

Figure 3. An overview of a replication mechanism
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This paper is an extension of our paper with the following new contributions:

•	 The authors present additional experimental results for evaluating the effectiveness of P-SIFEM 
with different settings of a fault-tolerance approach, along with an illustrative example of 
P-SIFEM.

•	 The authors add a formal framework, model, and mathematical description for the overall 
deployment time and cost when using P-SIFEM and the fault-tolerance approach.

•	 The authors add a formal framework, model, and mathematical description for features of cloud 
spot markets used by P-SIFEM, such as the spot instance lifetime, revocation probability, and 
revocation gap between cloud spot markets.

•	 The authors provide a detailed literature review and threats to the validity of P-SIFEM, along 
with multiple directions for future work.

The remainder of this paper is organized as follows. The related work section presents related work. 
The problem statement section defines the problem statement. In our approach section, the authors 
explain our approach for Provisioning Spot Instances using FEatures of cloud Markets (P-SIFEM), 
describe our key ideas for P-SIFEM, and explain the P-SIFEM algorithm. The evaluation section 
provides the evaluation. The results section discusses the results. Finally, the authors conclude this 
work in the conclusion section.

RELATED WORK

In this section, the authors discuss the related work concerning modeling spot markets, employing 
fault-tolerance mechanisms, and optimizing resource provisioning.

Modeling Spot Markets
There is a large body of work in modeling spot markets to reduce the spot instance cost and the 
performance penalty that results from a high number of revocations by designing optimal bidding 
strategies (Khodak et al., 2018; Herzfeldt et al., 2020) and developing prediction schemes (Mishra et 
al., 2019). Khodak et al. (2018) proposed an adaptive bidding approach that leverages cloud dynamics 
to optimize spot instance bidding strategies. Mishra et al. (2019) proposed an approach based on 
probability between historical price transitions for short term price prediction of spot instances. Javadi 
et al. (2011) proposed a statistical approach to analyze changes in spot price variations and the time 
between price variations to explore the characterization of spot instances that are required to design 
fault-tolerant algorithms for applications deployed on cloud spot instances.

Employing Fault-Tolerance Mechanisms
Several prior works focused on reducing the effect of spot instance revocations using fault-tolerance 
methods (Subramanya et al., 2015; Goundar et al., 2018), such as virtual machine (VM) migration 
(Sharma et al., 2017; Singh et al., 2022; Shastri et al., 2017; Soltani et al., 2020; Priyanka et al., 2021), 
replication (Dharwadkar et al., 2018; Panda et al., 2018), and checkpointing (Jaswal et al., 2022; 
Subramanya et al., 2015). Subramanya et al. (2015) proposed a batch computing service that chooses 
a fault-tolerance approach and a cloud spot market to reduce the effect of spot instance revocations 
without requiring application change. Sharma et al. (2017) focused on changing applications to 
determine and migrate to the lowest cost instances, leading to large deployment cost savings with a 
neglectable impact on completion time. However, this work is subject to limited types of application 
architectures, such as MapReduce architectures not being applicable to changing applications, as spot 
prices change due to geographical constraints. Shastri et al. (2017) proposed a resource container 
that enables applications to self-migrate to new spot VMs in a way that optimizes cost efficiency as 



International Journal of Cloud Applications and Computing
Volume 12 • Issue 1

5

cloud spot prices change. Dharwadkar et al. (2018) proposed an task scheduling approach based on 
replication strategies to economically and efficiently run scientific applications. Jaswal et al. (2022) 
proposed a checkpoint mechanism that effectively identifies malicious faults to ensure the reliability 
of provided cloud services.

Optimizing Resource Provisioning
There has been significant prior work on optimizing resource provisioning, including payment schemes 
(Vinothina et al., 2022; Bisht et al., 2022; Aliyu et al., 2020), resource elasticity (Ahuja et al., 2020; 
Nandal et al., 2021; Sahana et al., 2020; Gond et al., 2019; Youssef et al., 2018) resource reclamations 
(Sharma et al., 2019; Funaro et al., 2019; Harrath et al., 2019), testing the effect of spot instance 
revocations (Alourani et al., 2020), and optimizing performance (Kapgate, 2021; Ahammad et al., 
2021; Swarnakar et al., 2021). Sharma et al. (2019) presented a hybrid approach based on pricing 
and system models that encourages self-capping to increase cloud utilization. Aliyu et al. (2020) 
presented a hybrid meta-heuristic approach based on the ant colony optimization model to effectively 
provision cloud computing resources. Bisht et al. (2022) proposed a workflow scheduling algorithm 
based on Resources from heterogeneous environments to reduce makespan, energy consumption, load 
balancing, and deployment cost. Harrath et al. (2019) proposed a resource provisioning approach based 
on a multi-objective genetic algorithm to provision real-time tasks to cloud computing resources.

Critical Analysis
To the best of our knowledge, P-SIFEM is the first solution for provisioning spot instances without 
employing fault-tolerance mechanisms. While many of the prior works focused on reducing the effect 
of spot instance revocations by modeling spot markets and using fault-tolerance methods, these works 
are subject to altering pricing algorithms and are exposed to incurring overhead related to application 
completion time and deployment cost, respectively. In contrast, P-SIFEM leverages features of cloud 
spot markets to mitigate the effect of spot instance revocations. Additionally, P-SIFEM is orthogonal 
to optimizing resource provisioning approaches to economically deploy applications in clouds.

PROBLEM STATEMENT

In this section, the authors describe an illustrative example of P-SIFEM and formulate the problem 
statement.

An Illustrative Example
An illustrative example is shown in Figure 4. Applications deployed on cloud spot instances are often 
exposed to revocations by cloud providers, and as a result, these applications often employ various 
fault-tolerance mechanisms to alleviate the effect of spot instance revocations. However, these fault- 
tolerance mechanisms often incur additional overhead related to application completion time and 
deployment cost. Our illustrative example shows a comparison of deployment costs for provisioning 
spot instances using a fault-tolerance approach and a cloud market-based approach (i.e., P-SIFEM). 
Since cloud spot instances are often used to run batch job applications, the authors use a batch job 
application throughout the illustrative example to compute the deployment cost for provisioning spot 
instances using these approaches. As an example, the authors assume a cloud spot market contains 
three spot instances (i.e., Spot Instance 1, Spot Instance 2, and Spot Instance 3) that meet the resource 
requirements for a batch job (i.e., a job of 10 hours execution length and 64 GB of memory footprint). 
For ease of calculation, the authors assign a fixed price per hour for each spot instance throughout 
the entire job runtime. The prices of Spot Instance 1, Spot Instance 2, and Spot Instance 3 are $1.2, 
$1.25, and $1.3, respectively, and the lifetimes of Spot Instance 1, Spot Instance 2, and Spot Instance 
3 are 4, 16, and 24 hours, respectively, as illustrated in Table 1 in Figure 4.



