
Int. J. Space-Based and Situated Computing, Vol. 5, No. 1, 2015 39

Copyright © 2015 Inderscience Enterprises Ltd.

Variable social vector clocks for exploring user
interactions in social communication networks

Ta-Yuan Hsu*
Department of Electrical and Computer Engineering,
University of Illinois at Chicago,
Chicago, IL 60607, USA
Email: thsu4@uic.edu
*Corresponding author

Ajay D. Kshemkalyani
Department of Computer Science,
University of Illinois at Chicago,
Chicago, IL 60607, USA
Email: ajay@uic.edu

Abstract: Social network communication analysis has drawn widespread attention in recent
years. Vector clocks can be applied to capture the most recent communication with all other local
peers in a social network. A modification of conventional social vector clocks has been
previously proposed to deal with the issue of poor scalability without keeping whole temporal
views. In this paper, our proposed framework maintains the low bound of how out-of-date each
peer can be with respect to others, and also considers the shortest friendship separation to restrict
how far information may be transmitted along time-respecting paths. To quantitatively analyse
the influence of user interactions over different limitations of friendship distance, we also provide
an adaptive incremental updating approach that can exactly recover the real situation in a
specified upper bound of friendship distance. Experimental results also show that social vector
clocks can be efficiently exploited to improve memory space requirements.

Keywords: vector clocks; social networks; n-degree separation; Twitter; social influence;
space-based computing.

Reference to this paper should be made as follows: Hsu, T-Y. and Kshemkalyani, A.D. (2015)
‘Variable social vector clocks for exploring user interactions in social communication networks’,
Int. J. Space-Based and Situated Computing, Vol. 5, No. 1, pp.39–52.

Biographical notes: Ta-Yuan Hsu is a PhD student in the Department of Electrical and
Computer Engineering at the University of Illinois at Chicago, USA. His research interests
include distributed algorithms, social networks and causal memory.

Ajay D. Kshemkalyani received his MS and PhD in Computer and Information Science from The
Ohio State University in 1988 and 1991, respectively. He is currently a Professor in the
Department of Computer Science at the University of Illinois at Chicago. His research interests
are in distributed computing, distributed algorithms, computer networks, and concurrent systems.
He has served on the editorial board of IEEE Transactions on Parallel and Distributed Systems,
and the Elsevier Journal, Computer Networks.

This paper is a revised and expanded version of a paper entitled ‘Modeling user interactions in
social communication networks with variable social vector clocks’ presented at WAINA’2014:
International Conference on Advanced Information Networking and Applications Workshops,
IEEE, 2014, Victoria, British Columbia, Canada, 13–16 May 2014.

40 T-Y. Hsu and A.D. Kshemkalyani

1 Introduction

The use of online communication for large social
communities and networks has been a growing concern in a
variety of disciplines. For example, larger social networks
act as tubes for information flows and messaging
communication (Huberman and Adamic, 2004; Granovetter,
1973). Most of the social networking services not only
provide a common platform to associate individuals through
some characteristic profile, such as ideas, activities,
backgrounds, interests, or events, but they also allow them
to interact with each other over the internet. A huge number
of indications show that social network activities have
affected and changed the physical world (Tang et al., 2009;
Lewis and Nicholes, 2012; Wright and Hinson, 2012). It
also explicates that the potential of social networking usage
and social media technologies is deemed very high and
quickly grows over time. For the sake of analysing user
communication in social networks, it can be visually
represented as a dynamic graph (Federico et al., 2011;
Berger-Wolf and Saia, 2006; Koylu et al., 2012).
Technically, it has been a challenging task to formulate
complete data flows for event-driven communication in
large-scale networks over a long period of time. The main
reason is that event-driven data flows may be highly
correlated with the variety of timing and ordering of events.
Based on prior knowledge, the fine-grained temporal
approach has been proposed to figure out the dynamic
inter-communication in a social network through a temporal
framework (Holme and Saramäki, 2012). By applying the

fine-grained temporal modalities, some researches have
begun studies to explore information path latency and
indirect message exchanging in social communication
networks. They applied the formula of vector clocks (VCs)
from the field of distributed systems to realise the temporal
infrastructure. The notion of VCs was conceptually
introduced by Mattern (1988). It can be used to track the
lower bound of how recent each process’s state is associated
with any other one at a given time. Under a partial ordering
of events in such a concurrent system, VCs can reflect how
a given pair of events are causally related with each other.

Kossinets et al. (2008) figured out how information is
diffused in social communication networks. By applying
VCs to social networks, they introduced a framework of
social vector clocks (SVCs) to mark the latest information
available to each actor at each timestamp. As for
information diffusion, a two-step information pathway can
be faster than a one-step path in real social networks.
Through SVCs, communication flows were visualised over
time (Harrigan, 2010). They have been used to design a
temporal framework to explore the structure of information
pathways (Kossinets et al., 2008). The SVC temporal
updating scheme can provide an important mechanism
capable of maintaining the contents and timestamps of the
latest communication for each peer. Without considering the
subject matter of information or messages, an ordering of
timestamps can present a global view for user interactions.
As with Lamport timestamps, inter-process messages
contain the local state of the sending process’s logical clock.

