
Connection Preemption: Issues, Algorithms, and a Simulation Study

Mohammad Peyravian and ,4Jay D. Kshemkalyani
IBM Corporation, P. 0. Box 12195, Researclh Triangle. Park, NC 27709, U.S.A.

Abstract

Connection preemption can be a means to provide available and
reliable services to high-priority connections when a network is
heavily loaded and connection request amval pattems are unknown,
or when the network experiences link or node failures. We present
a simulation study of preemption in a general connection-oriented
network setting. Based on the observations made in this study, we
have developed two optimal connection preemption selection al-
gorithms that operate in a decentralizeddistributed network where
individual link managers run the algorithm for connection preemp-
tion selection on their outgoing links. The first algorithm optimizes
the criteria of (i) the number of connections to be preempted, (ii)
the bandwidth to be preempted, and (iii) the priority of connections
to be preempted, in that order, and has polynomial complexity. The
second algorithm optimizes the criteria of (i) the bandwidth to be
preempted, (ii) the priority of connections to be preempted, and
(iii) the number of connections to be preempted, in that order, and
has exponential complexity. We conclude that the polynomial al-
gorithm is almost as good as the exponential algorithm in terms of
overall network performance.

1 Introduction

Nonstationary network conditions may occur for various reasons
such as failure of links or nodes, high traffic, and a priori unknown
traffic pattems. With the increasing dependence on connection-
oriented communications networks such as AsynchronousTransfer
Mode (ATM), it is becoming increasingly important to provide
not only acceptable steady state performance but also reasonably
good performance under nonstationary conditions when demands
for network resources are significantly higher [lo]. Under non-
stationary conditions, if all existing and new connection requests
cannot be accommodated, the only possible solution is to preempt
certain connections. When preemption becomes inevitable during
nonstationary conditions, the preemption policy must minimize the
impacts on connections with greater “value” at the cost of possibly
increased impacts on connections with lower “value”. Connec-
tion preemption can also be used as a mechanism for bandwidth
reservation and management.

The importance or value of a connection, which can also relate
to the connection’s quality of service (QoS) requirements can be
expressed by a priority level. The priority levels can be preas-

signed by the erid-system or by the network administrator using
various factors s’uch as reliability desired, pricing structure, band-
width requirement, real-time delivery constraints, desired blocking
probability, and nature of traffic such as multimedia, voice, and
facsimiles.

To minimize the impacts of the nonstationary network condi-
tions on high-priority connections, it might be necessary for new
or rerouted high-priority connections to be able to preempt ongo-
ing connections of lower priorities. Preemption makes available
bandwidth for new or rerouted high-priority connections, allowing
them to proceed. A preempted connection may have to be rerouted,
which in tum can cause other ongoing connections of even lower
priority to be preempted - this situation occurs when connection
preemption is ccupled with the capability to reroute connections.
Whlen a connection is rerouted, the reroute can be successful or the
connection can be dropped.

When connection preemption is inevitable, an algorithm has to
choose one or more ongoing connections of lower priorities for
preemption in order to establish the high-priority connection that
triggered the preemption algorithm. The algorithm must be such
that it causes a minimum of disruption in the network due to the
preempted connections. In addition, this algorithm must be fast
to minimize the length of disruption or the connection setup time
of a preempted connection rerouted due to a failure or unavailable
bandwidth, Therefore, the algorithm must be a real-time algorithm
151.

1.1 Previous Work
Garay and G’opal [2] addressed the connection preemption se-

lection problem in a centralized network environment and showed
that the problem of selecting which connections to preempt in or-
der to minimize the number of connections to be preempted or
to minimize the amount of bandwidth to be preempted is NP-
complete. Knowing the computational intractability of the problem,
they presented a set of heuristic connection preemption selection
algorithms. Their algorithms are suitable for a centralized network
environment, wherein a central control point performs most of the
network control functions because information about the complete
route of the preempting connection as well as the complete routes
of the connections that share one or more links with the preempt-
ing connection is required as input to the algorithm. Therefore, a
designated entity monitors information about the whole network,
i.e., the complete route of the preempting connection as well as the
routes of the connections that share one or more links with the pre-
empting connection, and runs the preemption algorithm to select

0-8186-7780-5/97 $10.00 0 1997 IEEE
2a.l.1

143

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:37 UTC from IEEE Xplore. Restrictions apply.

the connections for preemption. Due to the inherent nature of a
distributed system, it follows that the designated centralized entity
will not have the most up-to-date information about the network.
Moreover, when a link or node failure triggers preemption, it is not
desirable to have a centralized control point consider the end-to-
end path for connection preemption candidates, and a distributed
scheme is preferred for scalablity and efficiency.

The upper bound on the computational complexity of their
heuristic algorithms is O(n . m'), where n is the total number
of hops (links) along the preempting path, and m is the size of the
set that contains all existing connections that have at least one link
in common with the selected path for the preempting connection
and having a priority less than that of the preempting connection.