International Journal of Cloud Applications and Computing
Volume 12 • Issue 1

6

First, the authors run the job using a fault-tolerance approach that employs a checkpointing 
mechanism and a cost-driven selection policy that selects a spot instance with the lowest price. To 
employ the checkpointing mechanism, the authors need to specify the number of checkpoints in a 
way that balances the overhead of actual checkpointing and the overhead of re-executing the lost 
work from the last checkpoint for each spot instance revocation. Since the deployment cost depends 
on the number of billing cycles, the authors specify the number of checkpoints for a job based on 
the number of billing cycles (i.e., a checkpoint is taken in each billing cycle). Suppose the time to 
checkpoint the state of a job to remote storage (i.e., T

c
) is five minutes and the time to restore a 

checkpoint from remote storage (i.e., recovery time or T
r

) is also five minutes. Initially, Spot 
Instance 1 will be selected based on the cost-driven selection policy to run the job (i.e., T

e
) until 

Spot Instance 1 is revoked after four hours according to the lifetime of Spot Instance 1. Additionally, 
a checkpoint will be taken/stored in each billing cycle (i.e., an hour based on the billing policies 
of various cloud computing platforms (Amazon, 2022)). Spot Instance 1 will complete executing 
three hours of the job and 15 minutes for storing three checkpoints before Spot Instance 1 is revoked 
at its fourth hour of execution according to the lifetime of Spot Instance 1, and there will be 45 
minutes of lost work that was executed but not saved into remote storage (i.e., a checkpoint). Thus, 
the billing time is four hours, whereas the completed execution time of the job is three hours and 
the overhead time resulting from checkpoints and lost work is one hour, as illustrated in Table 2 
in Figure 4. To resume the job execution, Spot Instance 1 will again be selected based on the cost-
driven selection policy; then, the last checkpoint will be restored, which takes five minutes, to 
resume the execution for another three hours plus 15 minutes for storing three checkpoints before 
this spot instance is revoked at its fourth hour of execution, and there will be 40 minutes of lost 
work that was executed but not saved in remote storage. Thus, the billing time increases by four 
hours to become eight hours, whereas the completed execution time of the job increases by three 

Figure 4. An illustrative example of P-SIFEM. T
c

 designates the checkpoint time, T
e

 designates the execution time, T
l

 designates 

the lost work time, and T
r

 designates the restoring time. The overhead time includes the checkpoint time, the restoring time, 
and the re-execution time of the lost work. Table 1 includes an overview of cloud spot markets: the names of spot instances 
followed by their lifetimes and their costs per hour rate (i.e., a single billing cycle in cloud platforms (Amazon, 2022)). The other 
tables represent the deployment information at certain points of execution.
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hours to become six hours in total and the overhead time increases by one hour to become two 
hours in total, as illustrated in Table 3 in Figure 4. Similarly, the next run will complete executing 
another three hours, 20 minutes for storing/restoring checkpoints, and 40 minutes of lost work. At 
this point, the billing time is 12 hours, whereas the completed execution time of the job is nine 
hours, and the overhead time is three hours, as illustrated in Table 4 in Figure 4. Again, Spot 
Instance 1 will be selected, and the last checkpoint will be restored to resume the remaining 
execution of the job for the last hour; then, Spot Instance 1 will be revoked due to the completion 
of the job execution. Since the last execution time is one hour and five minutes, the billing time 
will be rounded up to two hours based on the billing policy that charges are counted per billing 
cycle (i.e., a complete hour). The billing time is 14 hours, whereas the completed execution time 
of the job is 10 hours, and the overhead time is four hours, as illustrated in Table 5 in Figure 4. As 
a result, the total cost of executing this job using the fault-tolerance approach will be $16.8, which 
is the billing time (i.e., 14 hours) multiplied by the price of selected spot instances throughout the 
entire job runtime (i.e., the price of Spot Instance 1, which is $1.2).

Second, the authors run the job using a cloud market-based approach that uses the spot instance 
lifetime and a lifetime-driven selection policy that selects the spot instance with the highest lifetime. 
To reduce the revocation risk of this policy, the authors limit the selection of spot instances to 
instances whose lifetimes are significantly higher than the job’s execution length. When using the 
cloud market-based approach, if a spot instance is revoked, the job will be re-executed from the 
beginning, and the work before the revocation will be lost. When the job is executed using the cloud 
market-based approach, Spot Instance 3 will be selected based on the lifetime-driven selection 
policy to execute the job until the job execution is completed or Spot Instance 3 is revoked after 24 
hours according to the lifetime of Spot Instance 3. Spot Instance 3 will complete 10 hours of the 
job execution and will be terminated before it is revoked according to the lifetime of Spot Instance 
3, as illustrated in Table 6 in Figure 4. Thus, the total cost of executing this job using the cloud 
market-based approach will be $13, which is the billing time (i.e., 10 hours) multiplied by the price 
of selected spot instances throughout the entire job runtime (i.e., the price of Spot Instance 3, which 
is $1.3). In summary, even though the fault-tolerance approach selects the most inexpensive spot 
instance in the cloud spot market to run the job, this approach leads to a higher deployment cost 
resulting from the overhead of the fault-tolerance approach (i.e., the checkpointing mechanism). 
On the other hand, the cloud market-based approach selects the most expensive spot instance in 
the cloud spot market but results in a lower deployment cost since this approach does not incur 
any additional overhead resulting from employing fault-tolerance mechanisms. As a result, the 
cloud market-based approach enables cloud customers to avoid unnecessary overhead resulting 
from employing fault-tolerance mechanisms while benefiting from spot instances’ extraordinarily 
lower prices compared to on-demand instances’ prices.

Finally, although cloud market-based approaches could reduce deployment costs compared 
to fault-tolerance approaches, cloud market-based approaches cannot guarantee the availability of 
spot instances that depend on the varying demands of many cloud customers, leading to higher 
deployment costs and completion times than the fault-tolerance approaches. For example, when 
the job is executed using the cloud market-based approach, Spot Instance 3 will be selected based 
on the lifetime-driven selection policy to execute the job until the job execution is completed or 
Spot Instance 3 is revoked after 24 hours according to the lifetime of Spot Instance 3. However, 
suppose that Spot Instance 3 is revoked right before the completion of the job execution (e.g., 
after 9 hours) as a part of the normal behavior of spot instances. Then, the job will be re-executed 
from the beginning, and the work before the revocation will be lost. To resume job execution, Spot 
Instance 3 will again be selected based on the lifetime-driven selection policy. Spot Instance 3 
will complete 10 hours of job execution and will be terminated before it is revoked according to 
its lifetime. Thus, the billing time increases by 10 hours to become 20 hours, and the total cost of 
executing this job using the cloud market-based approach will be $26, which is the billing time 
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(i.e., 20 hours) multiplied by the price of selected spot instances throughout the entire job runtime 
(i.e., the price of Spot Instance 3, which is $1.3). In this case, the cloud market-based approach 
leads to much higher deployment costs and completion time than the fault-tolerance approach. As 
a result, the volatility of cloud markets has a high impact on the effectiveness of cloud market-
based approaches.