Figure 1 Illustrative example of social network communication for eight people

 Variable social vector clocks for exploring user interactions in social communication networks 41

Consider an example as shown in Figure 1. Suppose that
there are eight people that talked about the location of their
vacation. Figure 1 shows a complete series of direct and
indirect communication messages over six days. They can
be referred to as user-directed mentions in Twitter. Let
member a serve as a coordinator for the review programme
of travelling issues and make decisions in collecting the
other members’ comments. Member a began by sending
message m1 to members b and g on Monday morning.
Member b told member c m2 plus an item of piggybacked
information m1 at 4 PM on Tuesday afterward. Clearly, the
coordinator a would finally receive the message m8 from
member h and all the other latest indirect communication
information m2, m3, m4, m5, m6, m7 on Saturday morning.
Although member a did not directly contact with most of all
the others, he would learn about the latest opinions in the
group at 11 AM on Saturday. This scenario can be realised
by indirect message updating using the nature of SVCs. It
illustrates that all indirect up-to-date communications
between any pair of members can be saved and tracked by
SVCs, but with quadratic space requirements. It also causes
that some of the indirectly exchanged messages may be
insignificant for most members in a huge social network
group. Consider a case that member a talked to another
member i something about his professional life irrelevant to
travelling issues on Sunday morning. Member i would
receive all communication messages exhibited in Figure 1,
even if he did not have interactions with those members
directly. Apparently, it is unrealistic to preserve all peers’
indirect updated messages in qualitatively analysing user
interactions using the conventional SVCs in social groups.

In Dunbar and Hill (2005), it is demonstrated that
cognitive constraints may not impact the size of the whole
social network. One modification to the SVCs, in addition
to shortest time-respecting paths, has been proposed to
formulate the fine-grained temporal features applicable to
large-scale social interaction networks with better
scalability for link prediction (Lee et al., 2013). The amount
of reachable indirect incoming information is subject to the
shortest friendship distance μ (i.e., the minimum number of
hops) from the source to the target on time-respecting paths.
It insinuates that some information may be lost and
inconsistent when the upper bound of μ is less than the
number of overall members. For example, as shown in
Figure 1, if μ is bounded to be ‘1’ such that most of the
indirect updates will be discarded, member a may acquire
inconsistent information. In such a case, member a can
obtain only one message from member g. This observation
infers that the information loss rate is apparently dependent
on the value of μ.

1.1 Contributions

In this paper, we further extend the modification of SVCs to
be variable social vector clocks (VSVCs) and apply VSVCs
to quantitatively model the influence of the restriction of μ
on the reachable information. Here, we focus on five
medium or large social groups from a certain microblogging
network. They include a list of UK athletes organised by

The Telegraph, a list of past and present MLB players,
a list of members in SXSWi created by a commercial
platform mashable, a group of followers following the
latest information posted by UICnews, and a list of
journalists curated by TheNewYorkTimes on Twitter, where
participants can explicitly dispatch messages to targeted
receivers. Twitter networking has been widely used to deal
with several analyses (Kwak et al., 2010; Mao et al., 2011;
Cha et al., 2010).

In order to improve the performance of running SVCs
with the fixed upper bound of μ, we propose an incremental
adaptive approach to update VSVCs. It requires only one
running cycle for the complete dataset. It can exactly
recover the practical situation in different upper bounds of
μ. We present the reasonable compromise of information
loss rate and memory space requirement, and then the
distribution of separation topology for incoming reachable
messages. We also demonstrate that our results for
information loss rates and incoming reachable topology
distributions are consistent.

1.2 Organisation

This paper is organised as follows. In Section 2, we review
the definition and updating algorithm for the conventional
VCs and specify our full extension of SVCs. In Section 3,
we describe our methodology – how VSVCs can be applied
to our experiments. In Section 4, we present our experiment
results and evaluation. Finally, we summarise the
conclusion and discuss some future research directions in
Section 5.

2 Vector clocks

We begin with a brief review of conventional VCs in
distributed systems (Mattern, 1988). Then, we present an
underlying introduction about the concept of SVCs and the
modification of SVCs. Finally, we provide a description of
how to apply the framework of VSVCs to social networks.

2.1 Conventional VCs

There are many existing works studying the conventional
VCs in the distributed system literature (Mattern, 1988;
Raynal and Singhal, 1996; Kshemkalyani and Singhal,
2008). Basically, to establish VCs in the system, each
process Pi ∈ P (P is the set of processes in the system)
maintains a VC Vi of n (number of processes in the system)
integers, which is updated by the following rules.

1 Before an internal event happens at process Pi,
Vi[i] = Vi[i] + 1.

2 Before process Pi sends a message, it first executes
Vi[i] = Vi[i] + 1, then it sends the message piggybacked
with Vi.

3 When a process Pj receives a message with timestamp
U from Pi, it executes ∀k ∈ [1 … n], Vj[k] = max(Vj[k],
U[k]); Vj[j] = Vj[j] + 1; before delivering the message.

42 T-Y. Hsu and A.D. Kshemkalyani

Conventional VC in a distributed system is used to track the
causal relation ()≺ between two events that happened in the
system by comparing their corresponding VC timestamps,
i.e., ,i ji j e ee e V V⇔ <≺ where i je eV V< means ∀a ∈ [1,
n], [] []i je eV a V a≤ and ∃b ∈ [1, n] such that [] [].i je eV b V b<

Furthermore, the conventional VC can also be expressed
as a multivariate function on a three-tuple (t, s, r), which is
(time, sender, receiver). Pi’s temporal view of every process
in the system at time t is defined as a function φi,t = (φi,t(j):
j ∈ P) where φi,t(j) is Pi’s temporal view of a particular
process Pj at time t. Here, φi,t(j) corresponds to the jth entry
of Pi’s local vector timestamp Vi when Vi[i] = t.

2.2 Traditional SVCs and the modification

Based on the structure of our social communication data,
the data are expressed as the following: Given a set of N
peers in a social network, we pre-define a time interval
[0 ~ T], over which a complete sequence of communication
events are organised in terms of the global time ordering.
Each event is composed of a multivariate function on a
three-tuple (t, s, r) as per the definition given in Section 2.1.
Suppose that there is no communication delay and there
exists one global synchronous time. Note that the above two
constraints are not applicable to the framework of
asynchronous distributed systems.

The traditional SVC updating approach practically
follows the mechanism of the conventional VCs. Due to the
assumption of no propagation delay in social networks,
when receiving an incoming communication event (Et) sent
in time slice t from peer i, the timestamp of the receiver peer
j’s temporal view of the ith entry is set to peer j’s VC on the
jth entry and the sending timestamp of Et. Figure 2 illustrates
how to update the entries on SVCs. For instance, when P4
receives Et5 sent from P3 at t5, V3[3] = t5 and V3[4] = t5 as
well. By the rule 3 in the conventional VCs, V3[1] and V3[2]
are set to t3 and t4, respectively.