1.2 Objectives

A centralized preemption scheme cannot fit well into decen-
tralizeddistributed networks because each control point has to
make decisions and perform functions independent of other control
points. For example, when a connection setup request is processed
by a link manager and not enough resources are available, the link
manager itself, independent of other link managers, has to select
the connections to be preempted from the set of all connections
currently using the link.

Based on the observations we made from a comprehensive sim-
ulation study of preemption in a general connection-oriented net-
work setting, we developed two optimal decentralizedldistributed
connection preemption selection algorithms that minimize the dis-
ruption to existing connections while satisfying the constraints of
higher priority connections. Unlike the Garay and Gopal [2] algo-
rithms which are heuristic, these two algorithms are optimal with
respect to their respective objective functions over the parameters:
the bandwidth to be preempted, the number of connections to be
preempted, and preemption of low-priority connections. These al-
gorithms consider preemption at the link level and run locally by
each link, that is, if a new end-to-end connection has to be estab-
lished, each link along the chosen path of the new connection will
cause a preemption algorithm to be executed at its control point
residing on the node at the origin of the link if bandwidth cannot
be allocated on that link. Thus, the algorithms are truly decentral-
izedldistributed.

The first algorithm, named Mia-Conn, first minimizes the num-
ber of connections to be preempted at the link level, then chooses
the combination of connections to be preempted to minimize the
bandwidth to be preempted, and if there is a choice of such combi-
nations, it chooses a combination in which the connections have the
least priority. This algorithm has a complexity of O(k'), where k is
the number of connections sharing the link under consideration and
having a priority less than that of the preempting connection. The
second algorithm, named MinBW, first minimizes the amount of
bandwidth to be preempted at the link level, and if there is a choice
of connections to be preempted with the above criterion, it chooses
a combination of connections with the least priority, and if there is
a choice of such combinations, it chooses a combination with the
least number of connections. This algorithm is exponential with a
complexity of O (~ C . Y) .

We present a simulation study of the two algorithms and con-
clude that the polynomial algorithm Min-Conn performs almost as

well as the exponential algorithm MinBW. Our simulation study
also provides useful insights into connection preemption and net-
work dimensioning problems in order to achieve a desired level of
network availability.

In summary, Min-Conn is an algorithm that optimizes the cri-
teria of (i) the number of connections to be preempted, (ii) the
bandwidth to be preempted, and (iii) the priority of connections to
be preempted, in that order. MinBWis an algorithm that optimizes
the criteria of (i) the bandwidth to be preempted, (ii) the priority of
connections to be preempted, and (iii) the number of connections to
be preempted, in that order. Both are distributeddecentralized, i.e.,
consider preemptions at the link level. The algorithms are optimal
with respect to their objective functions because they perform an
exhaustive search of their search space to select a solution based on
the criteria for which they claim optimality.

The rest of paper is organized as follows: Section 2 presents
a simple connection control protocol for decentralized connection-
oriented networks. Section 3 presents the two optimal algorithms
along with an analysis of their complexity. Section 4 presents a
simulation study of connection preemption and compares the per-
formance of the two proposed connection preemption algorithms.
Section 5 gives the conclusions.

2 Connection Control Protocol

We now present below a simple connection control protocol for
decentralized connection-oriented networks. The main idea here
is to introduce a general model which can be used for our discus-
sions on the connection preemption problem. Our protocol borrows
some concepts from NBBS (Networking Broadband Services) [4]
a decentralized fast-packet network architecture, and ATM PNNI
(Private Network Node Interface) [9] which provide connection-
oriented services using the concept of source routing and link state.
That is, the source computes a complete route from the source to the
destination based on its knowledge about the current states and uti-
lizations of the links. Each link is owned by a link manager (LM),
and when a significant link state change occurs, the link manager
broadcasts the information to all the nodes in the network. There is
no concept of centralized control, each link manager independent of
other link managers decides whether it can accept a new connection
when it receives a connection setup request.

A connection is setup as follows: The origin computes a coni-
plete route from the origin to the destination basedon its knowledge
about the current states and utilizations of the links. Then, the ori-
gin constructs a connection setup request for the connection and
sends it to all the link managers along the computed route. A
link manager along the route accepts the connection and retums a
positive reply only if it can provide the resources to accommodate
the connection. Otherwise, it rejects the connection and retums a
negative reply to the origin. If a link manager accepts a connection,
it allocates the requested resources for the connection. When the
origin receives the replies it determines whether a connection setup
is successful. The connection setup is successful only if all the
replies are positive. If the connection setup is unsuccessful, the
origin computes a new route (which excludes the links that replied
unfavorably) and repeats the setup process. When the connection
setup is unsuccessful, the origin also sends a path takedown request

2a.l.2
144

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:37 UTC from IEEE Xplore. Restrictions apply.

to the link managers along the path of the connection that replied
favorably. When a link manager receives a path takedown request
for a connection, it releases the network resources associated with
that connection.