The Problem Statement
Cloud computing offers a variable-cost payment scheme that allows cloud customers to specify 
the price they are willing to pay for renting spot instances to run their applications at much lower 
costs than fixed payment schemes. In exchange, applications deployed on spot instances are 
often exposed to revocations by cloud providers, and as a result, these applications often employ 
different fault-tolerance mechanisms to minimize or even eliminate the lost work for each spot 
instance revocation. However, these fault-tolerance mechanisms incur additional overhead related 
to application completion time and deployment cost. In this paper, the authors address a challenging 
problem for applications deployed on cloud spot instances that results from the overhead of 
employing fault-tolerance mechanisms—determining how to effectively deploy applications on spot 
instances using features of cloud markets to reduce the deployment cost and completion time of 
applications. The root of this problem is that applications often employ fault-tolerance mechanisms 
to minimize the lost work for each spot instance revocation without taking into consideration the 
overhead of fault-tolerance mechanisms, leading to significantly larger deployment costs and 
completion times of applications, and as a result, the advantages of cloud spot instances could be 
significantly minimized or even completely eliminated:
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OUR APPROACH

In this section, the authors state our key ideas for P-SIFEM, outline the architecture of P-SIFEM, 
and explain the P-SIFEM algorithm.

Key Ideas
A goal of our approach is to automatically provision spot instances without employing fault-tolerance 
mechanisms to reduce the deployment cost and completion time of applications. Our approach 
leverages features of cloud spot markets such as the spot instance lifetime, revocation probability, 
and revocation correlation between cloud spot markets and provision spot instances for applications. 
The spot instance lifetime (i.e., mean time to revocation (MTTR)) described by Eq. (1) represents 
the average time until a spot instance’s price rises above the corresponding on-demand instance price 
because cloud customers are often not willing to pay more than the on-demand price to rent spot 
instances. The authors use the corresponding on-demand prices instead of customer bids to compute 
the lifetime of spot instances. Since Amazon recently changed its pricing policy (New Spot Instance 
Pricing, 2022), such that customers are no longer required to place bids, and since spot prices are 
based on supply and demand, revocations are no longer correlated to customer bids. The revocation 
probability of each spot instance described by Eq. (2) represents the estimated lifetime of a spot 
instance during a job execution and is calculated by dividing the job’s execution length by the lifetime 
of the provisioned spot instance. The revocation correlation between cloud spot instances described 
by Eq. (3) represents how often these spot instances were revoked at the same time (i.e., the same 
hour representing a single billing cycle in cloud platforms (Amazon, 2022)) over three months from 
June 2019 to September 2019.

In general, cloud spot markets show a broad range of characteristics. These important 
characteristics are at the core of our approach. First, revocations rarely occur in some cloud spot 
markets, so the lifetime of these markets is very high (i.e., > 600 hours) (Sharma et al., 2017). 
Although the availability of spot instances cannot be guaranteed, the authors provision a spot instance 
with a significantly large lifetime, resulting in lower deployment costs compared to fault-tolerance 
mechanisms. Second, employing fault-tolerance mechanisms often results in additional overhead 
related to application completion time and deployment cost (Subramanya et al., 2015). Third, cloud 
spot markets exhibit variations in price characteristics for a similar type of spot instance across various 
cloud spot markets (i.e., availability zones in AWS regions). Thus, a spot instance in a cloud market 
is often independent of a spot instance in another cloud market, which suggests that a spot instance’s 
revocation in a cloud market is often uncorrelated with a spot instance in another cloud market 
(Sharma et al., 2017). Based on these characteristics, our key idea is that the authors can eliminate 
the additional overhead resulting from employing fault-tolerance mechanisms by provisioning a spot 
instance with a high likelihood of completing jobs before revocation.

Another idea is that the authors can reduce consequent revocations when a spot instance is 
revoked by provisioning a new spot instance with the next highest lifetime and a high revocation gap 
with the revoked spot instance. When the authors provision a spot instance that is uncorrelated with 
the revoked spot instance, it is more unlikely that the new spot instance will be revoked again than 
another spot instance that is highly correlated with the revoked spot instance. As a result, these key 
ideas enable cloud customers to avoid unnecessary overhead resulting from employing fault-tolerance 
mechanisms; hence, cloud customers can execute jobs with a completion time near that of on-demand 
instances but at a cost of only spot instances.

Overview of P-SIFEM
The architecture of P-SIFEM is illustrated in Figure 5. Cloud market features are at the core of P-SIFEM 
to provision spot instances for applications. Provisioning spot instances for applications based on 
cloud market features reduces the deployment cost of jobs compared to the deployment cost of jobs 
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using a fault-tolerance approach or on-demand instances, in addition to maintaining a completion 
time near that of on-demand instances. There are four main phases in P-SIFEM. 1) Collecting cloud 
market prices and the resource requirements for a job. Initially, P-SIFEM uses EC2’s REST API to 
collect cloud market prices for all instances (i.e., servers) across all markets (i.e., availability zones 
and regions) over three months. P-SIFEM supports a predefined resource usage of a job to guide the 
selection of spot instances and assumes a job’s resource usage does not change significantly (i.e., 
unphased jobs) over runtime. 2) Analyzing cloud spot market features to identify a suitable spot 
instance for a job. P-SIFEM first filters cloud spot markets to identify spot instances that satisfy 
the job’s resource usage requirements and then computes the lifetime for each spot instance, the 
revocation probability for the job and a certain spot instance, and the revocation correlation between 
cloud spot instances. P-SIFEM sorts the spot instances’ lifetimes in descending order to provision 
the spot instance with the highest lifetime as long as the lifetime of the spot instance is significantly 
higher than the job’s execution length. P-SIFEM uses the revocation probability to determine when 
a spot instance might be revoked during its execution.

Additionally, P-SIFEM uses the revocation correlation between a pair of cloud spot instances 
when the provisioned spot instance is revoked to provision a new spot instance that is less correlated 
or even uncorrelated with the revoked spot instance to reduce the likelihood that the new spot instance 
will again be revoked over the job’s runtime. 3) Provisioning a suitable spot instance for the job. 
P-SIFEM uses the features of cloud spot markets and the resource requirements of spot instances to 
provision a suitable spot instance for a job. 4) Monitoring cloud market prices and the job execution 
progress over the job’s execution. P-SIFEM monitors cloud market prices to determine when a spot 
instance is revoked based on the revocation probability of the provisioned spot instance. When the 
provisioned spot instance is revoked, P-SIFEM provides a new spot instance with the next highest 
lifetime and a low revocation correlation with the revoked spot instance. P-SIFEM also monitors the 

Figure 5. The architecture of P-SIFEM
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progress of the job execution to determine when the job execution is completed. Finally, our hypothesis 
is that leveraging cloud market features without employing fault-tolerance mechanisms to provision 
spot instances for applications reduces the deployment cost compared to the deployment cost using 
fault-tolerance approaches or on-demand instances and maintains the completion time near that of 
on-demand instances.