Figure 2 Illustrative example of social network communication
for four peers with the conventional SVCs

For N peers in a social system, traditional SVCs take up
O(N2) globally to support the latest fine-grained temporal

patterns. Under the piggyback system, each peer will soon
get a large number of indirect updating messages from other
peers, most of whom the receiver does not have any direct
communication with ever, or has too far social-connection
steps in between them. Therefore, it may not be efficient
and practical to straightforwardly utilise the function of
SVCs in modelling user social interactions; otherwise, huge
amounts of impractical information will be generated in
steady state.

Figure 3 Illustrative example of social network communication
for four peers with μ being 1

A further modification of the updating framework for
SVCs has been addressed in Lee et al. (2013), where a
parameter μ is considered as the minimum number of hops
between a pair of sending peer and receiving target along
time-respecting paths and included in the framework of the
traditional SVCs. The semantics of three major different
values assigned to μ are as follows:

• μ = 1: This case is concerned with direct friendship
communication. A receiver can update a component of
the local SVC based on the incoming message if and
only if the corresponding sender for that component
ever directly interacts with the receiver (an incoming
communication is a message with the VC piggybacked
on the message). The same communication example in
Figure 2 is modified as shown in Figure 3.

• μ = 2: This case considers friendship-of-friendship
indirect communication. A receiver j can update
the kth component of the local SVC based on the kth
component of the piggybacked timestamp directly sent
from a peer i if and only if the corresponding indirect
sender k has ever directly interacted with the sender i.
The illustrative example in Figure 2 is replaced with
Figure 4.

• μ = ∞ (it is enough for μ being N–1 in a N-peer social
group): it is equivalent to the conventional SVC
updating approach, considering unlimited indirect
communication spread without self-looping updating,
as show in Figure 2.

 Variable social vector clocks for exploring user interactions in social communication networks 43

Figure 4 Illustrative example of social network communication
for four peers with μ being 2

2.3 Variable social VCs

The above three major social relationships were presented
in Lee et al. (2013). In order to consider all different
reachable distances of friendship, we define a universal
framework of the VSVCs in social networks, as follows
(Hsu et al., 2014).

Without loss of generality, assume that when μ = c, peer
j sent a direct message to peer i. Peer i can receive an
indirect update on the kth component of the local SVC based
on the kth component of the piggy back timestamp via a
direct update from a peer j, if and only if the maximum
number of hops from peer k to peer j is c – 1.

Figure 5 Illustrative example of social network communication
for four peers with VSVCs

Whenever a receiver updates its own latest temporal scopes,
it also computes the shortest friendship distances with
respect to all the other peers. Vi[j], the jth entry of peer i’s
SVC, needs to maintain two types of data elements.

1 Vi[j].time captures the latest timestamp of peer j at peer
i.

2 Vi[j].dist measures the shortest friendship-respecting
path.

As shown in Figure 5, each entry in a peer is represented by
|t/d|. In the jth entry of Pi, t means Vi[j].time and d denotes
Vi[j].dist. When an incoming event Et occurs sent from peer
j to peer i at time slice t, then

1 Vi[j].time = Et.timestamp

2 Vi[k].dist = min(Vj[k].dist + 1, Vi[k].dist) when k ≠ j.

Figure 5 illustrates an example of applying VSVCs to the
case in Figure 2. In this paper, we use the framework of
VSVCs to analyse how the social communication is affected
by the upper bound of the minimum number of hops (μ).

3 Methodology

Our evaluation seeks to investigate the impact of the
hop-constrained paths on social communication. The scope
of this research lies in the characteristics of user interactions
with different limitation friendship distances (μ). However,
the traditional SVC updating approach has redundant
computation complexity O(mn) (where n and m represent
the number of vertices and communication events,
respectively). It is also impractical to run the entire series of
communication events for each different μ. We design an
efficient accumulative VSVC updating algorithm keeping
track of the minimum number of hops the information
travels between a pair of sender and receiver targets. It only
takes time O(m). Whenever one communication event Et
happens, triggered from a sender peer (Et.sender) to a
receiver target (Et.receiver), the receiver target’s VC needs
to be updated. For each update, the shortest friendship
distance from the sender to the receiver needs to be
computed as well.

We now describe our evaluation methodology
of manipulating VSVCs with the shortest friendship
distances, by first presenting the conceptual basis of
information loss rate and reachable incoming distribution,
and then presenting the updating process proposed
by the methodology. The algorithm pseudocode of
VariableSocialVectorClocks is shown in Algorithm 1 and
explained in Section 3.3.

3.1 Information loss rate

Initially, we define the following terms:

• Message: It is a direct piece of communication sent
from a sender to a receiver.

• Information: Each component on the VSVC
piggybacked with a sending message is defined as a
piece of information.

VariableSocialVectorClocks described in Section 3.3 is an
incremental algorithm to update both the latest timestamp
and the shortest distance at each time slice t. In an N-peer
social network group, when μ is bounded to be N–1, it is
equivalent to the conventional SVC algorithm with
unlimited communication spread. Intuitively, the number of

44 T-Y. Hsu and A.D. Kshemkalyani

pieces of updating information in peer i with μ being k can
be defined as DISTi[k].

When the shortest friendship distance is k, the number
of pieces of receiving and updating information is:

1

0

[] []
N

i
i

DIST k DIST k
−

=

=∑ (1)

The total number of pieces of receiving information without
losing any communication in a social group is:

1

1

[]
N

M
k

N DIST k
−

=

=∑ (2)

Only when k is equal to or less than μ will this information
be received. We can compute the information loss rate RL
corresponding to the specified value of μ as:

1

[]
() 1

μ

k
L

M

DIST k
R μ

N
== −
∑

 (3)

RL(μ) can also be referred to as the space saving rate.
Interestingly, it decreases as the value of μ increases. With
this view, we can gain insight into how to determine the
upper bound of μ to efficiently utilise memory space
without losing reasonable communication in a social
network.