When a setup request is processed by a link manager and not
enough resources are available, the link manager selects connec-
tions to be preempted from the set of all connections currently using
the link with priorities lower than the priority of the requesting con-
nection. Preemption is triggered at a link by the link manager only
if enough resources can be released by preemption to accommo-
date the requesting connection at that link. For each connection
to be preempted, the link manager sends a preemption notification
message to the origin of the connection. At the receipt of preemp-
tion notification message, the origin takes some actions to reroute
the connection. First, it takes down the connection by sending a
path takedown request to all the link managers along the path of
the connection. Then, it computes a new route for the preempted
connection and starts the setup process.

When a link or an intermediate node along the path of an on-
going connection fails, our protocol switches the connection to an
altemate path. Link and node failures are detected by both ori-
gin and destination nodes via topology database update broadcasts.
When a link or an intermediate node along the path of an ongoing
connection fails, both the origin and destination send path take-
down requests along the path of the connection. Then, the origin
computes a new route (which excludes the failed links or nodes)
and performs the connection setup process as described above.

When the origin or destination wants to terminate a connection,
it constructs and sends a path takedown request to all the link
managers along the path of the connection.

2.1 Connection Preemption: Problem Statement
Definition 1 A connection C, is a two-tuple Ca = (B, , Pa), where

B, is the bandwidth requestedby Ca.

b Pa is the priority of c,.
The priority of a connection is represented by a number
greater than or equal to 1, with 1 being the lowest priority.

The connection preemption problem has to be solved in real-
time because when a connection setup request arrives, frequently
the holding time is not known and there is no knowledge about
the future connection requests. Similarly, when a failure disrupts
a connection, the connection must be rerouted immediately to pro-
vide reliable service. For the connection preemption problem, we
therefore assume that a connection arrives with a predefined route,
a predefined priority, and a predefined bandwidth. No knowledge
of the future arrivals or the holding time is available.

Definition 2 Let
C, = (B,, Pp) be a new or rerouted connection,
e3 be a link along the route of C, without enoughfree

a3 be thefree bandwidth in e3.
bandwidth to accommodate C,, and

Cp is a preempting connection if there exists a set of existing con-
nections C = {Cl, C2, ..., C k } that go through e3 such that if
C, = (Ba, P,) E C, where 1 5 i 5 k, then the following condi-
tions hold: Pp > P, and Bp 5 a3 + Er=, B,.

A connection has two parameters: bandwidth and priority. The
set of connections to be preempted can be chosen by optimizing an
objective function over these two parameters of the connections,
ancl the number of connections to be preempted. Specifically, the
objective function can be any one of the following or some combi-
nation of the following.

1. Preempt fhe connections that have the least priority. This is
a naive slolution that can result in preemption of excessive
bandwidth and connections.

2. Preempt 1 he least number of connections. The advantage of
this strategy is that a minimum number of connections have
to be pret:mpted and rerouted.

3. Preempt ithe least amount of bandwidth. The advantage of
this strategy is that network bandwidth is better utilized.

We examinedmany schemes and concluded that the objective func-
tioris of algorithms Min-Conn and MinBW, presentedin Section 3 ,
lead to optimal solutions.

3 Connection Preemption Algorithms

We present two connection preemption algorithms that optimize
network performance by minimizing the disruption to the ongoing
corinection and by utilizing network bandwidth more efficiently.
These algorithms are suited for both centralized and decentralized
types of network. Our algorithms do not consider the complete
route of the preempting connection nor do they examine the com-
plete routes of the connections that share one or more links with the
preempting connection. When connection preemption at a link is
necessary to accommodate a new connection, the link manager at
that link, independent of what other link managers along the path
of Ihe connection choose to do, selects a set of connections from
the connections currently using the link for preemption. Thus, if
preemption is ne:cessary to setup the connection at two links (say a
ancl b), the conncctions picked by link managera are not necessarily
the same as those picked by link manager b. When selecting con-
nections for preemption, a link manager only considers the existing
connections that go through its link and makes its selection only by
exaimining connections' priorities and their requested bandwidth.

3.11 Algorithm Min-Conn

Min-Conn is an algorithm that optimizes the criteria of (i) the
number of connections to be preempted, (ii) the bandwidth to be
preempted, and l(iii) the priority of connections to be preempted, in
that order. The algorithm is distributed/decentralized,i.e., considers
preemption at the link level and has a polynomial time computa-
tional complexil y. The Min-Conn algorithm is shown below.

