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1 Introduction 

The use of online communication for large social 
communities and networks has been a growing concern in a 
variety of disciplines. For example, larger social networks 
act as tubes for information flows and messaging 
communication (Huberman and Adamic, 2004; Granovetter, 
1973). Most of the social networking services not only 
provide a common platform to associate individuals through 
some characteristic profile, such as ideas, activities, 
backgrounds, interests, or events, but they also allow them 
to interact with each other over the internet. A huge number 
of indications show that social network activities have 
affected and changed the physical world (Tang et al., 2009; 
Lewis and Nicholes, 2012; Wright and Hinson, 2012). It 
also explicates that the potential of social networking usage 
and social media technologies is deemed very high and 
quickly grows over time. For the sake of analysing user 
communication in social networks, it can be visually 
represented as a dynamic graph (Federico et al., 2011; 
Berger-Wolf and Saia, 2006; Koylu et al., 2012). 
Technically, it has been a challenging task to formulate 
complete data flows for event-driven communication in 
large-scale networks over a long period of time. The main 
reason is that event-driven data flows may be highly 
correlated with the variety of timing and ordering of events. 
Based on prior knowledge, the fine-grained temporal 
approach has been proposed to figure out the dynamic  
inter-communication in a social network through a temporal 
framework (Holme and Saramäki, 2012). By applying the 

fine-grained temporal modalities, some researches have 
begun studies to explore information path latency and 
indirect message exchanging in social communication 
networks. They applied the formula of vector clocks (VCs) 
from the field of distributed systems to realise the temporal 
infrastructure. The notion of VCs was conceptually 
introduced by Mattern (1988). It can be used to track the 
lower bound of how recent each process’s state is associated 
with any other one at a given time. Under a partial ordering 
of events in such a concurrent system, VCs can reflect how 
a given pair of events are causally related with each other. 

Kossinets et al. (2008) figured out how information is 
diffused in social communication networks. By applying 
VCs to social networks, they introduced a framework of 
social vector clocks (SVCs) to mark the latest information 
available to each actor at each timestamp. As for 
information diffusion, a two-step information pathway can 
be faster than a one-step path in real social networks. 
Through SVCs, communication flows were visualised over 
time (Harrigan, 2010). They have been used to design a 
temporal framework to explore the structure of information 
pathways (Kossinets et al., 2008). The SVC temporal 
updating scheme can provide an important mechanism 
capable of maintaining the contents and timestamps of the 
latest communication for each peer. Without considering the 
subject matter of information or messages, an ordering of 
timestamps can present a global view for user interactions. 
As with Lamport timestamps, inter-process messages 
contain the local state of the sending process’s logical clock. 

Figure 1 Illustrative example of social network communication for eight people 
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Consider an example as shown in Figure 1. Suppose that 
there are eight people that talked about the location of their 
vacation. Figure 1 shows a complete series of direct and 
indirect communication messages over six days. They can 
be referred to as user-directed mentions in Twitter. Let 
member a serve as a coordinator for the review programme 
of travelling issues and make decisions in collecting the 
other members’ comments. Member a began by sending 
message m1 to members b and g on Monday morning. 
Member b told member c m2 plus an item of piggybacked 
information m1 at 4 PM on Tuesday afterward. Clearly, the 
coordinator a would finally receive the message m8 from 
member h and all the other latest indirect communication 
information m2, m3, m4, m5, m6, m7 on Saturday morning. 
Although member a did not directly contact with most of all 
the others, he would learn about the latest opinions in the 
group at 11 AM on Saturday. This scenario can be realised 
by indirect message updating using the nature of SVCs. It 
illustrates that all indirect up-to-date communications 
between any pair of members can be saved and tracked by 
SVCs, but with quadratic space requirements. It also causes 
that some of the indirectly exchanged messages may be 
insignificant for most members in a huge social network 
group. Consider a case that member a talked to another 
member i something about his professional life irrelevant to 
travelling issues on Sunday morning. Member i would 
receive all communication messages exhibited in Figure 1, 
even if he did not have interactions with those members 
directly. Apparently, it is unrealistic to preserve all peers’ 
indirect updated messages in qualitatively analysing user 
interactions using the conventional SVCs in social groups. 

In Dunbar and Hill (2005), it is demonstrated that 
cognitive constraints may not impact the size of the whole 
social network. One modification to the SVCs, in addition 
to shortest time-respecting paths, has been proposed to 
formulate the fine-grained temporal features applicable to 
large-scale social interaction networks with better 
scalability for link prediction (Lee et al., 2013). The amount 
of reachable indirect incoming information is subject to the 
shortest friendship distance μ (i.e., the minimum number of 
hops) from the source to the target on time-respecting paths. 
It insinuates that some information may be lost and 
inconsistent when the upper bound of μ is less than the 
number of overall members. For example, as shown in 
Figure 1, if μ is bounded to be ‘1’ such that most of the 
indirect updates will be discarded, member a may acquire 
inconsistent information. In such a case, member a can 
obtain only one message from member g. This observation 
infers that the information loss rate is apparently dependent 
on the value of μ. 

