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Abstract 

Connection preemption can be a means to provide available and 
reliable services to high-priority connections when a network is 
heavily loaded and connection request amval pattems are unknown, 
or when the network experiences link or node failures. We present 
a simulation study of preemption in a general connection-oriented 
network setting. Based on the observations made in this study, we 
have developed two optimal connection preemption selection al- 
gorithms that operate in a decentralizeddistributed network where 
individual link managers run the algorithm for connection preemp- 
tion selection on their outgoing links. The first algorithm optimizes 
the criteria of (i) the number of connections to be preempted, (ii) 
the bandwidth to be preempted, and (iii) the priority of connections 
to be preempted, in that order, and has polynomial complexity. The 
second algorithm optimizes the criteria of (i) the bandwidth to be 
preempted, (ii) the priority of connections to be preempted, and 
(iii) the number of connections to be preempted, in that order, and 
has exponential complexity. We conclude that the polynomial al- 
gorithm is almost as good as the exponential algorithm in terms of 
overall network performance. 

1 Introduction 

Nonstationary network conditions may occur for various reasons 
such as failure of links or nodes, high traffic, and a priori unknown 
traffic pattems. With the increasing dependence on connection- 
oriented communications networks such as AsynchronousTransfer 
Mode (ATM), it is becoming increasingly important to provide 
not only acceptable steady state performance but also reasonably 
good performance under nonstationary conditions when demands 
for network resources are significantly higher [lo]. Under non- 
stationary conditions, if all existing and new connection requests 
cannot be accommodated, the only possible solution is to preempt 
certain connections. When preemption becomes inevitable during 
nonstationary conditions, the preemption policy must minimize the 
impacts on connections with greater “value” at the cost of possibly 
increased impacts on connections with lower “value”. Connec- 
tion preemption can also be used as a mechanism for bandwidth 
reservation and management. 

The importance or value of a connection, which can also relate 
to the connection’s quality of service (QoS) requirements can be 
expressed by a priority level. The priority levels can be preas- 

signed by the erid-system or by the network administrator using 
various factors s’uch as reliability desired, pricing structure, band- 
width requirement, real-time delivery constraints, desired blocking 
probability, and nature of traffic such as multimedia, voice, and 
facsimiles. 

To minimize the impacts of the nonstationary network condi- 
tions on high-priority connections, it might be necessary for new 
or rerouted high-priority connections to be able to preempt ongo- 
ing connections of lower priorities. Preemption makes available 
bandwidth for new or rerouted high-priority connections, allowing 
them to proceed. A preempted connection may have to be rerouted, 
which in tum can cause other ongoing connections of even lower 
priority to be preempted - this situation occurs when connection 
preemption is ccupled with the capability to reroute connections. 
Whlen a connection is rerouted, the reroute can be successful or the 
connection can be  dropped. 

When connection preemption is inevitable, an algorithm has to 
choose one or more ongoing connections of lower priorities for 
preemption in order to establish the high-priority connection that 
triggered the preemption algorithm. The algorithm must be such 
that it causes a minimum of disruption in the network due to the 
preempted connections. In addition, this algorithm must be fast 
to minimize the length of disruption or the connection setup time 
of a preempted connection rerouted due to a failure or unavailable 
bandwidth, Therefore, the algorithm must be a real-time algorithm 
151. 

1.1 Previous Work 
Garay and G’opal [2] addressed the connection preemption se- 

lection problem in a centralized network environment and showed 
that the problem of selecting which connections to preempt in or- 
der to minimize the number of connections to be preempted or 
to minimize the amount of bandwidth to be preempted is NP- 
complete. Knowing the computational intractability of the problem, 
they presented a set of heuristic connection preemption selection 
algorithms. Their algorithms are suitable for a centralized network 
environment, wherein a central control point performs most of the 
network control functions because information about the complete 
route of the preempting connection as well as the complete routes 
of the connections that share one or more links with the preempt- 
ing connection is required as input to the algorithm. Therefore, a 
designated entity monitors information about the whole network, 
i.e., the complete route of the preempting connection as well as the 
routes of the connections that share one or more links with the pre- 
empting connection, and runs the preemption algorithm to select 
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the connections for preemption. Due to the inherent nature of a 
distributed system, it follows that the designated centralized entity 
will not have the most up-to-date information about the network. 
Moreover, when a link or node failure triggers preemption, it is not 
desirable to have a centralized control point consider the end-to- 
end path for connection preemption candidates, and a distributed 
scheme is preferred for scalablity and efficiency. 

The upper bound on the computational complexity of their 
heuristic algorithms is O(n . m'), where n is the total number 
of hops (links) along the preempting path, and m is the size of the 
set that contains all existing connections that have at least one link 
in common with the selected path for the preempting connection 
and having a priority less than that of the preempting connection. 