This algorithm retums the connections to be preempted in set
P. Step 2 detemines W , the amount of bandwidth that needs to
be]preempted in order to accommodate the preempting connection.
Step 4 identifies the connection that has the smallest bandwidth
which is greater than W , and if multiple such connections exist, it
selects the connection with the least priority. If this step can identify
a c"mection to be preempted, then only one connection has to be
preempted. Otherwise, Step 11 performs a greedy method to ensure

2a.l.3
145

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:37 UTC from IEEE Xplore. Restrictions apply.

that a minimum number of connections are selected for preemption.
Step 11 finds the largest bandwidth connection, and if there is more
than one, selects the one with the lowest priority. It then removes
the selected connection from C, the set of connections that are still
using C, in Step 15, adds it to P in Step 16, and updates a,, the
amount of bandwidth available in the link e3 when the selected
connection is preempted in Step 17. Steps 2 to 17 are executed in
the while loop of line 1 until enough bandwidth to accommodate
the preempting connection is freed.

1. while Bp > aJ do
2. W := Bp - U,;

i ._ 3. .- 0;
4. for 1 = 1 to k do
5.
6.
7.
8. endfor;
9.

10. i:= 1;
11.
12.
13. i := I ;
14. end for;
1s.
16.
17.
18. endwhile

if i = 0 and Bi 2 W then i := I ;
if i > 0 and Bi 2 W and
(Bl < B, or (BI = B, and Pl < PI)) then i := I ;

if i = 0 then

for I = 1 to k do
if Bi > B, or (Bi = B, and A < PI) then

c := c - {C,};
P := P U {C,};
a3 := u3 + B,.

Upper bound on computational complexity: O(k2) , where k is
the number of connections using the link under consideration and
having a priority less than that of the preempting connection.

3.2 Algorithm MinBW

MinBW is an algorithm that optimizes the criteria of (i) the
bandwidth to be preempted, (ii) the priority of connections to be
preempted, and (iii) the number of connections to be preempted, in
that order.

The algorithm retums the connections to be preempted in set P
and works as follows: The algorithm evaluates the bandwidth to be
preempted for each and every combination of connections, selected
r at a time, starting with r = 1 and going up to r = k, where k is
the number of connections using the link under consideration and
having a priority less than that of the preempting connection. The
for loop on line 5 varies the value of T . For any value of T , it is
determined whether there is a combination of connections which
when preempted will free up at least W bandwidth. If there are
two or more such combinations for a given value of T , then the
combination with the lesser value of the sum of the bandwidths
is selected. When there is more than one combination with the
same amount of bandwidth, then the one with the lesser priorities
is selected. This is achieved as follows for a given value of r . The
loop on line 9 enumerates all combinations of T connections. Array
A is a working array variable whose first r elements are indices,
in ascending order, of connections being presently considered for
preemption. Each iteration of the loop assigns to elements A1,A2,
. . . A, a combination of values from 1 to k as follows: View the
array as a car mileage odometer with the most significant position
being A1 and the least significant position being A,, and which is
incremented at each iteration according to the following rules.

Elements of A are assigned values in the range 1 to k.
The initial value of A, = i, for i = 1,2, . . . , r .

The values of A are enumerated in ascending order.

The value of Ai > A,-I, for i = 2,3 , . . . , r .

The above rules imply that A,, for i = I , 2 , . . . , T , can take values
in the range i to k - T + i.

A for loop computes the aggregate bandwidth for each resulting
enumeration of r combinations (line 11). The aggregate bandwidth
for the combination that yields the least known bandwidth exceed-
ing or equal to the bandwidth required to be preempted (W), is
stored in M i n at all times. The corresponding combination of
connection indices is stored in array S. (See lines 14,15,16,17).

When all combinations of connections for all values of r have
been enumerated, line 28 places in set P , the optimal set of con-
nections to be preempted. These are the connections whose indices
are given by the elements in array S.

1. W := Bp - U,;

2. Min := Et, B,;
3. s := 4;
4. P := 4;
5. for r = 1 to IC do
6.
7. Ai := I ;
8. endfor
9.

10. Sum := 0;
11.
12.
13. endfor
14.
15.
16.
17.

19.
20.
21. endwhile
22.
23.
24.
2s. endfor
26. endfor
27. endfor
28. P := P U CS, for every index i E S.

for I = 1 to r do

form = 1 to k ! / (k - ~) ! r ! do

for 1 = 1 to r do
Sum := Sum + CA, ;

if W 5 Sum < Min then
Min := Sum and S t A;

if W 5 Sum and Sum = Min and
EmEA Pm < EnES Pn then S + A;

whilei > 1 and A, = k - r + i do
18. 2 := T ;

i := i - 1;

ifA, < k - r + i then A, = A, + 1;
for 1 = i + 1 to r do

Ai := Ai-I + 1;

Example: For k = 6, T = 3, we show the values of AlrA:!,A3
separated by commas, as generated by the algorithm. Successive
values of the three elements of A are separated by semicolons.
1,2,3; 1,2,4; 1,2,5; 1,2,6; 1,3,4; 1,3,5; 1,3,6; 1,4,5; 1,4,6; 1,5,6;
2,3,4; 2,3,5; 2,3,6; 2,4,5; 2,4,6; 2,5,6; 3,4,5; 3,4,6; 3,5,6; 4,S,6.
Complexity: For a given value of T , the main for loop of line 9 is
executed k ! / (k - r) ! r ! times and each execution of the loop has
O (r) time complexity. Since,

2a.l.4
146

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:37 UTC from IEEE Xplore. Restrictions apply.