1.1 Contributions 

In this paper, we further extend the modification of SVCs to 
be variable social vector clocks (VSVCs) and apply VSVCs 
to quantitatively model the influence of the restriction of μ 
on the reachable information. Here, we focus on five 
medium or large social groups from a certain microblogging 
network. They include a list of UK athletes organised by 

The Telegraph, a list of past and present MLB players,  
a list of members in SXSWi created by a commercial 
platform mashable, a group of followers following the  
latest information posted by UICnews, and a list of 
journalists curated by TheNewYorkTimes on Twitter, where 
participants can explicitly dispatch messages to targeted 
receivers. Twitter networking has been widely used to deal 
with several analyses (Kwak et al., 2010; Mao et al., 2011; 
Cha et al., 2010). 

In order to improve the performance of running SVCs 
with the fixed upper bound of μ, we propose an incremental 
adaptive approach to update VSVCs. It requires only one 
running cycle for the complete dataset. It can exactly 
recover the practical situation in different upper bounds of 
μ. We present the reasonable compromise of information 
loss rate and memory space requirement, and then the 
distribution of separation topology for incoming reachable 
messages. We also demonstrate that our results for 
information loss rates and incoming reachable topology 
distributions are consistent. 

1.2 Organisation 

This paper is organised as follows. In Section 2, we review 
the definition and updating algorithm for the conventional 
VCs and specify our full extension of SVCs. In Section 3, 
we describe our methodology – how VSVCs can be applied 
to our experiments. In Section 4, we present our experiment 
results and evaluation. Finally, we summarise the 
conclusion and discuss some future research directions in 
Section 5. 

2 Vector clocks 

We begin with a brief review of conventional VCs in 
distributed systems (Mattern, 1988). Then, we present an 
underlying introduction about the concept of SVCs and the 
modification of SVCs. Finally, we provide a description of 
how to apply the framework of VSVCs to social networks. 

2.1 Conventional VCs 

There are many existing works studying the conventional 
VCs in the distributed system literature (Mattern, 1988; 
Raynal and Singhal, 1996; Kshemkalyani and Singhal, 
2008). Basically, to establish VCs in the system, each 
process Pi ∈ P (P is the set of processes in the system) 
maintains a VC Vi of n (number of processes in the system) 
integers, which is updated by the following rules. 

1 Before an internal event happens at process Pi,  
Vi[i] = Vi[i] + 1. 

2 Before process Pi sends a message, it first executes  
Vi[i] = Vi[i] + 1, then it sends the message piggybacked 
with Vi. 

3 When a process Pj receives a message with timestamp 
U from Pi, it executes ∀k ∈ [1 … n], Vj[k] = max(Vj[k], 
U[k]); Vj[j] = Vj[j] + 1; before delivering the message. 
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Conventional VC in a distributed system is used to track the 
causal relation ( )≺  between two events that happened in the 
system by comparing their corresponding VC timestamps, 
i.e., ,i ji j e ee e V V⇔ <≺  where i je eV V<  means ∀a ∈ [1, 
n], [ ] [ ]i je eV a V a≤  and ∃b ∈ [1, n] such that [ ] [ ].i je eV b V b<  

Furthermore, the conventional VC can also be expressed 
as a multivariate function on a three-tuple (t, s, r), which is 
(time, sender, receiver). Pi’s temporal view of every process 
in the system at time t is defined as a function φi,t = (φi,t(j):  
j ∈ P) where φi,t(j) is Pi’s temporal view of a particular 
process Pj at time t. Here, φi,t(j) corresponds to the jth entry 
of Pi’s local vector timestamp Vi when Vi[i] = t. 

2.2 Traditional SVCs and the modification 

Based on the structure of our social communication data, 
the data are expressed as the following: Given a set of N 
peers in a social network, we pre-define a time interval  
[0 ~ T], over which a complete sequence of communication 
events are organised in terms of the global time ordering. 
Each event is composed of a multivariate function on a 
three-tuple (t, s, r) as per the definition given in Section 2.1. 
Suppose that there is no communication delay and there 
exists one global synchronous time. Note that the above two 
constraints are not applicable to the framework of 
asynchronous distributed systems. 

The traditional SVC updating approach practically 
follows the mechanism of the conventional VCs. Due to the 
assumption of no propagation delay in social networks, 
when receiving an incoming communication event (Et) sent 
in time slice t from peer i, the timestamp of the receiver peer 
j’s temporal view of the ith entry is set to peer j’s VC on the 
jth entry and the sending timestamp of Et. Figure 2 illustrates 
how to update the entries on SVCs. For instance, when P4 
receives Et5 sent from P3 at t5, V3[3] = t5 and V3[4] = t5 as 
well. By the rule 3 in the conventional VCs, V3[1] and V3[2] 
are set to t3 and t4, respectively. 

Figure 2 Illustrative example of social network communication 
for four peers with the conventional SVCs 

 

For N peers in a social system, traditional SVCs take up 
O(N2) globally to support the latest fine-grained temporal 

patterns. Under the piggyback system, each peer will soon 
get a large number of indirect updating messages from other 
peers, most of whom the receiver does not have any direct 
communication with ever, or has too far social-connection 
steps in between them. Therefore, it may not be efficient 
and practical to straightforwardly utilise the function of 
SVCs in modelling user social interactions; otherwise, huge 
amounts of impractical information will be generated in 
steady state. 