1.2 Objectives 

A centralized preemption scheme cannot fit well into decen- 
tralizeddistributed networks because each control point has to 
make decisions and perform functions independent of other control 
points. For example, when a connection setup request is processed 
by a link manager and not enough resources are available, the link 
manager itself, independent of other link managers, has to select 
the connections to be preempted from the set of all connections 
currently using the link. 

Based on the observations we made from a comprehensive sim- 
ulation study of preemption in a general connection-oriented net- 
work setting, we developed two optimal decentralizedldistributed 
connection preemption selection algorithms that minimize the dis- 
ruption to existing connections while satisfying the constraints of 
higher priority connections. Unlike the Garay and Gopal [2] algo- 
rithms which are heuristic, these two algorithms are optimal with 
respect to their respective objective functions over the parameters: 
the bandwidth to be preempted, the number of connections to be 
preempted, and preemption of low-priority connections. These al- 
gorithms consider preemption at the link level and run locally by 
each link, that is, if a new end-to-end connection has to be estab- 
lished, each link along the chosen path of the new connection will 
cause a preemption algorithm to be executed at its control point 
residing on the node at the origin of the link if bandwidth cannot 
be allocated on that link. Thus, the algorithms are truly decentral- 
izedldistributed. 

The first algorithm, named Mia-Conn, first minimizes the num- 
ber of connections to be preempted at the link level, then chooses 
the combination of connections to be preempted to minimize the 
bandwidth to be preempted, and if there is a choice of such combi- 
nations, it chooses a combination in which the connections have the 
least priority. This algorithm has a complexity of O(k'), where k is 
the number of connections sharing the link under consideration and 
having a priority less than that of the preempting connection. The 
second algorithm, named MinBW, first minimizes the amount of 
bandwidth to be preempted at the link level, and if there is a choice 
of connections to be preempted with the above criterion, it chooses 
a combination of connections with the least priority, and if there is 
a choice of such combinations, it chooses a combination with the 
least number of connections. This algorithm is exponential with a 
complexity of O ( ~ C  . Y ) .  

We present a simulation study of the two algorithms and con- 
clude that the polynomial algorithm Min-Conn performs almost as 

well as the exponential algorithm MinBW. Our simulation study 
also provides useful insights into connection preemption and net- 
work dimensioning problems in order to achieve a desired level of 
network availability. 

In summary, Min-Conn is an algorithm that optimizes the cri- 
teria of (i) the number of connections to be preempted, (ii) the 
bandwidth to be preempted, and (iii) the priority of connections to 
be preempted, in that order. MinBWis an algorithm that optimizes 
the criteria of (i) the bandwidth to be preempted, (ii) the priority of 
connections to be preempted, and (iii) the number of connections to 
be preempted, in that order. Both are distributeddecentralized, i.e., 
consider preemptions at the link level. The algorithms are optimal 
with respect to their objective functions because they perform an 
exhaustive search of their search space to select a solution based on 
the criteria for which they claim optimality. 

The rest of paper is organized as follows: Section 2 presents 
a simple connection control protocol for decentralized connection- 
oriented networks. Section 3 presents the two optimal algorithms 
along with an analysis of their complexity. Section 4 presents a 
simulation study of connection preemption and compares the per- 
formance of the two proposed connection preemption algorithms. 
Section 5 gives the conclusions. 

2 Connection Control Protocol 

We now present below a simple connection control protocol for 
decentralized connection-oriented networks. The main idea here 
is to introduce a general model which can be used for our discus- 
sions on the connection preemption problem. Our protocol borrows 
some concepts from NBBS (Networking Broadband Services) [4] 
a decentralized fast-packet network architecture, and ATM PNNI 
(Private Network Node Interface) [9] which provide connection- 
oriented services using the concept of source routing and link state. 
That is, the source computes a complete route from the source to the 
destination based on its knowledge about the current states and uti- 
lizations of the links. Each link is owned by a link manager (LM), 
and when a significant link state change occurs, the link manager 
broadcasts the information to all the nodes in the network. There is 
no concept of centralized control, each link manager independent of 
other link managers decides whether it can accept a new connection 
when it receives a connection setup request. 

A connection is setup as follows: The origin computes a coni- 
plete route from the origin to the destination basedon its knowledge 
about the current states and utilizations of the links. Then, the ori- 
gin constructs a connection setup request for the connection and 
sends it to all the link managers along the computed route. A 
link manager along the route accepts the connection and retums a 
positive reply only if it can provide the resources to accommodate 
the connection. Otherwise, it rejects the connection and retums a 
negative reply to the origin. If a link manager accepts a connection, 
it allocates the requested resources for the connection. When the 
origin receives the replies it determines whether a connection setup 
is successful. The connection setup is successful only if all the 
replies are positive. If the connection setup is unsuccessful, the 
origin computes a new route (which excludes the links that replied 
unfavorably) and repeats the setup process. When the connection 
setup is unsuccessful, the origin also sends a path takedown request 
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to the link managers along the path of the connection that replied 
favorably. When a link manager receives a path takedown request 
for a connection, it releases the network resources associated with 
that connection. 