Thus, the computational complexity is O(k . 2‘), where k is
the number of connections using the link under consideration and
having a priority less than that of the preempting connection. It can
easily be shown that the problem of minimizing the amount of band-
width to be preempted is NP-complete by showing a polynomial-
time reduction to and from the knapsack problem. ’
Optimality of the Algorithms: Algorithms Min-Conn and
MinBW are both optimal with respect to their objective functions.
This is because they perform an exhaustive search of their search
space to select a solution based on the criteria for which they claim
optimality.

4 Simulation

4.1 Model
We used a connection-level simulation to study preemption and

to compare the two proposed algorithms in a dynamic network
environment where connections come and go. The simulation
model has most mechanisms of typical connection-oriented net-
works. Its main components are a path selection algorithm which
selects a minimum-hop path between an origin-destination pair, a
connection setup and takedown protocol, and a topology informa-
tion distribution protocol. In addition to the above components, the
model also has a connection preemption protocol and a path-switch
mechanism which reroutes connections preempted due to linklnode
failure or preemption. The simulation program is written in C and
SIMSCRIPT and has about 5000 lines of code and consists of a
number of processes which execute several dynamic objects and
routines. A process is created at a simulated time and it performs
a sequence of events separated by lapses of time. The process
concept is used to represent connections, connection generation,
and messages, while static objects such as route computation is
represented using routines.

The input to the simulation program includes a network config-
uration - the nodes, the transmission links with their propagation
delays and capacities, - source/destination distribution, connec-
tions’ characteristics, link failure events, and other controlling pa-
rameters such as simulation time, simulation seeds, and maximum
connection hops. The program collects and reports a number of
statistics as will be described later.

The program simulates the lives of connections from the time
they are created until they terminate. The flowchart in Figure 1
shows a very high-level view of how a connection is handled in this
simulation model.

Connection interarrival times are exponentially distributed.
Upon arrival of a connection to the network, its source and des-
tination nodes, priority, bandwidth, holding time, and delay are
chosen probabilistically. Once the connection’s parameters are se-
lected, a path selection algorithm is run and a path in the network
is determined. This algorithm attempts to find a path that has a
minimum number of hops while satisfying the connection’s quality
of service parameters. If there are several eligible paths with the
same number of hops then one of them is chosen based on lowest

‘Knapsack problem: Given C = { GI, C2, . . ., C k] and W > 0,
C, > 0, is there a subset of C such that the sum of the elements in the
subset is W , i.e., C, + Cj + . . . + Cl = W ? 161.

End T& Down Complucd?

Figure 1. Flowchart for Simulation Model

“weight” of rhe path. This weight is the sum of weights of the
individual links. This path selection algorithm and the notion of
link weights are {described in detail in [l l] .

Then the connection control protocol described in Section 2 at-
tempts to establish the connection. Basically, when a connection
request arrives, ii connection is established if the network has the
bandwidth to support the connection. Once established, the con-
neclion begins its “talk” phase. However, if there is not enough
bandwidth to establish the connection, then if there are sufficient
low -priority connections that can be preempted to free enough band-
width for this connection, then those low-priority connections will
be preempted and the connection request gets satisfied. When the
connection request cannot be accommodated, it is rejected. When a
connection is preempted, it is treated like a new connection. When
a connection successfully completes its talk phase, it gets taken
down. So, note that a successfully completed connection may have
been rerouted on(: or more times due to preemption, link failure, or
node failure.

Another feahire included in the simulation model is that con-
nections failed tci set up (because there is no sufficient resource in
at least one link along the path) can execute the path selection algo-
rithm more than once. A parameter that limits the number of such
attempts is defined as an input to the program. Each time the path
selection algorithm is executed, links which responded negatively
in the previous set up request are excluded from further consider-
ation. If the set up request fails at every trial and the retry count
exceeds the threshold, then the connection request is dropped.

IJpon acceptance of a connection on a link or removal of a con-
nection from a link, a bandwidth reservation table for that link is
updated. When a significant change in the link bandwidth reser-
vation occurs, a topology database update message is sent to every
node in the network. This is done only if the change in the reserva-
tion level for the link is significant, i.e., if it exceeds some threshold
value defined for that link. A topology database update message
is also broadcast when a link fails or comes up. So, a connection
setup request may not be successful for two reasons: the topol-
ogy database at the originating node may not be “current” and/or
multiple sources may send connection setup requests to a partic-

2This topology database update broadcast concept scheme is similar to
the one specified in ATM PNNI [9].