Figure 3 Illustrative example of social network communication 
for four peers with μ being 1 

 

A further modification of the updating framework for  
SVCs has been addressed in Lee et al. (2013), where a 
parameter μ is considered as the minimum number of hops 
between a pair of sending peer and receiving target along 
time-respecting paths and included in the framework of the 
traditional SVCs. The semantics of three major different 
values assigned to μ are as follows: 

• μ = 1: This case is concerned with direct friendship 
communication. A receiver can update a component of 
the local SVC based on the incoming message if and 
only if the corresponding sender for that component 
ever directly interacts with the receiver (an incoming 
communication is a message with the VC piggybacked 
on the message). The same communication example in 
Figure 2 is modified as shown in Figure 3. 

• μ = 2: This case considers friendship-of-friendship 
indirect communication. A receiver j can update  
the kth component of the local SVC based on the kth 
component of the piggybacked timestamp directly sent 
from a peer i if and only if the corresponding indirect 
sender k has ever directly interacted with the sender i. 
The illustrative example in Figure 2 is replaced with 
Figure 4. 

• μ = ∞ ( it is enough for μ being N–1 in a N-peer social 
group): it is equivalent to the conventional SVC 
updating approach, considering unlimited indirect 
communication spread without self-looping updating, 
as show in Figure 2. 
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Figure 4 Illustrative example of social network communication 
for four peers with μ being 2 

 

2.3 Variable social VCs 

The above three major social relationships were presented 
in Lee et al. (2013). In order to consider all different 
reachable distances of friendship, we define a universal 
framework of the VSVCs in social networks, as follows 
(Hsu et al., 2014). 

Without loss of generality, assume that when μ = c, peer 
j sent a direct message to peer i. Peer i can receive an 
indirect update on the kth component of the local SVC based 
on the kth component of the piggy back timestamp via a 
direct update from a peer j, if and only if the maximum 
number of hops from peer k to peer j is c – 1. 

Figure 5 Illustrative example of social network communication 
for four peers with VSVCs 

 

Whenever a receiver updates its own latest temporal scopes, 
it also computes the shortest friendship distances with 
respect to all the other peers. Vi[j], the jth entry of peer i’s 
SVC, needs to maintain two types of data elements. 

1 Vi[j].time captures the latest timestamp of peer j at peer 
i. 

2 Vi[j].dist measures the shortest friendship-respecting 
path. 

As shown in Figure 5, each entry in a peer is represented by 
|t/d|. In the jth entry of Pi, t means Vi[j].time and d denotes 
Vi[j].dist. When an incoming event Et occurs sent from peer 
j to peer i at time slice t, then 

1 Vi[j].time = Et.timestamp 

2 Vi[k].dist = min(Vj[k].dist + 1, Vi[k].dist) when k ≠ j. 

Figure 5 illustrates an example of applying VSVCs to the 
case in Figure 2. In this paper, we use the framework of 
VSVCs to analyse how the social communication is affected 
by the upper bound of the minimum number of hops (μ). 

3 Methodology 

Our evaluation seeks to investigate the impact of the  
hop-constrained paths on social communication. The scope 
of this research lies in the characteristics of user interactions 
with different limitation friendship distances (μ). However, 
the traditional SVC updating approach has redundant 
computation complexity O(mn) (where n and m represent 
the number of vertices and communication events, 
respectively). It is also impractical to run the entire series of 
communication events for each different μ. We design an 
efficient accumulative VSVC updating algorithm keeping 
track of the minimum number of hops the information 
travels between a pair of sender and receiver targets. It only 
takes time O(m). Whenever one communication event Et 
happens, triggered from a sender peer (Et.sender) to a 
receiver target (Et.receiver), the receiver target’s VC needs 
to be updated. For each update, the shortest friendship 
distance from the sender to the receiver needs to be 
computed as well. 

We now describe our evaluation methodology  
of manipulating VSVCs with the shortest friendship 
distances, by first presenting the conceptual basis of 
information loss rate and reachable incoming distribution, 
and then presenting the updating process proposed  
by the methodology. The algorithm pseudocode of 
VariableSocialVectorClocks is shown in Algorithm 1 and 
explained in Section 3.3. 

3.1 Information loss rate 

Initially, we define the following terms: 

• Message: It is a direct piece of communication sent 
from a sender to a receiver. 

• Information: Each component on the VSVC 
piggybacked with a sending message is defined as a 
piece of information. 

VariableSocialVectorClocks described in Section 3.3 is an 
incremental algorithm to update both the latest timestamp 
and the shortest distance at each time slice t. In an N-peer 
social network group, when μ is bounded to be N–1, it is 
equivalent to the conventional SVC algorithm with 
unlimited communication spread. Intuitively, the number of 
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pieces of updating information in peer i with μ being k can 
be defined as DISTi[k]. 

When the shortest friendship distance is k, the number 
of pieces of receiving and updating information is: 

1

0

[ ] [ ]
N

i
i

DIST k DIST k
−

=

=∑  (1) 

The total number of pieces of receiving information without 
losing any communication in a social group is: 

1

1

[ ]
N

M
k

N DIST k
−

=

=∑  (2) 

Only when k is equal to or less than μ will this information 
be received. We can compute the information loss rate RL 
corresponding to the specified value of μ as: 

1

[ ]
( ) 1

μ

k
L

M

DIST k
R μ

N
== −
∑

 (3) 

RL(μ) can also be referred to as the space saving rate. 
Interestingly, it decreases as the value of μ increases. With 
this view, we can gain insight into how to determine the 
upper bound of μ to efficiently utilise memory space 
without losing reasonable communication in a social 
network. 