When a setup request is processed by a link manager and not 
enough resources are available, the link manager selects connec- 
tions to be preempted from the set of all connections currently using 
the link with priorities lower than the priority of the requesting con- 
nection. Preemption is triggered at a link by the link manager only 
if enough resources can be released by preemption to accommo- 
date the requesting connection at that link. For each connection 
to be preempted, the link manager sends a preemption notification 
message to the origin of the connection. At the receipt of preemp- 
tion notification message, the origin takes some actions to reroute 
the connection. First, it takes down the connection by sending a 
path takedown request to all the link managers along the path of 
the connection. Then, it computes a new route for the preempted 
connection and starts the setup process. 

When a link or an intermediate node along the path of an on- 
going connection fails, our protocol switches the connection to an 
altemate path. Link and node failures are detected by both ori- 
gin and destination nodes via topology database update broadcasts. 
When a link or an intermediate node along the path of an ongoing 
connection fails, both the origin and destination send path take- 
down requests along the path of the connection. Then, the origin 
computes a new route (which excludes the failed links or nodes) 
and performs the connection setup process as described above. 

When the origin or destination wants to terminate a connection, 
it constructs and sends a path takedown request to all the link 
managers along the path of the connection. 

2.1 Connection Preemption: Problem Statement 
Definition 1 A connection C, is a two-tuple Ca = (B, ,  Pa), where 

B, is the bandwidth requestedby Ca. 

b Pa is the priority of c,. 
The priority of a connection is represented by a number 
greater than or equal to 1, with 1 being the lowest priority. 

The connection preemption problem has to be solved in real- 
time because when a connection setup request arrives, frequently 
the holding time is not known and there is no knowledge about 
the future connection requests. Similarly, when a failure disrupts 
a connection, the connection must be rerouted immediately to pro- 
vide reliable service. For the connection preemption problem, we 
therefore assume that a connection arrives with a predefined route, 
a predefined priority, and a predefined bandwidth. No knowledge 
of the future arrivals or the holding time is available. 

Definition 2 Let 
C, = ( B,, Pp) be a new or rerouted connection, 
e3 be a link along the route of C, without enoughfree 

a3 be thefree bandwidth in e3. 
bandwidth to accommodate C,, and 

Cp is a preempting connection if there exists a set of existing con- 
nections C = {Cl, C2, ..., C k }  that go through e3 such that if 
C, = (Ba, P,) E C, where 1 5 i 5 k, then the following condi- 
tions hold: Pp > P, and Bp 5 a3 + Er=, B,. 

A connection has two parameters: bandwidth and priority. The 
set of connections to be preempted can be chosen by optimizing an 
objective function over these two parameters of the connections, 
ancl the number of connections to be preempted. Specifically, the 
objective function can be any one of the following or some combi- 
nation of the following. 

1. Preempt fhe connections that have the least priority. This is 
a naive slolution that can result in preemption of excessive 
bandwidth and connections. 

2. Preempt 1 he least number of connections. The advantage of 
this strategy is that a minimum number of connections have 
to be pret:mpted and rerouted. 

3. Preempt ithe least amount of bandwidth. The advantage of 
this strategy is that network bandwidth is better utilized. 

We examinedmany schemes and concluded that the objective func- 
tioris of algorithms Min-Conn and MinBW, presentedin Section 3 ,  
lead to optimal solutions. 

3 Connection Preemption Algorithms 

We present two connection preemption algorithms that optimize 
network performance by minimizing the disruption to the ongoing 
corinection and by utilizing network bandwidth more efficiently. 
These algorithms are suited for both centralized and decentralized 
types of network. Our algorithms do not consider the complete 
route of the preempting connection nor do they examine the com- 
plete routes of the connections that share one or more links with the 
preempting connection. When connection preemption at a link is 
necessary to accommodate a new connection, the link manager at 
that link, independent of what other link managers along the path 
of Ihe connection choose to do, selects a set of connections from 
the connections currently using the link for preemption. Thus, if 
preemption is ne:cessary to setup the connection at two links (say a 
ancl b),  the conncctions picked by link managera are not necessarily 
the same as those picked by link manager b. When selecting con- 
nections for preemption, a link manager only considers the existing 
connections that go through its link and makes its selection only by 
exaimining connections' priorities and their requested bandwidth. 