Algorithm 1. P-SIFEM’s algorithm for provisioning spot instances using features of cloud markets

1: Inputs: Jobs J , Cloud Markets M , Resources R
2: U  ← FindSuitableServers(J , R )
3: L  ← ComputeLifeTime(M , U )
4: for each j  in J  do
5:           S

j
 ← ServerBasedLifeTime ( j , M , L )

6:           while j  ← Completed do
7:                     s

j
 ← Highest(S

j
)

8:                     if length(s
j
) >> length( j ) then

9:                               v
sj
 ← RevocationProbability ( j , s

j
)

10:                               ProvisionHighestLifeTime ( j , s
j
)

11:                               if s
j
 encounters v

sj
 then

12:                                         C
j
, T

j
 ← C

j
∪ {c

sj
}, T

j
∪ { t

sj
}

13:                                         G
sj
 ← FindLowCorrelation ( j , s

j
)

14:                                         S
j
 ← (S

j
 \ {s

j
}) ∩ G

sj

15:                               end if
16:                     end if
17:           end while
18:           C

j
, T

j
 ← C

j
∪ {c

sj
}, T

j
∪ { t

sj
}

19:           C , T  ← ComputeCostExeTime (C
j
, T

j
)

20: end for
21: return C , T

P-SIFEM Algorithm
P-SIFEM is illustrated in Algorithm 1 that takes in the batch job set J ; the resource requirement set 
R ; and the entire set of cloud markets M , containing on-demand instance types, prices of on-demand 
instances, spot instance types, their availability zones, their regions, and spot instance prices over 
three months. Starting from Step 2, the algorithm finds a suitable set of spot instances U  that meet 
the resource requirements, which are provided by engineers who create and maintain cloud-based 
applications (e.g., batch jobs). In P-SIFEM, the authors use the memory size to determine suitable 
sizes of spot instances that are supported by EC2 markets (Amazon, 2022). The authors use the 
memory size to determine suitable spot instances, as the memory maintains the state of a running 
application, which has a significant influence on the overhead related to application completion time 
(i.e., the application’s checkpointing time). P-SIFEM selects spot instances that exactly match the 
required size of the memory to ensure that application completion time does not vary when a larger 
memory size is permitted. In Step 3, for each suitable spot instance, the spot instance lifetime (i.e., 
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the spot instance’s MTTR) is computed based on the corresponding on-demand instance price. L  is 
the set of such lifetimes.

In Steps 4-20, for each job, the algorithm is executed until the jobs in the job set are completed. 
In Step 5, the cloud spot markets are first filtered to include only a set of suitable spot instances S

j
 

for the job j  according to their lifetimes L , and then these spot instances are sorted in descending 
order based on their lifetimes. In Steps 6–17, job j  is executed until the job’s execution is completed. 
In Step 7, the algorithm selects a spot instance s

j
 with the highest lifetime. In Step 8, the authors 

ensure that the highest lifetime for the spot instance s
j
 is significantly higher than the job j s'  

execution length to reduce the revocation probability of the provisioned spot instance during the job 
execution. In Step 9, the algorithm computes the revocation probability of job j  scheduled on instance 
s , called v

sj
, by dividing the job j s'  execution length by the lifetime of the provisioned spot instance 

s
j
, as described by Eq. (2). In Step 10, the spot instance s

j
 with the highest lifetime is provisioned 

to (re)start executing job j :

T st et rt
P

s

n

s s s
= + +( )

=
∑

1

	 (4)

where n  designates the total number of provisioned spot instances to execute a certain job. st
s
, et

s
, 

and rt
s

 are the startup time, the execution time, and the re-execution time, respectively, of a provisioned 
spot instance s during the job execution when using P-SIFEM:
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where n  designates the total number of provisioned spot instances to execute a certain job. st
s
, et

s
, 

rt
s

, bt
s
, and p

s
 are the startup time, the execution time, the re-execution time, the buffer time, and 

the price, respectively, of a provisioned spot instance s  during job execution when using P-SIFEM.
In Steps 11–15, the algorithm checks whether the provisioned spot instance s

j
 is revoked based 

on its revocation probability v
sj

 during job execution j . When a spot instance s
j
 is revoked, the 

deployment time t
sj

 and cost c
sj

 are added to the total deployment time set T
j
 and cost set C

j
, 

respectively, in Step 12. In P-SIFEM, the deployment time represents the job’s execution time until 
the spot instance is revoked, the deployment cost of a spot instance represents the price of the 
provisioned spot instance at a certain execution point, and the cost is computed at a per hour rate 
(i.e., a single billing cycle in cloud platforms (Amazon, 2022)). In Step 13, the high revocation gap 
set G

sj
 with the revoked spot instance is computed using the revocation gap between cloud spot 

instances. In Step 14, the revoked spot instance is removed from the set of suitable spot instances 
S
j
, and the set of suitable spot instances S

j
 is filtered based on a high revocation gap set G

sj
. The 

cycle of Steps 6–17 repeats until the job j s'  execution is completed. When the job j s'  execution 
is completed, the deployment time t

sj
 and cost c

sj
 are added to the total deployment time set T

j
 and 

cost set C
j
, respectively, in Step 18. In Step 19, the total deployment time set T

j
 and cost set C

j
 

are computed and then added to the overall deployment time T  (i.e., T
p

) described by Eq. (4) and 
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cost C  (i.e., C
p

) described by Eq. (5), respectively. The cycle of Steps 4–20 repeats until the jobs 
in the job set are completed. Finally, the total deployment time T  and cost C  are returned in Step 
21 as the algorithm ends.

EVALUATION

In this section, the authors describe the design of the study to evaluate P-SIFEM and state threats to 
its validity. The authors pose the following research questions (RQs):

RQ1: How efficient is P-SIFEM compared to a fault-tolerance approach in executing applications?
RQ2: How effective is P-SIFEM compared to a fault-tolerance approach in reducing the deployment 

cost of applications?
RQ3: Does optimizing the settings of a fault-tolerance approach eliminate the effectiveness of 

P-SIFEM?

Subject Applications
The authors evaluate P-SIFEM in simulations and use Amazon spot instances that contain jobs 
in Docker containers and realistic price traces from EC2 markets, which contain approximately 
7,600 independent spot prices for different types of instances among 44 availability zones (i.e., data 
centers) in 16 regions. P-SIFEM packages jobs in Docker containers helps to simplify restoration and 
checkpointing. The authors use Amazon spot instances since their lifetimes often exceed hundreds of 
hours, unlike the lifetimes for Google preemptible instances, which are less than 24 hours (Sharma 
et al., 2019). Additionally, the authors use Docker containers since they support checkpointing and 
restoring container images. The authors use a load generator called Lookbusy (Carraway, 2022) to 
create synthetic jobs with different amounts of resource usage. In addition, P-SIFEM uses EC2’s 
REST API to collect realistic price traces for all spot instances across all markets (i.e., availability 
zones and regions) for three months from June 2019 to September 2019.