3.2 Reachable incoming topology distribution 

Figure 6 gives an illustrative example of an incoming 
communicating pattern for peer P. If μ is one, only five 
peers having ever sent direct messages to the central peer P 
can communicate with it. As the value of the limitation of μ 
increases, the number of peers whose updating messages 
can reach peer P will increase. In our methodology, we also 
make an analysis of the reachable incoming topology 
distribution in the steady state. We would learn about the 
number of peers (Np) whose sending information can reach 
one peer p (at the latest time slice T) with respect to the 
limitation of μ based on the up-to-date value of Vp[i].dist 
(using the VCs {V0, …, VN–1} in Algorithm 1). Vp[i].dist 
means the shortest friendship distance from peer i to peer p. 
By summing up the value of xi (xi: a unit step function) 

1

1 if [ ]. ;
( )

0 otherwise                   

N
i p

p i
ii

x V i dist μ p i
N μ x

x=

= ≤ ≠⎧
= ⎨ =⎩
∑  (4) 

If xi = 1, a sending message from peer i can reach peer p; 
otherwise, it is unreachable even though there exists a 
directed connection path. Because of the variation of 
individual peers, we normalise the value of Np for each peer: 

1

0

( )

( )

N

p
p

avg

N μ

N μ
N

−

==
∑

 (5) 

We refer to Navg(μ) as the ‘average reachable incoming 
distribution number’. Apparently, the value of Navg 
positively depends on the upper bound of μ. Therefore, the 
average reachable incoming rate can be defined as: 

( )
( ) avg

I
N μ

R μ
N

=  (6) 

If social communication is in a steady-state, RI(μ) should be 
close to 1–RL. On the other hand, the reachable incoming 
rate is highly dependent on the social interaction strength in 
a group. Naturally, there must be a certain number of people 
who did not send or receive any message to and from 
others. Nmax(μ) is defined as the maximum number of peers 
from whom one peer has received information with μ in the 
same group. We use Nmax to denote Nmax(∞). Therefore, 

max
max

( )( ) N μR μ
N

=  (7) 

Figure 6 Illustrative example of reachable incoming with 
different limitation distances μ 

 

Furthermore, the normalised average reachable incoming 
rate is defined as follows: 

max

( )
( ) avg

I
N μ

R μ
N

′ =  (8) 

We also use Navg(μ) to evaluate the degrees of separation for 
individual social networks in our experiments based on the 
six degrees of separation. 

3.3 Algorithm 1 – adaptive approach 

A sequence of Et (0 ≤ t ≤ T) is treated as the input. In  
lines 1 to 4, the timestamp vector (Vi.time) and distance 
vector (Vi.dist) for each peer i associated with any other peer 
are initialised. When index i is ‘0’, it means the first peer. 
When index i is N – 1, it indicates the Nth peer. Each peer 
maintains its own VC with the latest information with 
respect to all other peers. The value of DISTi[k] gives how 
many pieces of information are indirectly/directly delivered 
to peer i in the minimum number of hops of k, where k ≥1 is 
the shortest distance between a pair of peers. Vx[y].time 
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represents the latest temporal view of peer x on peer y; 
Vx[y].dist maintains the shortest distance from y to x. Each 
peer i needs to maintain a 2D matrix of Inconsisti. Without 
it, the information loss rate for each μ would be incorrect in 
some cases. We will illustrate the reason later. 

There are four different cases for updating Vj and DISTj. 
Lines 7 to 22 deal with the first case when both sender’s and 
receiver’s VCs have been active. ‘Active’ implies that a 
peer has received at least one direct incoming message from 

any other peer. This case occurs most often, such as Et7 
shown in Figure 3. P1 becomes ‘active’ after time t6 and P3 
is ‘active’ after time t4. Lines 23 to 29 correspond to the 
second case, such as Et2, where P4 has not been active until 
t5 but P2 has become active since t1. Lines 30 to 32 treat the 
third case like Et6 contrary to the second case. Lines 33 to 
35 illustrate the fourth case, such as Et1, where neither of P1 
and P2 has been active at t0. 

Figure 7 Cognitive information processing 
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Algorithm 1 VariableSocialVectorClocks 

Input: E0, …, ET 
Output: V0, …, VN–1, DIST[] and Inconsist[][] 
1 for i ← 0 to N – 1 do 
2  Vi.time ← [⊥, …, ⊥]; Vi.dist ← [⊥, …, ⊥]; 
3  DISTi ←[0, …, 0]; 
4  Inconsisti[][] ← [0, …, 0]; 

5 while t ≤ T do 
6  j ← Et.receiver; i ← Et.sender; 
7  if Vi and Vj have been active then 
8   Vj[j].time ← Et.time; Vj[i].time ← Et.time; 
9   Vj[i].dist ← 1; 
10   for k ← 0 to N – 1 but k ≠ j, i do 
11    if Vi[k] ≠ ⊥ and Vj[k] ≠ ⊥ then 
12     if Vi[k].dist < Vj[k].dist then 
13      Vj[k].dist ← Vi[k].dist + 1; 