3.11 Algorithm Min-Conn 

Min-Conn is an algorithm that optimizes the criteria of (i) the 
number of connections to be preempted, (ii) the bandwidth to be 
preempted, and l(iii) the priority of connections to be preempted, in 
that order. The algorithm is distributed/decentralized,i.e., considers 
preemption at the link level and has a polynomial time computa- 
tional complexil y. The Min-Conn algorithm is shown below. 

This algorithm retums the connections to be preempted in set 
P. Step 2 detemines W ,  the amount of bandwidth that needs to 
be ]preempted in order to accommodate the preempting connection. 
Step 4 identifies the connection that has the smallest bandwidth 
which is greater than W ,  and if multiple such connections exist, it 
selects the connection with the least priority. If this step can identify 
a c"mection to be preempted, then only one connection has to be 
preempted. Otherwise, Step 11 performs a greedy method to ensure 
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that a minimum number of connections are selected for preemption. 
Step 11 finds the largest bandwidth connection, and if there is more 
than one, selects the one with the lowest priority. It then removes 
the selected connection from C, the set of connections that are still 
using C,  in Step 15, adds it to P in Step 16, and updates a,, the 
amount of bandwidth available in the link e3 when the selected 
connection is preempted in Step 17. Steps 2 to 17 are executed in 
the while loop of line 1 until enough bandwidth to accommodate 
the preempting connection is freed. 

1. while Bp > aJ do 
2. W := Bp - U,; 

i ._ 3. .- 0; 
4. for 1 = 1 to k do 
5. 
6. 
7. 
8. endfor; 
9. 

10. i:= 1; 
11. 
12. 
13. i := I ;  
14. end for; 
1s. 
16. 
17. 
18. endwhile 

if i = 0 and Bi 2 W then i := I ;  
if i > 0 and Bi 2 W and 
(Bl < B, or (BI = B, and Pl < PI)) then i := I ;  

if i = 0 then 

for I = 1 to k do 
if Bi > B, or (Bi = B, and A < PI) then 

c := c - {C,}; 
P := P U {C,}; 
a3 := u3 + B,. 

Upper bound on computational complexity: O(k2) ,  where k is 
the number of connections using the link under consideration and 
having a priority less than that of the preempting connection. 

3.2 Algorithm MinBW 

MinBW is an algorithm that optimizes the criteria of (i) the 
bandwidth to be preempted, (ii) the priority of connections to be 
preempted, and (iii) the number of connections to be preempted, in 
that order. 

The algorithm retums the connections to be preempted in set P 
and works as follows: The algorithm evaluates the bandwidth to be 
preempted for each and every combination of connections, selected 
r at a time, starting with r = 1 and going up to r = k, where k is 
the number of connections using the link under consideration and 
having a priority less than that of the preempting connection. The 
for loop on line 5 varies the value of T .  For any value of T ,  it is 
determined whether there is a combination of connections which 
when preempted will free up at least W bandwidth. If there are 
two or more such combinations for a given value of T ,  then the 
combination with the lesser value of the sum of the bandwidths 
is selected. When there is more than one combination with the 
same amount of bandwidth, then the one with the lesser priorities 
is selected. This is achieved as follows for a given value of r .  The 
loop on line 9 enumerates all combinations of T connections. Array 
A is a working array variable whose first r elements are indices, 
in ascending order, of connections being presently considered for 
preemption. Each iteration of the loop assigns to elements A1,A2, 
. . . A, a combination of values from 1 to k as follows: View the 
array as a car mileage odometer with the most significant position 
being A1 and the least significant position being A,, and which is 
incremented at each iteration according to the following rules. 

Elements of A are assigned values in the range 1 to k. 
The initial value of A, = i, for i = 1,2, .  . . , r .  

The values of A are enumerated in ascending order. 

The value of Ai > A,-I, for i  = 2,3 , .  . . , r .  

The above rules imply that A,, for i = I ,  2 , .  . . , T ,  can take values 
in the range i to k - T + i. 

A for loop computes the aggregate bandwidth for each resulting 
enumeration of r combinations (line 11). The aggregate bandwidth 
for the combination that yields the least known bandwidth exceed- 
ing or equal to the bandwidth required to be preempted (W), is 
stored in M i n  at all times. The corresponding combination of 
connection indices is stored in array S. (See lines 14,15,16,17). 

When all combinations of connections for all values of r have 
been enumerated, line 28 places in set P ,  the optimal set of con- 
nections to be preempted. These are the connections whose indices 
are given by the elements in array S.  