The authors conduct some analysis on the collected cloud market prices to compute a spot 
instance’s lifetime to identify the spot instance’s lifetime based on its revocations over three months 
and to seed our P-SIFEM for provisioning spot instances (i.e., P-SIFEM looks for the spot instance 
with the highest lifetime to provision it for a job as long as the lifetime of this spot instance is 
significantly higher than the job’s execution length). The authors also use the collected cloud market 
prices to compute the revocation correlation between cloud spot instances to identify how often 
a pair of spot instances were revoked at the same time (i.e., the same hour representing a single 
billing cycle (Amazon, 2022)) over three months and to seed our P-SIFEM for reprovisioning 
spot instances, i.e., P-SIFEM looks for a spot instance that has a low revocation correlation with 
the revoked spot instance to reduce the revocation probability of the provisioned spot instance 
over the job’s execution. In other words, when the authors provision a spot instance that is less 
correlated with the revoked spot instance, it is more unlikely that the new spot instance will be 
revoked again than another spot instance that is highly correlated with the revoked spot instance. 
As a result, our P-SIFEM simulator utilizes these analyses of cloud markets to (re)provision spot 
instances without employing fault-tolerance mechanisms and hence reduces the deployment cost 
and completion time of applications:

T st et vt ct rt
F

s

n

s s s s s
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=
∑

1

	 (6)
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where n  designates the total number of provisioned spot instances to execute a certain job. st
s
, et

s
, 

vt
s

, ct
s

, and rt
s

 are the startup time, the execution time, the recovery time, the checkpointing time, 
and the re-execution time, respectively, of a provisioned spot instance s  during job execution when 
using the checkpointing-based approach:
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where n  designates the total number of provisioned spot instances to execute a certain job. st
s
, et

s
, 

vt
s
, ct

s
, rt

s
, bt

s
, and p

s
 are the startup time, the execution time, the recovery time, the checkpointing 

time, the re-execution time, the buffer time of billing cycles, and the price, respectively, of a provisioned 
spot instance s  during the job execution when using the checkpointing-based approach.

The authors use a checkpointing-based fault-tolerance approach as the baseline. The authors set 
the frequency of checkpoints to be in every billing cycle (i.e., each hour) based on job length. The 
authors use different numbers of checkpoints during a job’s execution to identify an optimal setting 
of this checkpointing-based approach. Moreover, the authors compute the total deployment time (i.e., 
T
F

) and cost (i.e., C
F

) for the checkpointing-based approach, as described by Eqs. (6) and (7), 
respectively.

Methodology
Some objectives of the experiments are to demonstrate that P-SIFEM can efficiently execute 
applications and can effectively decrease the deployment cost of applications compared to a fault-
tolerance approach. For these objectives, the authors use different combinations of job execution 
length, job memory footprint, and number of revocations to show the impact on the completion time 
and the deployment cost when a spot instance is provisioned for the job using P-SIFEM and the 
fault-tolerance approach. The job execution lengths vary between 13 and 101 hours. The job memory 
footprints vary between 4 and 64 GB. The number of revocations per day of the job’s execution 
length varies between 1 and 16 times. The authors define two revocation rules with different ranges 
for P-SIFEM and the fault-tolerance approach to show the impact on the completion time and the 
deployment cost for different numbers of revocations during a job’s execution. When a spot instance 
is provisioned for a job using the fault-tolerance approach, the authors randomly send a fixed number 
of revocations per day of the job’s execution length, as suggested by prior work (Subramanya et al., 
2015). Conversely, when a spot instance is provisioned for a job using P-SIFEM, the authors use 
the revocation probability of a spot instance that relies on realistic price traces from the Amazon 
cloud to revoke the provisioned spot instance. The deployment cost/completion time for P-SIFEM 
is derived from the price/execution time of spot instances during the startup of a spot instance, the 
job’s execution, and the job’s re-execution after the provisioned spot instance is revoked. On the 
other hand, the deployment cost/completion time for the fault-tolerance approach is derived from 
the price/execution time of spot instances during the startup of a spot instance, the job’s execution, 
the job’s re-execution, the job’s checkpointing, and the job’s recovery (i.e., check point restoration). 
Evaluating P-SIFEM with different combinations of job settings (i.e., job execution length and job 
memory footprint) enables us to answer RQ1 and RQ2.

Another objective is to determine whether optimizing the settings of the fault-tolerance approach 
eliminates the effectiveness of P-SIFEM. That is, the authors use different numbers of checkpoints 
during a job’s execution to measure the impact on the overhead related to the completion time and 
deployment cost for different combinations of job length, job memory footprint, and number of 
revocations. In general, the time/cost overhead mainly falls into four categories: 1) the startup time/cost 
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overhead that represents additional startup time/cost, which occurs when starting a new spot instance 
after each revocation; 2) the re-execution time/cost overhead that represents the lost work for each 
revocation (i.e., lost work using P-SIFEM refers to unsaved and executed work from the beginning 
of a job, whereas lost work using the fault-tolerance approach refers to unsaved and executed work 
from the last checkpoint); 3) the checkpointing time/cost overhead that represents the time/cost to 
checkpoint a job’s container into remote storage (i.e., AWS S3); and 4) the recovery time/cost overhead 
that represents the time/cost to restore a checkpoint of a job’s container from remote storage (i.e., AWS 
S3) into a container deployed on a spot instance for each revocation. Furthermore, the time overhead 
is divided into the startup time, the job’s re-execution time, the job’s checkpointing time, and the job’s 
recovery time (i.e., checkpoint restoring time). The cost overhead is divided into the startup cost, the 
job re-execution cost, the job checkpointing cost, and the job recovery cost (i.e., checkpoint restoring 
cost). Both the P-SIFEM and the fault-tolerance approach encounter the time/cost of startup overhead 
and the time/cost of re-execution overhead, whereas the time/cost of checkpointing overhead and the 
time/cost of recovery overhead are only encountered by the fault-tolerance approach. Understanding 
whether the optimized number of checkpoints reduces the deployment cost and completion time 
compared to a random number of checkpoints and P-SIFEM enables us to answer RQ3.