2a.l.5
147

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:37 UTC from IEEE Xplore. Restrictions apply.

ular link almost simultaneously, competing for a limited available
bandwidth.

LOW (1)
Medium (2)

High (3)

Figure 2. Network topology and structure.

64-4000 600
64-4000 600
64-4000 600

4.2 Experiments

Network Structure: We have conducted wide-range simulation
with various network conditions (i.e., network topology, number
of priority levels, link bandwidth, traffic pattern, etc.) to study
connection preemption and the behavior of these two algorithms. In
terms of network performance most of our simulation experiments
have indicated similar results. So, for the sake of brevity, in this
paper, we present only one set of simulation experiments.

The following network model (which is an abstraction of a real
network) was used in the simulation experiments. The network
is two-tiered consisting of 8 nodes and 26 unidirectional links,
(Figure 2). The inner links are OC3 links with a propagation delay
of Ims, and the outer links are T3 links with a propagation delay
of IOms. In the experiments, the origin and destination pairs for
the connections were selected such that the load in the network is
uniformly distributed (as shown in Table 1).

Nodes

1.2
3,4

5,6,7,8

Origin Dcstination probability
probability (given that origin # destination)

0.25 0.25
0.125 0. I25

0.0625 0.0625

Traffic Profile: Table 2 shows the traffic profile used in the simu-
lation experiments. Many connection types in terms of bandwidth
size, holding time, and delay requirement were used along with
three priority levels: low, medium, and high. The distribution of
the priority levels is uniform, i.e., on the average the number of
connection requests with low priority is the same as the number

Table 2. Traffic profile.

Delay

(in ms)
(uniform
distrib.)

10-60
10-60
10-60

of connection requests with medium or high priority. The band-
width range for connections is between 64 Kbps to 4000 Kbps.
The distribution of bandwidth within this range is also uniform.
The connections’ holding times are assumed to be exponentially
distributed with a mean of 600 seconds. The delay range for con-
nections is between lOms to 60ms with a uniform distribution. Note
that the delay requirement of some connections will have impact on
route selection, that is, given that bandwidth is available not every
route can meet the delay requirements of certain connections.

Performance Metrics: Our simulation program collects statistics
about a number of performance measures that indicate how well
the network performs with a particular connection preemption al-
gorithm. These measures are averaged over the life of simulation.
The following three metrics are considered in this study:

Connection success probability: This is the probability that
a connection of a given priority is successfully established
and completes its talk time (holding time).

Connection preempting probability: This is the probability
that a connection of a given priority preempts one or more
connections.

Connection reroute probability: This is the probability that a
connection of a given priority is rerouted one or more times
due to preemption or linkinode failures.

Nature of experiments: The structure of the simulation experi-
ments is as follows. Each experiment consists of 24 independent
runs, and 95% confidenceintervals are obtained for all performance
measures. The reason for doing this many runs was to be able to
get good confidence intervals. The independence of the runs was
achieved by shuffling the seeds required by the program. Since the
runs are independent, we can assume identical distribution of the
replications. Thus, the central limit theorem can be used to justify
the use of Gaussian statistics to construct confidence intervals on
the performance measures. As the number of replications is small,
we can assume that the mean is distributed as student-t distribution
and calculate the lOO(1 - a)% confidence interval on the mean
from the replications using [l]:

where Z is the sample mean, p is the true mean, s is the sam-
ple standard deviation, T is the number of replications, and tal2

148
2a.l.6

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:37 UTC from IEEE Xplore. Restrictions apply.

is the critical value of the student-t distribution with (r - 1) de-
grees of freedom. The confidence intervals were observed to be
too small to report here for the simplicity of presentation. Each
simulation run is 10,000 seconds of simulation time. To observe
the impacts of nonstationary network conditions, link failure is in-
troduced. Specifically, the pair of bidirectional links that connect
nodes 1 and 2 were failed. Note that this link failure causes a lot
of connections to be rerouted and places the network under heavy
stress because these links are the high-speed backbone links.

Figure 3. Network Behavior

Network behavior as a function of time: Figure 3 shows the
connection success probability and the average link reservation
level versus the simulation time for one of the experiments. The
connection arrival rate to the network for this experiment has an ex-
ponential distribution with a mean of about 1.5 connections/second.
Initially, there is no connection in the network, so the average link
reservation level is zero. As connections arrive, the average link
reservation level goes up and the connection success probability
drops. After a short time of about 1500 seconds, the average link
reservation level and the connection success probability reach a
stable level, about 0.98 for the connection success probability and
about 8 1 % for the average link reservation level. Once the network
reached a stable level, the pair of links that connect nodes 1 and 2
are made to fail. When this happens, the connection success prob-
ability drops and the average link reservation level goes up. This
is expected as the network has less bandwidth for new and ongoing
connections. With link failure, the network again reaches a stable
level but the connection success probability is now much lower at
0.82, and the average link reservation level is about 0.90. After
5000 seconds, when the links are brought up again, the network
goes back to its normal operating points.