1. W := Bp - U,; 

2. Min := Et, B,; 
3. s := 4; 
4. P := 4; 
5. for r = 1 to IC do 
6. 
7. Ai := I ;  
8. endfor 
9. 

10. Sum := 0; 
11. 
12. 
13. endfor 
14. 
15. 
16. 
17. 

19. 
20. 
21. endwhile 
22. 
23. 
24. 
2s. endfor 
26. endfor 
27. endfor 
28. P := P U CS, for every index i E S. 

for I = 1 to r do 

form = 1 to k ! / ( k  - ~ ) ! r !  do 

for 1 = 1 to r do 
Sum := Sum + CA, ; 

if W 5 Sum < Min then 
Min := Sum and S t A; 

if W 5 Sum and Sum = Min and 
EmEA Pm < EnES Pn then S + A; 

whilei > 1 and A, = k - r  + i  do 
18. 2 := T ;  

i := i - 1; 

ifA, < k - r + i  then A, = A, + 1; 
for 1 = i + 1 to r do 

Ai := Ai-I + 1; 

Example: For k = 6, T = 3, we show the values of AlrA:!,A3 
separated by commas, as generated by the algorithm. Successive 
values of the three elements of A are separated by semicolons. 
1,2,3; 1,2,4; 1,2,5; 1,2,6; 1,3,4; 1,3,5; 1,3,6; 1,4,5; 1,4,6; 1,5,6; 
2,3,4; 2,3,5; 2,3,6; 2,4,5; 2,4,6; 2,5,6; 3,4,5; 3,4,6; 3,5,6; 4,S,6. 
Complexity: For a given value of T ,  the main for loop of line 9 is 
executed k ! / ( k  - r ) ! r !  times and each execution of the loop has 
O ( r )  time complexity. Since, 
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Thus, the computational complexity is O(k . 2‘), where k is 
the number of connections using the link under consideration and 
having a priority less than that of the preempting connection. It can 
easily be shown that the problem of minimizing the amount of band- 
width to be preempted is NP-complete by showing a polynomial- 
time reduction to and from the knapsack problem. ’ 
Optimality of the Algorithms: Algorithms Min-Conn and 
MinBW are both optimal with respect to their objective functions. 
This is because they perform an exhaustive search of their search 
space to select a solution based on the criteria for which they claim 
optimality. 

4 Simulation 

4.1 Model 
We used a connection-level simulation to study preemption and 

to compare the two proposed algorithms in a dynamic network 
environment where connections come and go. The simulation 
model has most mechanisms of typical connection-oriented net- 
works. Its main components are a path selection algorithm which 
selects a minimum-hop path between an origin-destination pair, a 
connection setup and takedown protocol, and a topology informa- 
tion distribution protocol. In addition to the above components, the 
model also has a connection preemption protocol and a path-switch 
mechanism which reroutes connections preempted due to linklnode 
failure or preemption. The simulation program is written in C and 
SIMSCRIPT and has about 5000 lines of code and consists of a 
number of processes which execute several dynamic objects and 
routines. A process is created at a simulated time and it performs 
a sequence of events separated by lapses of time. The process 
concept is used to represent connections, connection generation, 
and messages, while static objects such as route computation is 
represented using routines. 

The input to the simulation program includes a network config- 
uration - the nodes, the transmission links with their propagation 
delays and capacities, - source/destination distribution, connec- 
tions’ characteristics, link failure events, and other controlling pa- 
rameters such as simulation time, simulation seeds, and maximum 
connection hops. The program collects and reports a number of 
statistics as will be described later. 

The program simulates the lives of connections from the time 
they are created until they terminate. The flowchart in Figure 1 
shows a very high-level view of how a connection is handled in this 
simulation model. 

Connection interarrival times are exponentially distributed. 
Upon arrival of a connection to the network, its source and des- 
tination nodes, priority, bandwidth, holding time, and delay are 
chosen probabilistically. Once the connection’s parameters are se- 
lected, a path selection algorithm is run and a path in the network 
is determined. This algorithm attempts to find a path that has a 
minimum number of hops while satisfying the connection’s quality 
of service parameters. If there are several eligible paths with the 
same number of hops then one of them is chosen based on lowest 

‘Knapsack problem: Given C = { GI, C2, . . ., C k  ] and W > 0, 
C,  > 0, is there a subset of C such that the sum of the elements in the 
subset is W ,  i.e., C, + Cj  + . . . + Cl = W ? 161. 

End T& Down Complucd? 

Figure 1. Flowchart for Simulation Model 

“weight” of rhe path. This weight is the sum of weights of the 
individual links. This path selection algorithm and the notion of 
link weights are {described in detail in [ l l ] .  

Then the connection control protocol described in Section 2 at- 
tempts to establish the connection. Basically, when a connection 
request arrives, ii connection is established if the network has the 
bandwidth to support the connection. Once established, the con- 
neclion begins its “talk” phase. However, if there is not enough 
bandwidth to establish the connection, then if there are sufficient 
low -priority connections that can be preempted to free enough band- 
width for this connection, then those low-priority connections will 
be preempted and the connection request gets satisfied. When the 
connection request cannot be accommodated, it is rejected. When a 
connection is preempted, it is treated like a new connection. When 
a connection successfully completes its talk phase, it gets taken 
down. So, note that a successfully completed connection may have 
been rerouted on(: or more times due to preemption, link failure, or 
node failure. 