The authors evaluate P-SIFEM in simulations and use Amazon spot instances that contain jobs 
in Docker containers (Docker Hub, 2022) and realistic price traces from EC2 markets (EC2 markets, 
2022). The experiments for the subject applications were performed using spot instances from Amazon 
EC2 (EC2 Spot Instances, 2022) called r5.2xlarge with an 8 GHz CPU and 64 GB of memory. The 
authors use Amazon spot instances since their lifetime often exceed hundreds of hours, unlike the 
lifetime for Google preemptible instances that are less than 24 hours (Sharma et al., 2019). P-SIFEM 
uses EC2’s REST API (Amazon EC2 API, 2022) to collect realistic price traces for all spot instances 
across all markets (i.e., availability zones and regions) for three months from June 2019 to September 
2019. Also, the authors use a load generator called Lookbusy (Carraway, 2022) to create synthetic 
jobs with different amounts of resource usage. The authors use the memory size to determine suitable 
sizes of spot instances that are supported by EC2 markets (EC2 markets, 2022). The authors use the 
memory size to determine suitable spot instances as the memory maintains the state of a running 
application, which has a significant influence on the overhead related to application completion time 
(i.e., application’s checkpointing time). Then, the authors package jobs in Docker containers that run 
on Ubuntu 18.04 LTS with a limited CPU and memory capacity for the provisioned spot instances to 
assess the effectiveness of P-SIFEM for different job memory footprints and job execution lengths. 
The authors use Docker containers since they support checkpointing and restoring container images 
and facilitate taking checkpoints at a periodic interval. P-SIFEM proactively checkpoints/restores 
the image of a job’s container deployed on a spot instance to/from an AWS S3 storage (Amazon S3, 
2022). In addition, the authors carried out each experiment 100 times and picked the median values 
for the completion time and the deployment costs for the subject applications, using P-SIFEM and 
the fault-tolerance approach. All experiments were performed on the same experimental platform to 
ensure a fair comparison between P-SIFEM and the fault-tolerance approach. The authors used the 
following checkpointing settings: the number of checkpoints is equal to the number of billing cycles 
of a job’s execution length because the deployment cost relies on the number of billing cycles instead 
of the actual completion time of the job.

Threats to Validity
Amazon recently changed its pricing policy, such that customers are not required to place bids and 
that spot prices are based on supply and demand, and as a result, revocations are no longer correlated 
to customer bids. While this seems a potential threat, it is unlikely a major one since P-SIFEM uses 
the corresponding on-demand prices instead of customer bids to compute lifetimes. Indeed, users 
are not willing to pay above the corresponding on-demand price for renting a spot instance to run 
their applications.
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Another potential threat to our empirical evaluation is that our experiments were conducted only 
on batch job applications, which may make it difficult to generalize the results of the experiments to 
other types of applications (e.g., interactive job applications) that may have various workflows and 
behaviors. However, cloud spot instances are often used to run batch job applications. As a result, 
the authors expect the results of the experiments to be generalizable.

The authors experimented with only a checkpointing-based fault-tolerant approach, whereas other 
types of fault-tolerant approaches (e.g., live migration) could also result in different effects on the 
deployment cost and completion time of jobs. However, a live migration requires a limited size of an 
application’s memory footprint (i.e., 4 GB) to complete a migration within the two-minute revocation 
notice time (Subramanya et al., 2015). P-SIFEM processes jobs in a single spot instance at a time; 
hence, evaluating P-SIFEM using homogeneous/heterogeneous instances in a cluster for processing 
jobs is beyond the scope of this work and will be considered in future work.

Another threat to validity is that our experiments were performed in a simulation environment. 
While this is a potential threat, it is unlikely a major one since the average revocation time of spot 
instances in a cloud environment (e.g., Amazon EC2) often exceeds hundreds of hours (Sharma et 
al., 2017), which makes it difficult to assess the effectiveness of P-SIFEM for smaller job execution 
lengths that often reflect those in production (Google, 2022). That is, the authors use realistic price 
traces from the Amazon cloud to define the revocation probability of spot instances for all spot 
instances across all markets (i.e., availability zones and regions) over three months. Additionally, the 
authors use a realistic time to restore/checkpoint a Docker container deployed on a spot instance in 
Amazon EC2 to seed our P-SIFEM. For example, the authors measure the time to restore/checkpoint 
a Docker container that packages jobs with different job execution lengths and job memory footprints 
in/from S3 storage in Amazon EC2.

Additionally, our experiments were performed only on Docker containers. While this is a potential 
threat, it is unlikely a major one since P-SIFEM is perfectly applicable to other types of containers, 
such as Linux Containers, as long as those containers support checkpointing and container image 
restoration. The authors experimented with only constant jobs, whereas phased jobs in which the 
utilization of resources varies significantly during various execution phases could also result in 
different effects on the deployment cost and completion time of jobs. In contrast, understanding the 
effect of phased jobs on the deployment cost and completion time is beyond the scope of this study 
and should be considered in future studies.

The authors experimented with a certain price ratio between spot and on-demand instances 
that is based on realistic price traces from EC2 markets, whereas other ratios between spot and on-
demand instances could result in different effects on the deployment cost and completion time of 
jobs when spot instances are provisioned using P-SIFEM and the fault-tolerance approach. However, 
understanding the effect of various price ratios between spot instances and on-demand instances is 
beyond the scope of this study and should be considered in future studies.

RESULTS

In this section, the authors describe and analyze the results of the experiments to answer the RQs 
listed in the Evaluation section.

Completion Time
The experimental results that summarize the completion time for the subject applications using 
P-SIFEM, the fault-tolerance approach, and on-demand instances for different job execution lengths 
are shown in the stacked bar plots in Figure 6. The authors observe that the completion time using 
P-SIFEM is consistently shorter than the completion time using the fault-tolerance approach, and 
the completion time using P-SIFEM is consistently near that of on-demand instances, which do 
not incur any additional overhead (Amazon, 2022). This result shows that a longer job length leads 
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to a steadily higher overhead of completion time resulting from the job’s checkpointing, recovery, 
and re-execution times, as well as the startup time of a spot instance when using the fault-tolerance 
approach. However, a longer job length leads to a slightly higher overhead of the completion time as 
a result of the job’s re-execution time and the startup time of a spot instance when using P-SIFEM. 
Our explanation is that P-SIFEM does not incur frequent job re-execution time, and the startup time 
of a spot instance using P-SIFEM does not increase with the increase in job execution length. This 
is expected based on the way P-SIFEM provisions a spot instance with a high lifetime.

The experimental results that summarize the completion time for the subject applications 
using P-SIFEM, the fault-tolerance approach, and on-demand instances for different job memory 
footprints are shown in the stacked bar plots in Figure 7. The authors observe that the completion 
time for P-SIFEM is consistently shorter than the completion time for the fault-tolerance approach, 
and the completion time for P-SIFEM is consistently near that of on-demand instances, which do not 
incur any additional overhead (Amazon, 2022). This result shows that a larger job memory footprint 
leads to a higher overhead of the completion time resulting from the job’s checkpointing time and 
recovery time when using the fault-tolerance approach. In contrast, the overhead of the completion 
time resulting from the job’s re-execution time and the startup time of a spot instance when using 
the fault-tolerance approach stays approximately the same across various job memory footprints, 
which suggests that the overhead resulting from the job’s re-execution time and the startup time of a 
spot instance for the fault-tolerance approach is independent of the job resource usage. Additionally, 
the overhead of an application’s completion time resulting from the job’s re-execution time and the 
startup time of a spot instance when using P-SIFEM stays approximately the same across various job 
memory footprints, which suggests that the completion time for the subject applications when using 
P-SIFEM is also independent of the resource usage.