14     if Vi[k].time < Vj[k].time then 
15      Vj[k].time ← Vi[k].time; 
16      DISTj[Vj[k].dist]++; 
17      if Vi[k].dist > Vj[k].dist then 
18       Inconsist[Vi[k].dist][Vj[k].dist]++; 

19    else if Vi[k] ≠ ⊥ and Vj[k] is ⊥ then 
20     Vj[k].time ← Vi[k].time; 
21     Vj[k].dist ← Vi[k].dist + 1; 
22     DISTj[Vj[k].dist]++; 

23  else if Vi is active but Vj has not been active then 
24   Vj[j].time ← Et.time; Vj[i].time ← Et.time; 
25   Vj[i].dist ← 1; DISTj[1] + +; 
26   for k ← 0 to N – 1 but k ≠ j, i do 
27    Vj[k].time ← Vi[k].time; 
28    Vj[k].dist ← Vi[k].dist + 1; 
29    DISTj[Vj[k].dist]++; 

30  else if Vj is active but Vi has not been active then 
31   Vj[j].time ← Et.time; Vj[i].time ← Et.time; 
32   Vj[i].dist ← 1; DISTj[1] + +; 

33  else if both Vi and Vj have not been active then 
34   Vj[j].time ← Et.time; Vj[i].time ← Et.time; 
35   Vj[i].dist ← 1; DISTj[1] ← 1; 

36  t++; 

37 for i ← 0 to N – 1 do 
38  DIST[] ← DIST[] + DISTi[]; 
39  Inconsist[][] ← Inconsist[][] + Inconsisti[][]; 

The corresponding cognitive information processing of 
VariableSocialVectorClocks is shown in Figure 7. 
Whenever some timestamp t in D1 applied to line 5 in 
Algorithm 1 is valid, the event Et would be extracted from 
the dataset. D2 determines which process would be used to 
update the VSVC of the receiver of Et according to the 
situation of the sender and the receiver of it. P4 or P5 would 
deal with the first case as lines 7 to 22 do. D3 would first 
determine whether the kth entries of the sender’s and the 
receiver’s VSVCs are undefined or not. Then, P4 or P5 
would update this entry of the receiver’s VSVC based on 
the result of D3. D4 refers to line 17. If an inconsistent case 
occurs, P6 needs to update Inconsist matrix. P1, which is 
equivalent to lines 23 to 29, would process the second case 
to update each entry of the receiver’s VSVC based on the 
sender’s VSVC. P2 and P3 respectively represent the 
processes to solve the third case and the fourth case defined 
before. When t is equal to T, Algorithm 1 will terminate. 

Note that when a receiver j completes updating 
timestamps and friendship distances, DISTj[d] also needs to 
be updated. Whenever a more recent indirect/direct message 
is received and the shortest friendship distance from the 
sender peer to the receiver j is d, the value of DISTj in the 
index d should be added by one. Let us consider the 
example of Et2 as shown in Figure 5. 

1 After receiving Et1, V2 = [t1/1, t1/0, ⊥, ⊥]. 

2 Based on line 32, DIST2[1, 2, 3] = [1, 0, 0]. 

3 When receiving Et2, V2 = [t1/1, t2/0, ⊥, t2/1]. 

4 Again, based on line 32, V2[3].dist = ‘1’. DIST2[1]++ 
will run one time, then DIST2[1, 2, 3] = [2, 0, 0]. 

Figure 8 An illustrative communication example with VSVCs 
by μ being 4 

 

Lines 37 to 39 accumulate DISTi[] and Inconsisti[][] from 
each peer into a global DIST[] and a global Inconsist[][]. 
After t2, DIST[1, 2, 3] = [2, 0, 0]. It indicates that the 
numbers of updating messages in friendship distance 0 and 
1 are two and three, respectively. As mentioned before, 
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Algorithm 1 can improve the computing performance 
against the conventional SVC updating method. 

However, without using Inconsist matrix to record the 
number for each inconsistent case during updating, the real 
information loss rate cannot be correctly computed. 
Consider an illustrative communication example with five 
peers as follows. 

‘ ’ indicates the latest receiving information for the 
receiver itself. Since these ‘ ’ outcomes are trivial for our 
study, we use the symbol of ‘ ’ to mark them. After 
timestamp e, DIST[1, 2, 3] = [6, 3, 2] in Figure 8. DIST[1] = 
6 presents that the number of pieces of updating information 
with the receiving friendship distance being 1 is 6. 