Another feahire included in the simulation model is that con- 
nections failed tci set up (because there is no sufficient resource in 
at least one link along the path) can execute the path selection algo- 
rithm more than once. A parameter that limits the number of such 
attempts is defined as an input to the program. Each time the path 
selection algorithm is executed, links which responded negatively 
in the previous set up request are excluded from further consider- 
ation. If the set up request fails at every trial and the retry count 
exceeds the threshold, then the connection request is dropped. 

IJpon acceptance of a connection on a link or removal of a con- 
nection from a link, a bandwidth reservation table for that link is 
updated. When a significant change in the link bandwidth reser- 
vation occurs, a topology database update message is sent to every 
node in the network. This is done only if the change in the reserva- 
tion level for the link is significant, i.e., if it exceeds some threshold 
value defined for that link. A topology database update message 
is also broadcast when a link fails or comes up. So, a connection 
setup request may not be successful for two reasons: the topol- 
ogy database at the originating node may not be “current” and/or 
multiple sources may send connection setup requests to a partic- 

2This topology database update broadcast concept scheme is similar to 
the one specified in ATM PNNI [9]. 
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ular link almost simultaneously, competing for a limited available 
bandwidth. 

LOW (1) 
Medium (2) 

High (3) 

Figure 2. Network topology and structure. 

64-4000 600 
64-4000 600 
64-4000 600 

4.2 Experiments 

Network Structure: We have conducted wide-range simulation 
with various network conditions (i.e., network topology, number 
of priority levels, link bandwidth, traffic pattern, etc.) to study 
connection preemption and the behavior of these two algorithms. In 
terms of network performance most of our simulation experiments 
have indicated similar results. So, for the sake of brevity, in this 
paper, we present only one set of simulation experiments. 

The following network model (which is an abstraction of a real 
network) was used in the simulation experiments. The network 
is two-tiered consisting of 8 nodes and 26 unidirectional links, 
(Figure 2). The inner links are OC3 links with a propagation delay 
of Ims, and the outer links are T3 links with a propagation delay 
of IOms. In the experiments, the origin and destination pairs for 
the connections were selected such that the load in the network is 
uniformly distributed (as shown in Table 1). 

Nodes 

1.2 
3,4 

5,6,7,8 

Origin Dcstination probability 
probability (given that origin # destination) 

0.25 0.25 
0.125 0. I25 

0.0625 0.0625 

Traffic Profile: Table 2 shows the traffic profile used in the simu- 
lation experiments. Many connection types in terms of bandwidth 
size, holding time, and delay requirement were used along with 
three priority levels: low, medium, and high. The distribution of 
the priority levels is uniform, i.e., on the average the number of 
connection requests with low priority is the same as the number 

Table 2. Traffic profile. 

Delay 

(in ms) 
(uniform 
distrib.) 

10-60 
10-60 
10-60 

of connection requests with medium or high priority. The band- 
width range for connections is between 64 Kbps to 4000 Kbps. 
The distribution of bandwidth within this range is also uniform. 
The connections’ holding times are assumed to be exponentially 
distributed with a mean of 600 seconds. The delay range for con- 
nections is between lOms to 60ms with a uniform distribution. Note 
that the delay requirement of some connections will have impact on 
route selection, that is, given that bandwidth is available not every 
route can meet the delay requirements of certain connections. 

Performance Metrics: Our simulation program collects statistics 
about a number of performance measures that indicate how well 
the network performs with a particular connection preemption al- 
gorithm. These measures are averaged over the life of simulation. 
The following three metrics are considered in this study: 

Connection success probability: This is the probability that 
a connection of a given priority is successfully established 
and completes its talk time (holding time). 

Connection preempting probability: This is the probability 
that a connection of a given priority preempts one or more 
connections. 

Connection reroute probability: This is the probability that a 
connection of a given priority is rerouted one or more times 
due to preemption or linkinode failures. 