The experimental results that summarize the completion time for the subject applications 
using P-SIFEM, the fault-tolerance approach, and on-demand instances for different numbers of 
revocations are shown in the stacked bar plots in Figure 8. The authors observe that the completion 
time for P-SIFEM—except for when the number of revocations equals one—is consistently shorter 
than the completion time for the fault-tolerance approach, and the completion time for P-SIFEM is 
consistently near that of on-demand instances, which do not incur any additional overhead (Amazon, 
2022). When the number of revocations equals one, the job’s checkpointing time for the fault-tolerance 

Figure 6. Comparing the completion time for the subject applications using P-SIFEM (P), the fault-tolerance approach (F), and 
on-demand instances (O) for different job execution lengths while keeping other job features constant
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approach balances the job’s re-execution for P-SIFEM. This result suggests that the fault-tolerance 
approach incurs additional overhead due not only to the number of revocations but also to the number 
of checkpoints. It also suggests that the effectiveness of P-SIFEM may decrease when the number 
of revocations decreases, and it is very difficult to guarantee that the number of revocations is small 
(Shastri et al., 2017). The job’s recovery time, the job’s re-execution time, and the startup time of a 
spot instance—except for the job’s checkpointing time—all increase steadily when using the fault-
tolerance approach, whereas in P-SIFEM, the job’s re-execution time and the startup time of a spot 
instance remain approximately the same. This observation suggests that the job’s checkpointing time 
for the fault-tolerance approach as well as the job’s re-execution time and the startup time of a spot 
instance for P-SIFEM are independent of the number of revocations. In summary, these experimental 

Figure 8. Comparing the completion time for the subject applications using P-SIFEM (P), the fault-tolerance approach (F), and 
on-demand instances (O) for different revocation numbers while keeping other job features constant

Figure 7. Comparing the completion time for the subject applications using P-SIFEM (P), the fault-tolerance approach (F), and 
on-demand instances (O) for different memory footprints while keeping other job features constant
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results allow us to conclude that P-SIFEM is more efficient in executing applications for different 
job execution lengths, job memory footprints, and numbers of revocations than the fault-tolerance 
approach, thus positively addressing RQ1.

Deployment Costs
The experimental results that summarize the deployment costs for the subject applications using 
P-SIFEM, the fault-tolerance approach, and on-demand instances for different job execution lengths 
are shown in the stacked bar plots in Figure 9. The authors observe that the deployment costs using 
P-SIFEM are consistently lower than the deployment costs using the fault-tolerance approach or those 
of on-demand instances. This result identifies the steady rise in overhead related to deployment costs 
that result from the job’s checkpointing costs, its recovery costs, its re-execution costs, the startup 
costs of spot instances, and the buffer costs of billing cycles when using the fault-tolerance approach 
with the increased job length. However, this result also identifies a slight rise in the overhead of 
deployment costs that result from the job’s re-execution cost, the startup costs of spot instances, and 
the buffer costs of billing cycles when using P-SIFEM with the increased length. Our explanation 
is that P-SIFEM does not frequently incur the job’s re-execution costs and the startup costs of spot 
instances since the startup costs of spot instances using P-SIFEM do not increase with the increase 
of the job execution length, which is expected based on the way that P-SIFEM provisions a spot 
instance with a high lifetime. Interestingly, the authors observe that unlike P-SIFEM, the buffer costs 
of billing cycles significantly increase compared to the other types of overhead costs when using the 
fault-tolerance approach with the increase of the job length, which suggests that the fault-tolerance 
approach incurs not only overhead related to the settings of the fault tolerance approach (e.g., the 
job’s checkpointing cost) but also additional overhead related to the cloud billing policies (i.e., the 
buffer costs of billing cycles). Additionally, the authors observe that the deployment costs of the 
fault-tolerance approach across all job lengths are equal to or higher than the deployment costs of 
on-demand instances (Amazon, 2022), which suggests that using on-demand for larger job lengths 
may reduce deployment costs and the completion time when compared to the fault-tolerance approach.

The experimental results that summarize the deployment costs for the subject applications using 
P-SIFEM, the fault-tolerance approach, and on-demand instances for different job memory footprints 
are shown in the stacked bar plots in Figure 10. The authors observe that the deployment costs using 

Figure 9. Comparing the deployment costs for the subject applications using P-SIFEM (P), the fault-tolerance approach (F), and 
on-demand instances (O) for different job execution lengths while keeping other job features constant
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P-SIFEM are consistently lower than the deployment costs using the fault-tolerance approach and on-
demand instances. This result demonstrates the steady rise of the overhead related to deployment costs 
resulting from the job’s checkpointing, recovery, re-execution, and startup costs of spot instances, as 
well as the buffer costs of billing cycles when using the fault-tolerance approach with the increase of 
job memory footprint. However, this result demonstrates a slight rise in the overhead of deployment 
costs resulting from the job’s re-execution and startup costs of spot instances and the buffer costs of 
billing cycles when using P-SIFEM with the increase in the job memory footprint. Our explanation 
is that P-SIFEM does not incur the job’s re-execution and startup costs of spot instances, since the 
startup costs of spot instances using P-SIFEM do not increase with the increase of the job memory 
footprint, which is expected based on the way that P-SIFEM provisions a spot instance with a high 
lifetime. The authors observe that, unlike the buffer costs of billing cycles for P-SIFEM, the buffer costs 
of billing cycles for the fault-tolerance approach significantly increase with the higher job memory 
footprints (i.e., 32 and 64 GB), suggesting that the buffer costs increase when there is a significant 
change in deployment time between consecutive job memory footprints (i.e., exceeds the period for 
a billing cycle). Additionally, the authors observe that the deployment costs of the fault-tolerance 
approach across all job memory footprints are equal to or higher than the deployment costs of on-
demand instances (Amazon, 2022), which suggests that provisioning on-demand for large job memory 
footprints may result in lower deployment costs and completion time than the fault-tolerance approach.