3.2 Reachable incoming topology distribution

Figure 6 gives an illustrative example of an incoming
communicating pattern for peer P. If μ is one, only five
peers having ever sent direct messages to the central peer P
can communicate with it. As the value of the limitation of μ
increases, the number of peers whose updating messages
can reach peer P will increase. In our methodology, we also
make an analysis of the reachable incoming topology
distribution in the steady state. We would learn about the
number of peers (Np) whose sending information can reach
one peer p (at the latest time slice T) with respect to the
limitation of μ based on the up-to-date value of Vp[i].dist
(using the VCs {V0, …, VN–1} in Algorithm 1). Vp[i].dist
means the shortest friendship distance from peer i to peer p.
By summing up the value of xi (xi: a unit step function)

1

1 if []. ;
()

0 otherwise

N
i p

p i
ii

x V i dist μ p i
N μ x

x=

= ≤ ≠⎧
= ⎨ =⎩
∑ (4)

If xi = 1, a sending message from peer i can reach peer p;
otherwise, it is unreachable even though there exists a
directed connection path. Because of the variation of
individual peers, we normalise the value of Np for each peer:

1

0

()

()

N

p
p

avg

N μ

N μ
N

−

==
∑

 (5)

We refer to Navg(μ) as the ‘average reachable incoming
distribution number’. Apparently, the value of Navg
positively depends on the upper bound of μ. Therefore, the
average reachable incoming rate can be defined as:

()
() avg

I
N μ

R μ
N

= (6)

If social communication is in a steady-state, RI(μ) should be
close to 1–RL. On the other hand, the reachable incoming
rate is highly dependent on the social interaction strength in
a group. Naturally, there must be a certain number of people
who did not send or receive any message to and from
others. Nmax(μ) is defined as the maximum number of peers
from whom one peer has received information with μ in the
same group. We use Nmax to denote Nmax(∞). Therefore,

max
max

()() N μR μ
N

= (7)

Figure 6 Illustrative example of reachable incoming with
different limitation distances μ

Furthermore, the normalised average reachable incoming
rate is defined as follows:

max

()
() avg

I
N μ

R μ
N

′ = (8)

We also use Navg(μ) to evaluate the degrees of separation for
individual social networks in our experiments based on the
six degrees of separation.

3.3 Algorithm 1 – adaptive approach

A sequence of Et (0 ≤ t ≤ T) is treated as the input. In
lines 1 to 4, the timestamp vector (Vi.time) and distance
vector (Vi.dist) for each peer i associated with any other peer
are initialised. When index i is ‘0’, it means the first peer.
When index i is N – 1, it indicates the Nth peer. Each peer
maintains its own VC with the latest information with
respect to all other peers. The value of DISTi[k] gives how
many pieces of information are indirectly/directly delivered
to peer i in the minimum number of hops of k, where k ≥1 is
the shortest distance between a pair of peers. Vx[y].time

 Variable social vector clocks for exploring user interactions in social communication networks 45

represents the latest temporal view of peer x on peer y;
Vx[y].dist maintains the shortest distance from y to x. Each
peer i needs to maintain a 2D matrix of Inconsisti. Without
it, the information loss rate for each μ would be incorrect in
some cases. We will illustrate the reason later.

There are four different cases for updating Vj and DISTj.
Lines 7 to 22 deal with the first case when both sender’s and
receiver’s VCs have been active. ‘Active’ implies that a
peer has received at least one direct incoming message from

any other peer. This case occurs most often, such as Et7
shown in Figure 3. P1 becomes ‘active’ after time t6 and P3
is ‘active’ after time t4. Lines 23 to 29 correspond to the
second case, such as Et2, where P4 has not been active until
t5 but P2 has become active since t1. Lines 30 to 32 treat the
third case like Et6 contrary to the second case. Lines 33 to
35 illustrate the fourth case, such as Et1, where neither of P1
and P2 has been active at t0.

Figure 7 Cognitive information processing

46 T-Y. Hsu and A.D. Kshemkalyani

Algorithm 1 VariableSocialVectorClocks

Input: E0, …, ET
Output: V0, …, VN–1, DIST[] and Inconsist[][]
1 for i ← 0 to N – 1 do
2 Vi.time ← [⊥, …, ⊥]; Vi.dist ← [⊥, …, ⊥];
3 DISTi ←[0, …, 0];
4 Inconsisti[][] ← [0, …, 0];

5 while t ≤ T do
6 j ← Et.receiver; i ← Et.sender;
7 if Vi and Vj have been active then
8 Vj[j].time ← Et.time; Vj[i].time ← Et.time;
9 Vj[i].dist ← 1;
10 for k ← 0 to N – 1 but k ≠ j, i do
11 if Vi[k] ≠ ⊥ and Vj[k] ≠ ⊥ then
12 if Vi[k].dist < Vj[k].dist then
13 Vj[k].dist ← Vi[k].dist + 1;

14 if Vi[k].time < Vj[k].time then
15 Vj[k].time ← Vi[k].time;
16 DISTj[Vj[k].dist]++;
17 if Vi[k].dist > Vj[k].dist then
18 Inconsist[Vi[k].dist][Vj[k].dist]++;

19 else if Vi[k] ≠ ⊥ and Vj[k] is ⊥ then
20 Vj[k].time ← Vi[k].time;
21 Vj[k].dist ← Vi[k].dist + 1;
22 DISTj[Vj[k].dist]++;

23 else if Vi is active but Vj has not been active then
24 Vj[j].time ← Et.time; Vj[i].time ← Et.time;
25 Vj[i].dist ← 1; DISTj[1] + +;
26 for k ← 0 to N – 1 but k ≠ j, i do
27 Vj[k].time ← Vi[k].time;
28 Vj[k].dist ← Vi[k].dist + 1;
29 DISTj[Vj[k].dist]++;