Nature of experiments: The structure of the simulation experi- 
ments is as follows. Each experiment consists of 24 independent 
runs, and 95% confidenceintervals are obtained for all performance 
measures. The reason for doing this many runs was to be able to 
get good confidence intervals. The independence of the runs was 
achieved by shuffling the seeds required by the program. Since the 
runs are independent, we can assume identical distribution of the 
replications. Thus, the central limit theorem can be used to justify 
the use of Gaussian statistics to construct confidence intervals on 
the performance measures. As the number of replications is small, 
we can assume that the mean is distributed as student-t distribution 
and calculate the lOO(1 - a)% confidence interval on the mean 
from the replications using [l]: 

where Z is the sample mean, p is the true mean, s is the sam- 
ple standard deviation, T is the number of replications, and tal2 
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is the critical value of the student-t distribution with ( r  - 1)  de- 
grees of freedom. The confidence intervals were observed to be 
too small to report here for the simplicity of presentation. Each 
simulation run is 10,000 seconds of simulation time. To observe 
the impacts of nonstationary network conditions, link failure is in- 
troduced. Specifically, the pair of bidirectional links that connect 
nodes 1 and 2 were failed. Note that this link failure causes a lot 
of connections to be rerouted and places the network under heavy 
stress because these links are the high-speed backbone links. 

Figure 3. Network Behavior 

Network behavior as a function of time: Figure 3 shows the 
connection success probability and the average link reservation 
level versus the simulation time for one of the experiments. The 
connection arrival rate to the network for this experiment has an ex- 
ponential distribution with a mean of about 1.5 connections/second. 
Initially, there is no connection in the network, so the average link 
reservation level is zero. As connections arrive, the average link 
reservation level goes up and the connection success probability 
drops. After a short time of about 1500 seconds, the average link 
reservation level and the connection success probability reach a 
stable level, about 0.98 for the connection success probability and 
about 8 1 % for the average link reservation level. Once the network 
reached a stable level, the pair of links that connect nodes 1 and 2 
are made to fail. When this happens, the connection success prob- 
ability drops and the average link reservation level goes up. This 
is expected as the network has less bandwidth for new and ongoing 
connections. With link failure, the network again reaches a stable 
level but the connection success probability is now much lower at 
0.82, and the average link reservation level is about 0.90. After 
5000 seconds, when the links are brought up again, the network 
goes back to its normal operating points. 

Connection success probability as a function of arrival rate: 
Figure 4 shows the connection success probability as a function 

3For this set of experiments we obtained the 95% confidence intervals 
for all performance measures. The t , / z  value for 95% confidence interval 
when T = 24 is 2.069 which is obtained from [3]. 

Figure 4. Preemption versus no preemption 

of the connection arrival rate with and without preemption. This 
figure allows the comparison of the two preemption algorithms 
and the analysis of the effect of preemption in terms of network 
throughput. The top curve is for the MinBW algorithm, the middle 
curve is for the ,Vin-Conn algorithm, and the bottom curve is for 
the non-preemptiion case. In all the cases, we see that when the con- 
nection arrival rate is low, i.e., when the network is lightly loaded, 
the connection success probability is almost one. As the connection 
arrival rate increases, the connection success probability decreases 
because the network now has less free bandwidth. When the con- 
nection arrival rate is low, the effect of preemption is very small, 
i.e., there is no significant difference between the preemption and 
the non-preemption cases in terms of the connection success prob- 
ability. However, as the load in the network increases due to more 
connection requests, the advantage of preemption becomes more 
obvious, as more connections get through. This is because when 
preemption is coupled with path-switch, it improves the path selec- 
tion process by providing a way to correct “wrong” decisions made 
in the past due to lack of knowledge about the future connection 
request arrival pattem. As far as the performance of these two con- 
nection preemption selection algorithms is concemed, there is no 
significant difference. Basically, the MinB W algorithm performs a 
little better than the Min-Conn algorithm and the performance dif- 
ference increases with the connection arrival rate. The reason for 
this performance difference is that the MinBW algorithm causes 
less preemption of excess bandwidth than the Min-Conn algorithm, 
allowing more efficient utilization of network bandwidth. 

Performance metrics for priority levels: 
We now look at performance measures by considering how indi- 
vidual priorities are affected with and without preemption. 

Figure 5 shows the connection success probability for each pri- 
ority level with and without preemption for one of the experiments. 
The figure is for the case when the connection arrival rate is about 
1.5 connections/second. This results in a connection success prob- 
ability of about 0.8 without preemption, so the network is under 
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Figure 5. Connection success probability 

stress. When preemption is used, we see that for both the algorithms 
the connection success probability increases nicely with the con- 
nection's priority. The higher network availability for connections 
of greater priority is the expected result from the use of preemp- 
tion. Although the MinBW does a little better than Min-Conn for 
the connection success probability achieved for different priority 
levels, there is no significant difference. Without preemption, the 
connection success probability is the same for all priority levels. 