The experimental results that summarize the deployment costs for the subject applications using 
P-SIFEM, the fault-tolerance approach, and on-demand instances for different numbers of revocations 
are shown in the stacked bar plots in Figure 11. The authors observe that the deployment costs using 
P-SIFEM and that of on-demand instances are consistently lower than the deployment costs using 
the fault-tolerance approach. The job’s recovery and re-execution costs, the startup costs of spot 
instances, and the buffer costs of billing cycles, except for the job’s checkpointing costs, increase 
steadily when using the fault-tolerance approach, whereas for P-SIFEM, the job’s re-execution costs, 
the startup costs of spot instances, and the buffer costs of billing cycles remain approximately the 
same. This observation suggests that the job’s recovery time and re-execution costs, the startup costs 
of spot instances, and the buffer costs of billing cycles depend on the number of revocations when 
using the fault-tolerance approach. However, the job’s checkpointing costs for the fault-tolerance 
approach and the job’s re-execution costs, the startup costs of spot instances, and the buffer costs of 

Figure 10. Comparing the deployment costs for the subject applications using P-SIFEM (P), the fault-tolerance approach (F), and 
on-demand instances (O) for different memory footprints while keeping other job features constant
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billing cycles for P-SIFEM are independent of the number of revocations. Our explanation is that 
P-SIFEM does not incur the job’s re-execution costs and the startup costs of spot instances. The 
authors observe that unlike the buffer costs of billing cycles for P-SIFEM, the buffer costs of billing 
cycles for the fault-tolerance approach significantly increase with the higher numbers of revocations 
(i.e., 8 and 16), which suggests that the buffer costs increase when there is a significant change in 
deployment time between consecutive numbers of revocations (i.e., exceeds the period for a billing 
cycle). Interestingly, the authors observe that the deployment costs for the fault-tolerance approach 
when the number of revocations is high (i.e., 8 and 16) are significantly higher than the deployment 
costs for on-demand instances (Amazon, 2022), which confirms that provisioning on-demand for 
a large number of revocations may result in lower deployment costs and completion time than the 
fault-tolerance approach. In summary, these experimental results allow us to conclude that P-SIFEM 
is more effective in reducing the deployment costs of applications for different job execution lengths, 
job memory footprints, and numbers of revocations than the fault-tolerance approach, thus positively 
addressing RQ2.

Impact on Different Numbers of Checkpoints
The experimental results that summarize the completion time and deployment cost for the subject 
applications using P-SIFEM, the fault-tolerance approach, and on-demand instances for different 
numbers of checkpoints are shown in the stacked bar plots in Figure 12 and Figure 13, respectively. 
The authors observe that the completion time and deployment cost using P-SIFEM are consistently 
lower than the completion time and deployment cost using the fault-tolerance approach. The completion 
time using P-SIFEM is consistently near that of the on-demand instance, and the deployment cost 
using P-SIFEM is consistently lower than the deployment cost using on-demand instances. This result 
shows that a higher number of checkpoints leads to a steadily higher overhead related to application 
completion time and deployment cost resulting from the job’s checkpointing time and cost, which 
is expected because the job’s checkpointing time and cost depend on the number of checkpoints. 
Interestingly, the authors observe that the completion time and deployment cost for the lowest number 
of checkpoints is almost equal to the completion time and deployment cost for the highest number 
of checkpoints. Our explanation is that the job’s re-execution time and cost for the lowest number 
of checkpoints balance the job’s checkpointing time and cost for the highest number of checkpoints. 

Figure 11. Comparing the deployment costs for the subject applications using P-SIFEM (P), the fault-tolerance approach (F), and 
on-demand instances (O) for different revocation numbers while keeping other job features constant
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This result suggests that the fault-tolerance approach incurs additional overhead due to not only a 
high number of checkpoints but also a low number of checkpoints. The authors observe the lowest 
completion time and deployment cost when the number of checkpoints is 26, which suggests that the 
optimal tradeoff between the overhead of actual checkpointing and the overhead of re-executing the 
lost work from the last checkpoint on each spot instance revocation when the number of checkpoints 
is 26. Although this optimal number of checkpoints reduces the completion time and deployment cost 
compared to the other number of checkpoints, this optimal number of checkpoints (i.e., the settings 
of the fault-tolerance approach) does not reduce the completion time and deployment cost compared 
to P-SIFEM. This result confirms that optimizing the settings of a fault-tolerance approach does not 
eliminate the effectiveness of P-SIFEM, thus positively addressing RQ3.

Figure 13. Comparing the deployment costs for the subject applications using P-SIFEM (P), the fault-tolerance approach (F), and 
on-demand instances (O) for different numbers of checkpoints while keeping other job features constant

Figure 12. Comparing the completion time for the subject applications using P-SIFEM (P), the fault-tolerance approach (F), and 
on-demand instances (O) for different numbers of checkpoints while keeping other job features constant
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Discussion
The authors address a challenging problem for applications deployed on cloud spot instances that 
results from the overhead of employing fault-tolerance mechanisms. The authors propose a novel 
cloud market-based approach for Provisioning Spot Instances using FEatures of cloud Markets 
(P-SIFEM) to reduce the deployment cost and completion time of applications. To assess the benefit 
of our approach, the authors evaluate P-SIFEM with different combinations of job settings (i.e., job 
execution length and job memory footprint), thus enabling us to answer RQ1 and RQ2. Our results 
in the completion time section allow us to conclude that P-SIFEM is more efficient in executing 
applications for different job execution lengths, job memory footprints, and numbers of revocations 
than the fault-tolerance approach, thus positively addressing RQ1. Our results in the deployment cost 
section allow us to conclude that P-SIFEM is more effective in reducing the deployment costs of 
applications for different job execution lengths, job memory footprints, and numbers of revocations 
than the fault-tolerance approach, thus positively addressing RQ2. Also, the authors determine 
whether optimizing the number of checkpoints reduces the deployment cost and completion time 
compared to a random number of checkpoints, thus enabling us to answer RQ3. Our results in the 
section of impact on different numbers of checkpoints confirm that optimizing the settings of a 
fault-tolerance approach does not eliminate the effectiveness of P-SIFEM, thus positively addressing 
RQ3. In general, our results show that P-SIFEM reduces the deployment cost and completion time 
compared to approaches based on fault-tolerance mechanisms. As a result, our results confirm that 
our hypothesis of leveraging cloud market features without employing fault-tolerance mechanisms 
to provision spot instances for applications reduces the deployment cost compared to the deployment 
cost using fault-tolerance approaches or on-demand instances and maintains the completion time near 
that of on-demand instances.

In the future, the authors plan to build an availability-driven model to control the lack of resources 
for applications deployed on cloud spot instances based on noncooperative game theoretic approaches 
(e.g., Nash equilibrium game theory), which incorporate spot price traces (e.g., historical bids) and 
properties of users and applications. The purpose is to predict user demand best in terms of both spot 
price and application execution to maximize the revenue for cloud providers and users. The authors 
also plan to study the relationships/dependencies between these properties and their impacts on the 
spot price to build a bidding strategy model that optimizes the utilization of spot instances. The 
authors could also take advantage of the Monte Carlo simulation, state representation methodology, 
and VM allocation scheme to build an optimal bidding model.

CONCLUSION

The authors addressed a challenging problem for applications deployed on cloud spot instances that 
results from the overhead of employing fault-tolerance mechanisms. The authors proposed a novel 
cloud market-based approach for Provisioning Spot Instances using FEatures of cloud Markets 
(P-SIFEM) to reduce the deployment cost and completion time of applications. The authors evaluated 
P-SIFEM in simulations and used Amazon spot instances that contain jobs in Docker containers and 
realistic price traces from EC2 markets. Our simulation results show that our approach reduces the 
deployment cost and completion time compared to approaches based on fault-tolerance mechanisms.
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