If the upper bound of μ is 2, the information loss rate 
computed in terms of the definition of equation (4) 

6 3 2(2) 1
6 3 2 11LR +

= − =
+ +

 (9) 

Again, using the same communication events as Figure 8 
with a fixed upper bound of μ being 2, the information loss 
rate in Figure 9 is 

5 3 3(2) 1
11 11LR +

= − =  (10) 

Obviously, the two outcomes are inconsistent. There are 
two major reasons leading to this inconsistency issue. First, 
the case in real situation with a fixed upper bound of μ will 
discard some indirect updating messages of corresponding 
friendship distances that are larger than μ. Second, the 
framework of variable SVCs allows to keep track of the 
latest timestamp and the shortest friendship distance from 
different senders. When a receiver r obtains an indirect 
piece of updating information from source i via a direct 
sender s, the receiver will compare the timestamp (S.T) and 
friendship distance (S.D) of this message with those (R.T 
and R.D) of its own existing message coming from the same 
source i. As shown in Figure 10, peer r receives an indirect 
updating message from peer i via peer s. By updating rule, 

max( . , . ); min( . 1, . )X S T R T Y S D R D= = +  (11) 

max means that X will choose the latest from S.T and R.T 
and keep that one. In equation (9), there are nine cases  
(S.T >,=,< R.T and S.D + 1 >,=,< R.D). However, the 
inconsistency issue will happen in S.T < R.T and S.D > R.D. 
In other words, if the upper bound of μ is less than S.D, and 
not less than R.D, it may result in the inconsistency issue. 

. . ; . .S D μ R D S T R T> ≥ <  (12) 

Therefore, it is necessary to use Inconsist[][] to record any 
inconsistent situation. The data structure of Inconsist looks 
like a lower triangular matrix as shown in Figure 7. In 
Algorithm 1, the real information loss rate in the upper 
bound of μ is defined as 

1

1

[ ] [ ][ ]

( ) 1

μ N

k k μ
L

M

DIST k Inconsist k μ

R μ
N

−

= =

−

= −
∑ ∑

 (13) 

The above analysis will be observed in the next section. 

Figure 9 The same communication example with μ being 2, as 
in Figure 4 

 

Figure 10 Illustrative example of inconsistent updating 

 

4 Results and evaluation 

This section provides an overview of the system 
architecture in experimental dataset and framework 
configuration. The overview is followed by the analysis of 
the results and discussion. 

4.1 Experimental design 

The underlying infrastructure is constructed along with the 
entities outside the system that it interacts with. All the data 
we crawled was collected from Twitter. Twitter’s API 
provides straightforward interfaces to retrieve data for most 
Twitter functionality based on certain filters. We consider 
collecting communication data from Twitter into our 
dataset. Twitter 4J is an open-source library for Twitter API 
which is released under BSD license. It can easily integrate 
Java applications with the Twitter service. We extract 
tweets into our dataset using its REST functional 
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implementation through the twitter4j package. To support 
our methodology, VariableSocialVectorClocks would be 
applied to several datasets to illustrate the influence of the 
friendship separation distance constraint on social 
communication. 

Figure 11 The data structure of Inconsist 

 

4.2 Datasets 

In the Twitter data that we analyse here, we only consider 
the explicit user interactions where one sender refers to an 
indicated receiver target. After preprocessing, filtering them 
and removing self loop, two targeted forms of 
communication are preserved. The first one occurs in the 
form of retweets (where one user rebroadcasts another user 
tweets). The second one happens in the form of user 
mentions (where the @ symbol is used to explicitly refer to 
a specific user). If there exist more than one user in a tweet, 
it is transformed into multiple communication events, each 
of which corresponds to a pair of sender and receiver 
represented in the tweet. 

• London 2012 UK Olympics Data: The Olympics 
dataset covers Twitter communication among a set of 
492 UK Olympic athletes over the course of the four 
years until now, including about 940,000 tweets. It is 
based on a LIST of UK athletes organised by The 
Telegraph (twitter.com/#!/Telegraph2012/london2012). 
A Twitter ‘LIST’ is a curated group of Twitter users. 
Users can create their own lists or subscribe to lists 
created by others. Viewing a list timeline will show a 
stream of Tweets from only the users on that list. Also, 
we remove all tweets that are not the forms of user 
mentions or retweets between the core set of 492 users. 
Finally, some users who do not send and receive any 
messages are also eliminated from the core set. The 
number of core users is reduced to 459. 

• Twitter MLB data: The MLB dataset includes Twitter 
communication among a list of 563 past and present 
Major League Baseball players in 2013 on Twitter, 
containing about 660,000 tweets. It is based on a list of 

Major League Baseball players organised by MLB 
(twitter.com/MLB/lists/players). We pre-process all 
data as in the previous setting. Statistically, the number 
of core users is reduced to 554. 

• Twitter SXSWi data: This dataset comes from targeted 
communication among 480 speakers and attendees to 
stay in the know on the latest. These members are 
subscribed to a Twitter List of ‘SXSWi’ organised by 
Mashable (mashable.com). It is a leading source for 
news, information and resources for the connected 
generation. Mashable reports on the importance of 
digital innovation and how it empowers and inspires 
people around the world. Mashable’s 34 million 
monthly unique visitors and 14 million social media 
followers have become one of the most engaged digital 
networks in the world. In total, after preprocessing, this 
dataset covers 458 users and 17,292 users’ mentions 
and retweets among them. 

• Twitter UICnews data: It is based on tweets gathered 
from followers subscribing to UICnews where it shows 
the latest from the University of Illinois at Chicago. 
Followers on Twitter are people who receive tweets 
issued by their following social target. There are  
4,869 followers for UIC’s NEWS. This dataset includes 
3,765,054 tweets ranging from March 2009 to May 
2014. However, after removing users who did not have 
any interactions with others in following UICnews, 
there are only 1,719 users and 26,809 users’ mentions 
and retweets among them. 