Connection success probability as a function of arrival rate:
Figure 4 shows the connection success probability as a function

3For this set of experiments we obtained the 95% confidence intervals
for all performance measures. The t , / z value for 95% confidence interval
when T = 24 is 2.069 which is obtained from [3].

Figure 4. Preemption versus no preemption

of the connection arrival rate with and without preemption. This
figure allows the comparison of the two preemption algorithms
and the analysis of the effect of preemption in terms of network
throughput. The top curve is for the MinBW algorithm, the middle
curve is for the ,Vin-Conn algorithm, and the bottom curve is for
the non-preemptiion case. In all the cases, we see that when the con-
nection arrival rate is low, i.e., when the network is lightly loaded,
the connection success probability is almost one. As the connection
arrival rate increases, the connection success probability decreases
because the network now has less free bandwidth. When the con-
nection arrival rate is low, the effect of preemption is very small,
i.e., there is no significant difference between the preemption and
the non-preemption cases in terms of the connection success prob-
ability. However, as the load in the network increases due to more
connection requests, the advantage of preemption becomes more
obvious, as more connections get through. This is because when
preemption is coupled with path-switch, it improves the path selec-
tion process by providing a way to correct “wrong” decisions made
in the past due to lack of knowledge about the future connection
request arrival pattem. As far as the performance of these two con-
nection preemption selection algorithms is concemed, there is no
significant difference. Basically, the MinB W algorithm performs a
little better than the Min-Conn algorithm and the performance dif-
ference increases with the connection arrival rate. The reason for
this performance difference is that the MinBW algorithm causes
less preemption of excess bandwidth than the Min-Conn algorithm,
allowing more efficient utilization of network bandwidth.

Performance metrics for priority levels:
We now look at performance measures by considering how indi-
vidual priorities are affected with and without preemption.

Figure 5 shows the connection success probability for each pri-
ority level with and without preemption for one of the experiments.
The figure is for the case when the connection arrival rate is about
1.5 connections/second. This results in a connection success prob-
ability of about 0.8 without preemption, so the network is under

2a.l.7
149

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:37 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Connection success probability

stress. When preemption is used, we see that for both the algorithms
the connection success probability increases nicely with the con-
nection's priority. The higher network availability for connections
of greater priority is the expected result from the use of preemp-
tion. Although the MinBW does a little better than Min-Conn for
the connection success probability achieved for different priority
levels, there is no significant difference. Without preemption, the
connection success probability is the same for all priority levels.

Lar Medim
conrncaonP*

p y * w "hConn "th..tR.mstkn

Figure 6. Connection reroute probability

Figure 6 shows the connection reroute probability for each pri-
ority level with and without preemption, for one of the experiments.
The connection arrival rate is the same as before, i.e., about 1.5 con-
nections/second, indicating that the network is under stress. With
preemption, we see that for both the algorithms the connection
reroute probability decreases as the connection's priority increases.
This is very desirable as we want the high priority connections to

be disturbed less. Without preemption, connections are rerouted
only due to link failure. Hence, the connection reroute probability
is lower without preemption. It is observed that with or without
preemption, the connection reroute probability for the high-priority
connections is the same. This is expected because the high-priority
connections do not get preempted due to preemption. Without pre-
emption, of course, the connection reroute probability is the same
for all priority levels. A nice observation is that even with pre-
emption, the overall connection reroute probability is low. In terms
of the connection reroute probability, there is no significant differ-
ence between the two connection preemption selection algorithms
Min-Conn and MinBW, although MinBW performs a little better.

Figure 7. Connection preempting probability

Figure 7 shows the connection preempting probability for each
priority level for one of the experiments. The connection preempt-
ing probability is zero without preemption and it is also zero for the
low priority connections. The connection arrival rate is the same
as before, i.e., about 1.5 connectionskecond. It is interesting to
observe that the connection preempting probability is higher for the
medium priority connections than for the high priority connections
- this is due to the cascading effect of preemption. This cascading
effect of preemption can be explained as follows. When a con-
nection of priority i preempts a connection of priority i - 1, if the
connection of priority i - 1 is not the lowest priority connection, it
tries to get reestablished and in this process it might preempt con-
nections of priority i - 2. Therefore, connections which are not of
the highest priority can actually have higher preempting probability
than the connections of the highest priority. But overall it is ob-
served that the connection preempting probability is low even when
the network is heavily loaded. Both the algorithms MinBW and
Min-Conn perform very well in terms of the connection preempt-
ing probability and there is no significant performance difference
between them.