30 else if Vj is active but Vi has not been active then
31 Vj[j].time ← Et.time; Vj[i].time ← Et.time;
32 Vj[i].dist ← 1; DISTj[1] + +;

33 else if both Vi and Vj have not been active then
34 Vj[j].time ← Et.time; Vj[i].time ← Et.time;
35 Vj[i].dist ← 1; DISTj[1] ← 1;

36 t++;

37 for i ← 0 to N – 1 do
38 DIST[] ← DIST[] + DISTi[];
39 Inconsist[][] ← Inconsist[][] + Inconsisti[][];

The corresponding cognitive information processing of
VariableSocialVectorClocks is shown in Figure 7.
Whenever some timestamp t in D1 applied to line 5 in
Algorithm 1 is valid, the event Et would be extracted from
the dataset. D2 determines which process would be used to
update the VSVC of the receiver of Et according to the
situation of the sender and the receiver of it. P4 or P5 would
deal with the first case as lines 7 to 22 do. D3 would first
determine whether the kth entries of the sender’s and the
receiver’s VSVCs are undefined or not. Then, P4 or P5
would update this entry of the receiver’s VSVC based on
the result of D3. D4 refers to line 17. If an inconsistent case
occurs, P6 needs to update Inconsist matrix. P1, which is
equivalent to lines 23 to 29, would process the second case
to update each entry of the receiver’s VSVC based on the
sender’s VSVC. P2 and P3 respectively represent the
processes to solve the third case and the fourth case defined
before. When t is equal to T, Algorithm 1 will terminate.

Note that when a receiver j completes updating
timestamps and friendship distances, DISTj[d] also needs to
be updated. Whenever a more recent indirect/direct message
is received and the shortest friendship distance from the
sender peer to the receiver j is d, the value of DISTj in the
index d should be added by one. Let us consider the
example of Et2 as shown in Figure 5.

1 After receiving Et1, V2 = [t1/1, t1/0, ⊥, ⊥].

2 Based on line 32, DIST2[1, 2, 3] = [1, 0, 0].

3 When receiving Et2, V2 = [t1/1, t2/0, ⊥, t2/1].

4 Again, based on line 32, V2[3].dist = ‘1’. DIST2[1]++
will run one time, then DIST2[1, 2, 3] = [2, 0, 0].

Figure 8 An illustrative communication example with VSVCs
by μ being 4

Lines 37 to 39 accumulate DISTi[] and Inconsisti[][] from
each peer into a global DIST[] and a global Inconsist[][].
After t2, DIST[1, 2, 3] = [2, 0, 0]. It indicates that the
numbers of updating messages in friendship distance 0 and
1 are two and three, respectively. As mentioned before,

 Variable social vector clocks for exploring user interactions in social communication networks 47

Algorithm 1 can improve the computing performance
against the conventional SVC updating method.

However, without using Inconsist matrix to record the
number for each inconsistent case during updating, the real
information loss rate cannot be correctly computed.
Consider an illustrative communication example with five
peers as follows.

‘ ’ indicates the latest receiving information for the
receiver itself. Since these ‘ ’ outcomes are trivial for our
study, we use the symbol of ‘ ’ to mark them. After
timestamp e, DIST[1, 2, 3] = [6, 3, 2] in Figure 8. DIST[1] =
6 presents that the number of pieces of updating information
with the receiving friendship distance being 1 is 6.

If the upper bound of μ is 2, the information loss rate
computed in terms of the definition of equation (4)

6 3 2(2) 1
6 3 2 11LR +

= − =
+ +

 (9)

Again, using the same communication events as Figure 8
with a fixed upper bound of μ being 2, the information loss
rate in Figure 9 is

5 3 3(2) 1
11 11LR +

= − = (10)

Obviously, the two outcomes are inconsistent. There are
two major reasons leading to this inconsistency issue. First,
the case in real situation with a fixed upper bound of μ will
discard some indirect updating messages of corresponding
friendship distances that are larger than μ. Second, the
framework of variable SVCs allows to keep track of the
latest timestamp and the shortest friendship distance from
different senders. When a receiver r obtains an indirect
piece of updating information from source i via a direct
sender s, the receiver will compare the timestamp (S.T) and
friendship distance (S.D) of this message with those (R.T
and R.D) of its own existing message coming from the same
source i. As shown in Figure 10, peer r receives an indirect
updating message from peer i via peer s. By updating rule,

max(. , .); min(. 1, .)X S T R T Y S D R D= = + (11)

max means that X will choose the latest from S.T and R.T
and keep that one. In equation (9), there are nine cases
(S.T >,=,< R.T and S.D + 1 >,=,< R.D). However, the
inconsistency issue will happen in S.T < R.T and S.D > R.D.
In other words, if the upper bound of μ is less than S.D, and
not less than R.D, it may result in the inconsistency issue.

. . ; . .S D μ R D S T R T> ≥ < (12)

Therefore, it is necessary to use Inconsist[][] to record any
inconsistent situation. The data structure of Inconsist looks
like a lower triangular matrix as shown in Figure 7. In
Algorithm 1, the real information loss rate in the upper
bound of μ is defined as

1

1

[] [][]

() 1

μ N

k k μ
L

M

DIST k Inconsist k μ

R μ
N

−

= =

−

= −
∑ ∑

 (13)

The above analysis will be observed in the next section.

Figure 9 The same communication example with μ being 2, as
in Figure 4

Figure 10 Illustrative example of inconsistent updating

4 Results and evaluation

This section provides an overview of the system
architecture in experimental dataset and framework
configuration. The overview is followed by the analysis of
the results and discussion.