• Twitter NY Times Journalist Data: The nyt-journalists 
dataset is based on a public list of Twitter users, 
including reporters, editors, photographers and 
producers, in this case curated by The New York Times. 
After the process of purifying, there are 671 users and 
97,457 users’ mentions and retweets coming from 
around 1,142,000 tweets. 

4.3 Experiment evaluation and results 

For the UK dataset, the total number of pieces of 
information that can be captured without any friendship 
separation constraints is 905,702. The maximum friendship 
separation distance from a sender to a receiver is 18. In 
other words, when μ > 18 the number of pieces of 
information indirectly updated is zero. Obviously, it means 
that no information travels along time-respecting paths 
bounded by the minimal number of hops more than 18. For 
the MLB dataset, the total number of messages delivered is 
2,656,976. The maximum friendship separation distance 
across senders and receivers is 16. In other words, when  
μ > 16 the number of pieces of information indirectly 
updated is zero. The SXSWi, UICnews, and NYtimes have 
about 205 k, 322 k, and 4353 k pieces of information, 
respectively. The maximum friendship separation distances 
from a sender to a receiver for the three datasets are 12, 15, 
and 14, respectively. 
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Figure 12 shows the relationship between the minimum 
number of hops (μ) and the Information loss rate (RL). The 
detailed results with respect to RL are shown in Table 1. 

If μ reaches more than nine, the information loss rates 
will be less than 1%. When the upper bound of μ is limited 
to ‘two’, the memory space requirements can be reduced up 
to about 60%~80% except for the NY times social list. In 
many social networks, this case has been considered and 
shown to be significant to the impact of information 
brokerage activities (Burt, 2007). Based on the observations, 
it can been seen that the VSVC updates can effectively 
improve the memory space utilisation and can more closely 
approximate how far information should be tracked in real 
social networks. When μ is bounded to be 6~7, the values of 
RL (space saving rate) for all the datasets are about 
1%~15%. This observation shows that more than 90% of 
direct or indirect communication messages may be 
maintained. It implies that when μ is equal to about 6 or 7, 

the modification of SVCs almost acts as the conventional 
ones. 

Table 1 Information loss rates RL(μ) 

µ London MLB SXSWi UICnews NYtimes 

1 0.8248 0.9342 0.8305 0.8562 0.9037 
2 0.6327 0.6927 0.6732 0.7739 0.4200 
3 0.3571 0.2664 0.4331 0.6300 0.1207 
4 0.1793 0.0946 0.2402 0.4479 0.0432 
5 0.0947 0.0402 0.1253 0.2774 0.0183 
6 0.0533 0.0191 0.0622 0.1546 0.0080 
7 0.0302 0.0092 0.0282 0.0783 0.0033 
8 0.0167 0.0043 0.0113 0.0359 0.0013 
9 0.0088 0.0019 0.0041 0.0149 0.0005 
10 0.0043 0.0008 0.0013 0.0055 0.0002 

Note: μ is the minimum number of hops. 

Figure 12 Information loss rate RL 

 

Figure 13 The maximum reachable incoming distribution rate Rmax 
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Table 2 The average reachable in-degree distribution number (Navg(μ)) and maximal rate (Rmax(μ)) 

µ 
London 2012  MLB players  SXSW i  UICnews  NY times 

Navg(μ) Rmax(μ) Navg(μ) Rmax(μ) Navg(μ) Rmax(μ) Navg(μ) Rmax(μ) Navg(μ) Rmax(μ) 

1 15 0.4314  20 0.2635  8 0.4476  5 0.1297  39 0.5931 
2 102 0.8867  185 0.8466  53 0.8384  25 0.3258  341 0.9329 
3 234 0.9564  422 0.9531  122 0.9170  64 0.5271  544 0.9553 
4 311 0.9673  492 0.9603  176 0.9345  113 0.5974  589 0.9583 
5 344 0.9717  508 0.9603  207 0.9345  157 0.6248  599 0.9583 
6 359 0.9717  513 0.9621  223 0.9345  186 0.6335  603 0.9583 
7 366 0.9717  515 0.9621  230 0.9345  204 0.6335  604 0.9583 
8 370 0.9717  515 0.9621  234 0.9345  212 0.6335  605 0.9583 
9 372 0.9717  515 0.9621  235 0.9345  216 0.6335  605 0.9583 
10 372 0.9717  516 0.9621  236 0.9345  218 0.6335  605 0.9583 

Figure 14 The normalised average reachable incoming distribution rate IR ′  

 

 
For the analysis of reachable incoming topology 
distributions (Navg(μ)), as per the definition in Section 3, 
Figure 13 presents the maximum number of peers that 
communicate with each other under the different constraints 
of the shortest friendship separation (the limitation of the 
minimum number of hops) in the five social groups. In the 
case of Lee et al. (2013), their VC framework only included 
direct friendship (μ = 1) and friendship-of-friendship  
(μ = 2). Several social networks, such as Facebook, Twitter, 
and Google+, also focus on allowing direct friends and 
friends-of-friends to communication with each other. Based 
on the results shown in Table 2, when μ is bounded to be 
three, the maximum reachable incoming rates Rmax can 
reach up to about 90%, other than for the group of 
UICnews. If the upper bound of μ is six, the reachable 
incoming topology can get to a steady state for the five 
social groups. Figure 13 shows that the distribution rate Rmax 
of UICnews is obviously different from that of other groups. 
No matter what the upper bond of μ is, London 2012 
presents the highest reachable incoming rate but UICnews 
has the lowest one. Interestingly, members in London 2012, 