Comparison with previous work:
In [8] we made a comparison study, in terms of overall network
performance, between the Min-Conn algorithm and the algorithm
by Garay and Gopal [2] which gives the best overall result among

150
2a.l.8

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:37 UTC from IEEE Xplore. Restrictions apply.

the algorithms they proposed. The study indicated that there is
no significant performance difference between the two algorithms
and, in fact, both performed very well. However, it should be noted
that the Gary and Gopal’s algorithm is suitable for a centralized
network only, wherein a central control point performs most of the
network control functions because information about the complete
route of the preempting connection as well as the complete routes
of the connections that share one or more links with the preempting
connection is required as input to the algorithm. A centralized pre-
emption scheme cannot fit well into decentralized networks (such
as ATM PNNI networks that have multiple routing domains [9])
becauseeach control point has to make decisions and perform func-
tions independent of other control points. Min-Conn is an optimal
decentralizeddistributed preemption algorithm which can also be
used in centralized networks. When preemption is necessary to es-
tablish a high priority connection, Min-Conn is run locally by each
link along the chosen path for the connection if bandwidth cannot
be allocated on that link.

5 Conclusions
In this paper, we investigated the connection preemption prob-

lem and presented a comprehensive simulation study of preemption
in a general decentralizeddistributed connection-oriented network
setting. We observed that connection preemption when coupled
with the capability to reroute connections (preempted due to failure
or preemption) provides higher network availability to high-priority
connections and utilizes network bandwidth more efficiently, al-
lowing more connections to get through. This is especially useful
during nonstationary network conditions when demand for network
bandwidth is higher. Our simulation study also provided insights
into connection preemption and network dimensioning problems in
order to achieve a desired level of network availability.

Specifically, we proposed and studied two optimal algorithms
for connection preemption selection: Min-Conn and MinBW.
Min-Conn is an algorithm that optimizes the criteria of (i) the
number of connections to be preempted, (ii) the bandwidth to be
preempted, and (iii) the priority of connections to be preempted, in
that order. MinBW is an algorithm that optimizes the criteria of (i)
the bandwidth to be preempted, (ii) the priority of connections to be
preempted, and (iii) the number of connections to be preempted, in
that order. Both algorithms are decentralizeddistributed, i.e., con-
sider preemption at the link level. We developed these algorithms
based on the observations made in an extensive simulation study
with various connection preemption schemes. From a comparison
study of these two algorithms, we concluded that, in terms of overall
network performance, there is no significant performance difference
between the two, however, in terms of computational complexity,
Min-Conn is polynomial while MinBW is exponential. In terms
of overall network performance, the M i n B W algorithm performs
a little better than the Min-Conn algorithm and the performance
difference increases as the load in the network increases. The main
reason for this performance difference is that MinBW minimizes
preemption of excess bandwidth, allowing more efficient utiliza-
tion of network bandwidth. Given that connection preemption is a

real-time problem, the polynomial time algorithm (i.e., Min-Conn)
is more favorable.

References
[l] W. P. Lovegrove, J. L. Hammond, “Simulation Methods for

Studying Nonstationary Behavior of Computer Networks,”
IEEE Joumal on Selected Areas in Communications, Vol. 8,
No. 9, pp. 1696-1708, December 1990.

[2] J. A. Garay and I. S. Gopal, “Connection Preemption in
Communication Networks,” Proceedings of Infocom’92, pp.

[3] R. E. Walpole and R. H. Myers, “Probability and Statistics
for Engineers and Scientists,” Macmillan, New York, 1985.

[4] IBM Systems Joumal, 34(4), November 1995, (special issue
on Networking Broadband Services architecture).

[5] D. Sleator and R. Tarjan, “Amortized Efficiency of List Up-
date and Paging Rules,” Communications of the ACM, Vol.

[6] M. R. Garey and D. S. Johnson, “Computers and Interactabil-
ity,” W.H. Freeman, San Francisco, 1979.

[7] M. Wemik, 0. Aboul Magd, and H. Gilbert, “Traffic Man-
agement for B-ISDN Services,” IEEE Network, Vol. 6, No.
5, pp. 10-151, September 1992.

[8] M. Peyravian, “Providing Different Levels of Network Avail-
ability in High-speed Networks,” Proceedings of Globe-
com’94, pp, 941-945, 1994.

[9] PNNI Draft Specification,ATM Forum 95-0471R14, Decem-
ber 1995.

[lo] D. E. McDysan and D. L. Spohn, “ATM: Theory and Appli-
cation,’’ McGraw-Hill, New York, 1994.

[111 L. Gun and R. GuCrin, “Bandwidth Management and Con-
gestion Control Framework of the Broadband Network Ar-
chitecture,” Computer Networks and ISDN Systems, vol. 26,
no. 1, pp. 61-78, September 1993.

1043-1050,1992.

28, NO. 2, pp. 202-208,1985.

2a.l.9
151

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:37 UTC from IEEE Xplore. Restrictions apply.