4.1 Experimental design

The underlying infrastructure is constructed along with the
entities outside the system that it interacts with. All the data
we crawled was collected from Twitter. Twitter’s API
provides straightforward interfaces to retrieve data for most
Twitter functionality based on certain filters. We consider
collecting communication data from Twitter into our
dataset. Twitter 4J is an open-source library for Twitter API
which is released under BSD license. It can easily integrate
Java applications with the Twitter service. We extract
tweets into our dataset using its REST functional

48 T-Y. Hsu and A.D. Kshemkalyani

implementation through the twitter4j package. To support
our methodology, VariableSocialVectorClocks would be
applied to several datasets to illustrate the influence of the
friendship separation distance constraint on social
communication.

Figure 11 The data structure of Inconsist

4.2 Datasets

In the Twitter data that we analyse here, we only consider
the explicit user interactions where one sender refers to an
indicated receiver target. After preprocessing, filtering them
and removing self loop, two targeted forms of
communication are preserved. The first one occurs in the
form of retweets (where one user rebroadcasts another user
tweets). The second one happens in the form of user
mentions (where the @ symbol is used to explicitly refer to
a specific user). If there exist more than one user in a tweet,
it is transformed into multiple communication events, each
of which corresponds to a pair of sender and receiver
represented in the tweet.

• London 2012 UK Olympics Data: The Olympics
dataset covers Twitter communication among a set of
492 UK Olympic athletes over the course of the four
years until now, including about 940,000 tweets. It is
based on a LIST of UK athletes organised by The
Telegraph (twitter.com/#!/Telegraph2012/london2012).
A Twitter ‘LIST’ is a curated group of Twitter users.
Users can create their own lists or subscribe to lists
created by others. Viewing a list timeline will show a
stream of Tweets from only the users on that list. Also,
we remove all tweets that are not the forms of user
mentions or retweets between the core set of 492 users.
Finally, some users who do not send and receive any
messages are also eliminated from the core set. The
number of core users is reduced to 459.

• Twitter MLB data: The MLB dataset includes Twitter
communication among a list of 563 past and present
Major League Baseball players in 2013 on Twitter,
containing about 660,000 tweets. It is based on a list of

Major League Baseball players organised by MLB
(twitter.com/MLB/lists/players). We pre-process all
data as in the previous setting. Statistically, the number
of core users is reduced to 554.

• Twitter SXSWi data: This dataset comes from targeted
communication among 480 speakers and attendees to
stay in the know on the latest. These members are
subscribed to a Twitter List of ‘SXSWi’ organised by
Mashable (mashable.com). It is a leading source for
news, information and resources for the connected
generation. Mashable reports on the importance of
digital innovation and how it empowers and inspires
people around the world. Mashable’s 34 million
monthly unique visitors and 14 million social media
followers have become one of the most engaged digital
networks in the world. In total, after preprocessing, this
dataset covers 458 users and 17,292 users’ mentions
and retweets among them.

• Twitter UICnews data: It is based on tweets gathered
from followers subscribing to UICnews where it shows
the latest from the University of Illinois at Chicago.
Followers on Twitter are people who receive tweets
issued by their following social target. There are
4,869 followers for UIC’s NEWS. This dataset includes
3,765,054 tweets ranging from March 2009 to May
2014. However, after removing users who did not have
any interactions with others in following UICnews,
there are only 1,719 users and 26,809 users’ mentions
and retweets among them.

• Twitter NY Times Journalist Data: The nyt-journalists
dataset is based on a public list of Twitter users,
including reporters, editors, photographers and
producers, in this case curated by The New York Times.
After the process of purifying, there are 671 users and
97,457 users’ mentions and retweets coming from
around 1,142,000 tweets.

4.3 Experiment evaluation and results

For the UK dataset, the total number of pieces of
information that can be captured without any friendship
separation constraints is 905,702. The maximum friendship
separation distance from a sender to a receiver is 18. In
other words, when μ > 18 the number of pieces of
information indirectly updated is zero. Obviously, it means
that no information travels along time-respecting paths
bounded by the minimal number of hops more than 18. For
the MLB dataset, the total number of messages delivered is
2,656,976. The maximum friendship separation distance
across senders and receivers is 16. In other words, when
μ > 16 the number of pieces of information indirectly
updated is zero. The SXSWi, UICnews, and NYtimes have
about 205 k, 322 k, and 4353 k pieces of information,
respectively. The maximum friendship separation distances
from a sender to a receiver for the three datasets are 12, 15,
and 14, respectively.

 Variable social vector clocks for exploring user interactions in social communication networks 49

Figure 12 shows the relationship between the minimum
number of hops (μ) and the Information loss rate (RL). The
detailed results with respect to RL are shown in Table 1.

If μ reaches more than nine, the information loss rates
will be less than 1%. When the upper bound of μ is limited
to ‘two’, the memory space requirements can be reduced up
to about 60%~80% except for the NY times social list. In
many social networks, this case has been considered and
shown to be significant to the impact of information
brokerage activities (Burt, 2007). Based on the observations,
it can been seen that the VSVC updates can effectively
improve the memory space utilisation and can more closely
approximate how far information should be tracked in real
social networks. When μ is bounded to be 6~7, the values of
RL (space saving rate) for all the datasets are about
1%~15%. This observation shows that more than 90% of
direct or indirect communication messages may be
maintained. It implies that when μ is equal to about 6 or 7,

the modification of SVCs almost acts as the conventional
ones.

Table 1 Information loss rates RL(μ)

µ London MLB SXSWi UICnews NYtimes

1 0.8248 0.9342 0.8305 0.8562 0.9037
2 0.6327 0.6927 0.6732 0.7739 0.4200
3 0.3571 0.2664 0.4331 0.6300 0.1207
4 0.1793 0.0946 0.2402 0.4479 0.0432
5 0.0947 0.0402 0.1253 0.2774 0.0183
6 0.0533 0.0191 0.0622 0.1546 0.0080
7 0.0302 0.0092 0.0282 0.0783 0.0033
8 0.0167 0.0043 0.0113 0.0359 0.0013
9 0.0088 0.0019 0.0041 0.0149 0.0005
10 0.0043 0.0008 0.0013 0.0055 0.0002

Note: μ is the minimum number of hops.