MLB players, SXSWi, and NY times are highly 
homogeneous in terms of their professions or certain 
interests. Their interactions in these four groups could be 
reasonably strong. However, followers in UICnews that just 
follow the News of UIC have much more diverse 
backgrounds. Other than UICnews, others have stronger 
communication interactions. Based on the observation in 
Figure 13, the social connection topology pattern in 
UICnews is weaker than other groups. Therefore, the 
reachable incoming distribution rate can help detect the 
strength of social interaction patterns. The higher the 
reachable incoming distribution rate, the stronger the social 
communication pattern will be. In order to observe the 
general reachable incoming topologies corresponding to 
different datasets, we normalise the data Np(μ) by the 
maximum reachable incoming number in each social group. 
As shown in Figure 14, if μ is bounded to be two, Ravg in 
London, MLB, SXSWi is close to 20%~30%. The rates of 
Ravg in UICnews and NY times are about 80% and 40% 
respectively. The results are both consistent with the 
observations of the information loss rate in Figure 12. 
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According to the theory of six degrees of separation, any 
individual in the real world can be connected to any other 
individual on the planet through a chain of acquaintances 
with six or fewer intermediaries. As a result, when the upper 
bound of the shortest friendship distance is six, everyone 
can communicate with all the people in a social networking 
community. Intuitively, ‘six’ is applicable to evaluate our 
experimental results in the reachable in-degree distributions. 
Interestingly, as shown in Figure 14 when the upper bound 
of μ is 6, Ravg is close to or over 90% (if the upper bound of 
μ is 7, the Ravg for all the datasets is definitely more than 
90%). It reasonably implies that a common peer p can 
almost communicate with most of the maximum number of 
peers from which peer p can receive indirect updated 
messages within 6 or 7 steps for the same social group. 

5 Conclusions 

Among several researches for social networking, the fine-
grained temporal view has been shown to be very useful and 
applicable to measure the potential for information 
pathways and event-driven communication. With this view, 
a sequence of timestamps could provide social networks 
with a global view of the communication flows. As 
discussed earlier, however, poor scalability is a major 
drawback of conventional VCs, although it captures all 
exchanging messages and indirect communication. As a 
matter of fact, a tremendous amount of information 
communication does not seem to occur when two people 
talk to each other; the number of cognitive peers does not 
scale with the size of the whole social network. Based on 
this observation, the modification of SVCs (Kossinets et al., 
2008) was proposed to reduce memory space requirements 
noticeably. An interesting question is raised in regard to 
what the reasonable value of μ is. 

In this paper, we quantitatively analysed the influence of 
different upper bounds of the shortest friendship separation 
on the information loss rates and reachable incoming 
topology distributions using several Twitter social network 
groups. We also proposed an adaptive approach to 
systematically updating VSVCs. It improves the efficiency 
in exploring the above issues we concentrate on. This 
solution is universal. It can be easily applied to any  
social network group if and only if all event-driven 
communication with timestamps in the group could be 
preserved. The major reason is that our solution follows 
fine-grained temporal mechanism. Another advantage for 
our framework is that it can be operated in distributed 
systems. 

The friendship policy in several social networks allows 
both direct friends and friends-of-friends to communicate 
with each other. Therefore, we first focus on the minimum 
number of hops (μ) ≤ 3 in our experiment evaluation. The 
results of RL show that when μ is bounded to be ‘two’, in 
general, the memory space requirements can be effectively 
reduced up to 60%~80% except for the group having a 
behaviour of very strong connections, such as NY times. 
Taken together with this restriction, the VC updates can 

become more efficient for the memory space utilisation and 
more closely approximate how far information would be 
tracked along time-respecting paths. When the upper 
bounds of μ are ‘6’ and ‘7’, the corresponding information 
loss rates are lower than 15% and 10% for all groups, 
respectively. In other words, most of communication 
information would be retained. When the upper bound of μ 
is ‘10’, RL will be obviously lower than 1%. It has hardly 
lost any communication information. When μ > ‘10’, the 
information loss rate and the normalised average reachable 
incoming distribution rates are both in the steady state. 

On the other hand, when the upper bound of μ is ‘1’,  
the normalised average reachable incoming topology 
distribution rates (Ravg) are about 3%~6%. When μ is 
bounded to be 6~7, the rates of Ravg in all the social 
networking groups are statistically close to or more than 
90%. It implies that when μ is 6 or 7, the number of peers 
from which a general one can exchange incoming 
information is almost saturated in a social group. It is 
consistent with the results of Ravg. Furthermore, when μ is 2 
and 3, the Information loss rates (RL) are also in line with 
the corresponding normalised average reachable incoming 
topology distribution rates (Ravg). 

In our future work, we plan to integrate preferential 
connectivity into social communication aggregation analysis 
with VSVCs and develop a reasonable user interaction 
model. We want to look for an efficient approach to divide a 
social group into some subgroups, between which there is 
no communication. 
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