Figure 12 Information loss rate RL

Figure 13 The maximum reachable incoming distribution rate Rmax

50 T-Y. Hsu and A.D. Kshemkalyani

Table 2 The average reachable in-degree distribution number (Navg(μ)) and maximal rate (Rmax(μ))

µ
London 2012 MLB players SXSW i UICnews NY times

Navg(μ) Rmax(μ) Navg(μ) Rmax(μ) Navg(μ) Rmax(μ) Navg(μ) Rmax(μ) Navg(μ) Rmax(μ)

1 15 0.4314 20 0.2635 8 0.4476 5 0.1297 39 0.5931
2 102 0.8867 185 0.8466 53 0.8384 25 0.3258 341 0.9329
3 234 0.9564 422 0.9531 122 0.9170 64 0.5271 544 0.9553
4 311 0.9673 492 0.9603 176 0.9345 113 0.5974 589 0.9583
5 344 0.9717 508 0.9603 207 0.9345 157 0.6248 599 0.9583
6 359 0.9717 513 0.9621 223 0.9345 186 0.6335 603 0.9583
7 366 0.9717 515 0.9621 230 0.9345 204 0.6335 604 0.9583
8 370 0.9717 515 0.9621 234 0.9345 212 0.6335 605 0.9583
9 372 0.9717 515 0.9621 235 0.9345 216 0.6335 605 0.9583
10 372 0.9717 516 0.9621 236 0.9345 218 0.6335 605 0.9583

Figure 14 The normalised average reachable incoming distribution rate IR ′

For the analysis of reachable incoming topology
distributions (Navg(μ)), as per the definition in Section 3,
Figure 13 presents the maximum number of peers that
communicate with each other under the different constraints
of the shortest friendship separation (the limitation of the
minimum number of hops) in the five social groups. In the
case of Lee et al. (2013), their VC framework only included
direct friendship (μ = 1) and friendship-of-friendship
(μ = 2). Several social networks, such as Facebook, Twitter,
and Google+, also focus on allowing direct friends and
friends-of-friends to communication with each other. Based
on the results shown in Table 2, when μ is bounded to be
three, the maximum reachable incoming rates Rmax can
reach up to about 90%, other than for the group of
UICnews. If the upper bound of μ is six, the reachable
incoming topology can get to a steady state for the five
social groups. Figure 13 shows that the distribution rate Rmax
of UICnews is obviously different from that of other groups.
No matter what the upper bond of μ is, London 2012
presents the highest reachable incoming rate but UICnews
has the lowest one. Interestingly, members in London 2012,

MLB players, SXSWi, and NY times are highly
homogeneous in terms of their professions or certain
interests. Their interactions in these four groups could be
reasonably strong. However, followers in UICnews that just
follow the News of UIC have much more diverse
backgrounds. Other than UICnews, others have stronger
communication interactions. Based on the observation in
Figure 13, the social connection topology pattern in
UICnews is weaker than other groups. Therefore, the
reachable incoming distribution rate can help detect the
strength of social interaction patterns. The higher the
reachable incoming distribution rate, the stronger the social
communication pattern will be. In order to observe the
general reachable incoming topologies corresponding to
different datasets, we normalise the data Np(μ) by the
maximum reachable incoming number in each social group.
As shown in Figure 14, if μ is bounded to be two, Ravg in
London, MLB, SXSWi is close to 20%~30%. The rates of
Ravg in UICnews and NY times are about 80% and 40%
respectively. The results are both consistent with the
observations of the information loss rate in Figure 12.

 Variable social vector clocks for exploring user interactions in social communication networks 51

According to the theory of six degrees of separation, any
individual in the real world can be connected to any other
individual on the planet through a chain of acquaintances
with six or fewer intermediaries. As a result, when the upper
bound of the shortest friendship distance is six, everyone
can communicate with all the people in a social networking
community. Intuitively, ‘six’ is applicable to evaluate our
experimental results in the reachable in-degree distributions.
Interestingly, as shown in Figure 14 when the upper bound
of μ is 6, Ravg is close to or over 90% (if the upper bound of
μ is 7, the Ravg for all the datasets is definitely more than
90%). It reasonably implies that a common peer p can
almost communicate with most of the maximum number of
peers from which peer p can receive indirect updated
messages within 6 or 7 steps for the same social group.

5 Conclusions

Among several researches for social networking, the fine-
grained temporal view has been shown to be very useful and
applicable to measure the potential for information
pathways and event-driven communication. With this view,
a sequence of timestamps could provide social networks
with a global view of the communication flows. As
discussed earlier, however, poor scalability is a major
drawback of conventional VCs, although it captures all
exchanging messages and indirect communication. As a
matter of fact, a tremendous amount of information
communication does not seem to occur when two people
talk to each other; the number of cognitive peers does not
scale with the size of the whole social network. Based on
this observation, the modification of SVCs (Kossinets et al.,
2008) was proposed to reduce memory space requirements
noticeably. An interesting question is raised in regard to
what the reasonable value of μ is.

In this paper, we quantitatively analysed the influence of
different upper bounds of the shortest friendship separation
on the information loss rates and reachable incoming
topology distributions using several Twitter social network
groups. We also proposed an adaptive approach to
systematically updating VSVCs. It improves the efficiency
in exploring the above issues we concentrate on. This
solution is universal. It can be easily applied to any
social network group if and only if all event-driven
communication with timestamps in the group could be
preserved. The major reason is that our solution follows
fine-grained temporal mechanism. Another advantage for
our framework is that it can be operated in distributed
systems.

The friendship policy in several social networks allows
both direct friends and friends-of-friends to communicate
with each other. Therefore, we first focus on the minimum
number of hops (μ) ≤ 3 in our experiment evaluation. The
results of RL show that when μ is bounded to be ‘two’, in
general, the memory space requirements can be effectively
reduced up to 60%~80% except for the group having a
behaviour of very strong connections, such as NY times.
Taken together with this restriction, the VC updates can

become more efficient for the memory space utilisation and
more closely approximate how far information would be
tracked along time-respecting paths. When the upper
bounds of μ are ‘6’ and ‘7’, the corresponding information
loss rates are lower than 15% and 10% for all groups,
respectively. In other words, most of communication
information would be retained. When the upper bound of μ
is ‘10’, RL will be obviously lower than 1%. It has hardly
lost any communication information. When μ > ‘10’, the
information loss rate and the normalised average reachable
incoming distribution rates are both in the steady state.

On the other hand, when the upper bound of μ is ‘1’,
the normalised average reachable incoming topology
distribution rates (Ravg) are about 3%~6%. When μ is
bounded to be 6~7, the rates of Ravg in all the social
networking groups are statistically close to or more than
90%. It implies that when μ is 6 or 7, the number of peers
from which a general one can exchange incoming
information is almost saturated in a social group. It is
consistent with the results of Ravg. Furthermore, when μ is 2
and 3, the Information loss rates (RL) are also in line with
the corresponding normalised average reachable incoming
topology distribution rates (Ravg).

In our future work, we plan to integrate preferential
connectivity into social communication aggregation analysis
with VSVCs and develop a reasonable user interaction
model. We want to look for an efficient approach to divide a
social group into some subgroups, between which there is
no communication.

References
Berger-Wolf, T.Y. and Saia, J. (2006) ‘A framework for analysis

of dynamic social networks’, in Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ‘06, pp.523–528, ACM, New York,
NY, USA.

Burt, R.S. (2007) ‘Second-hand brokerage: evidence on the
importance of local structure for managers, bankers, and
analysts’, Academy of Management Journal, Vol. 50, No. 1,
pp.119–148.

Cha, M., Haddadi, H., Benevenuto, F. and Gummadi, K.P. (2010)
‘Measuring user influence in twitter: the million follower
fallacy’, in ICWSM ‘10: Proceedings of International AAAI
Conference on Weblogs and Social Media.

Dunbar, R.M. and Hill, R. (2005) ‘Social network size in humans’,
Human Nature, Vol. 14, No. 1, pp.53–72.

Federico, P., Aigner, W., Miksch, S., Windhager, F. and Zenk, L.
(2011) ‘A visual analytics approach to dynamic social
networks’, I-KNOW, Vol. 47, pp.1–47:8.

Granovetter, M.S. (1973) ‘The strength of weak ties’, Am. J.
Sociol., Vol. 78, No. 6, pp.1360–1380.

Harrigan, M. (2010) ‘Using vector clocks to visualize
communication flow’, in Memon, N. and Alhajj, R. (Eds.):
ASONAM, pp.241–247, IEEE Computer Society.

Holme, P. and Saramäki, J. (2012) ‘Temporal networks’, Physics
Reports, Vol. 519, No. 3, pp.97–125.

52 T-Y. Hsu and A.D. Kshemkalyani

Hsu, T.Y., Kshemkalyani, A.D. and Shen, M. (2014) Modeling
user interactions in social communication networks with
variable social vector clocks’, in COLLABES ‘14:
Proceedings of IEEE International Conference on Advanced
Information Networking and Applications.

Huberman, B.A. and Adamic, L.A. (2004) ‘Information dynamics
in the networked world’, in Ben-Naim, E., Frauenfelder, H.
and Toroczkai, Z. (Eds.): Complex Networks, Vol. 650,
pp.371–398, Springer.

Kossinets, G., Kleinberg, J. and Watts, D. (2008) ‘The structure of
information pathways in a social communication network’, in
Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD
‘08, ACM, New York, NY, USA, pp.435–443.

Koylu, C., Guo, D. and Kasakoff, A. (2012) ‘Mapping social
relationships across space and time’, in AutoCarto
International Symposium on Automated Cartography.
Cartography and Geographic Information Society.

Kshemkalyani, A. and Singhal, M. (2008) Distributed Computing,
Cambridge University Press, New York, USA.

Kwak, H., Lee, C., Park, H. and Moon, S. (2010) ‘What is twitter,
a social network or a news media?’, in Proceedings of the
19th International Conference on World Wide Web, WWW
‘10, ACM, New York, NY, USA, pp.591–600.

Lee, C., Nick, B., Brandes, U. and Cunningham, P. (2013) ‘Link
prediction with social vector clocks’, in Proceedings of the
19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ‘13, ACM, April,
pp.784–792.

Lewis, B.K. and Nicholes, C. (2012) ‘Social media and strategic
communication: a two-year study of attitudes and perceptions
about social media among college students’, Public Relations
Journal, Vol. 6, No. 4, pp.1–20.

Mao, H., Shuai, X. and Kapadia, A. (2011) ‘Loose tweets: an
analysis of privacy leaks on twitter’, in Proceedings of the
10th Annual ACM Workshop on Privacy in the Electronic
Society, WPES ‘11, ACM, New York, NY, USA, pp.1–12.

Mattern, F. (1988) ‘Virtual time and global states of distributed
systems’, Proceedings of the Parallel and Distributed
Algorithms Conference, pp.215–226.

Raynal, M. and Singhal, M. (1996) ‘Logical time: capturing
causality in distributed systems’, Computer, Vol. 29, No. 2,
pp.49–56.

Tang, J., Sun, J., Wang, C. and Yang, Z. (2009) ‘Social influence
analysis in large-scale networks’, in Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ‘09, ACM, New York,
NY, USA, pp.807–816.

Wright, D.K. and Hinson, M.D. (2012) ‘Examining how social and
emerging media have been used in public relations between
2006 and 2012: a longitudinal analysis’, Public Relations
Journal, Vol. 6, No. 4, pp.1–40.