Lar Medim 
conrncaonP* 

p y * w  .... "hConn "th..tR.mstkn 

Figure 6. Connection reroute probability 

Figure 6 shows the connection reroute probability for each pri- 
ority level with and without preemption, for one of the experiments. 
The connection arrival rate is the same as before, i.e., about 1.5 con- 
nections/second, indicating that the network is under stress. With 
preemption, we see that for both the algorithms the connection 
reroute probability decreases as the connection's priority increases. 
This is very desirable as we want the high priority connections to 

be disturbed less. Without preemption, connections are rerouted 
only due to link failure. Hence, the connection reroute probability 
is lower without preemption. It is observed that with or without 
preemption, the connection reroute probability for the high-priority 
connections is the same. This is expected because the high-priority 
connections do not get preempted due to preemption. Without pre- 
emption, of course, the connection reroute probability is the same 
for all priority levels. A nice observation is that even with pre- 
emption, the overall connection reroute probability is low. In terms 
of the connection reroute probability, there is no significant differ- 
ence between the two connection preemption selection algorithms 
Min-Conn and MinBW, although MinBW performs a little better. 

Figure 7. Connection preempting probability 

Figure 7 shows the connection preempting probability for each 
priority level for one of the experiments. The connection preempt- 
ing probability is zero without preemption and it is also zero for the 
low priority connections. The connection arrival rate is the same 
as before, i.e., about 1.5 connectionskecond. It is interesting to 
observe that the connection preempting probability is higher for the 
medium priority connections than for the high priority connections 
- this is due to the cascading effect of preemption. This cascading 
effect of preemption can be explained as follows. When a con- 
nection of priority i preempts a connection of priority i - 1, if the 
connection of priority i - 1 is not the lowest priority connection, it 
tries to get reestablished and in this process it might preempt con- 
nections of priority i - 2. Therefore, connections which are not of 
the highest priority can actually have higher preempting probability 
than the connections of the highest priority. But overall it is ob- 
served that the connection preempting probability is low even when 
the network is heavily loaded. Both the algorithms MinBW and 
Min-Conn perform very well in terms of the connection preempt- 
ing probability and there is no significant performance difference 
between them. 

Comparison with previous work: 
In [8] we made a comparison study, in terms of overall network 
performance, between the Min-Conn algorithm and the algorithm 
by Garay and Gopal [2] which gives the best overall result among 
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the algorithms they proposed. The study indicated that there is 
no significant performance difference between the two algorithms 
and, in fact, both performed very well. However, it should be noted 
that the Gary and Gopal’s algorithm is suitable for a centralized 
network only, wherein a central control point performs most of the 
network control functions because information about the complete 
route of the preempting connection as well as the complete routes 
of the connections that share one or more links with the preempting 
connection is required as input to the algorithm. A centralized pre- 
emption scheme cannot fit well into decentralized networks (such 
as ATM PNNI networks that have multiple routing domains [9]) 
becauseeach control point has to make decisions and perform func- 
tions independent of other control points. Min-Conn is an optimal 
decentralizeddistributed preemption algorithm which can also be 
used in centralized networks. When preemption is necessary to es- 
tablish a high priority connection, Min-Conn is run locally by each 
link along the chosen path for the connection if bandwidth cannot 
be allocated on that link. 

5 Conclusions 
In this paper, we investigated the connection preemption prob- 

lem and presented a comprehensive simulation study of preemption 
in a general decentralizeddistributed connection-oriented network 
setting. We observed that connection preemption when coupled 
with the capability to reroute connections (preempted due to failure 
or preemption) provides higher network availability to high-priority 
connections and utilizes network bandwidth more efficiently, al- 
lowing more connections to get through. This is especially useful 
during nonstationary network conditions when demand for network 
bandwidth is higher. Our simulation study also provided insights 
into connection preemption and network dimensioning problems in 
order to achieve a desired level of network availability. 

Specifically, we proposed and studied two optimal algorithms 
for connection preemption selection: Min-Conn and MinBW. 
Min-Conn is an algorithm that optimizes the criteria of (i) the 
number of connections to be preempted, (ii) the bandwidth to be 
preempted, and (iii) the priority of connections to be preempted, in 
that order. MinBW is an algorithm that optimizes the criteria of (i) 
the bandwidth to be preempted, (ii) the priority of connections to be 
preempted, and (iii) the number of connections to be preempted, in 
that order. Both algorithms are decentralizeddistributed, i.e., con- 
sider preemption at the link level. We developed these algorithms 
based on the observations made in an extensive simulation study 
with various connection preemption schemes. From a comparison 
study of these two algorithms, we concluded that, in terms of overall 
network performance, there is no significant performance difference 
between the two, however, in terms of computational complexity, 
Min-Conn is polynomial while MinBW is exponential. In terms 
of overall network performance, the M i n B  W algorithm performs 
a little better than the Min-Conn algorithm and the performance 
difference increases as the load in the network increases. The main 
reason for this performance difference is that MinBW minimizes 
preemption of excess bandwidth, allowing more efficient utiliza- 
tion of network bandwidth. Given that connection preemption is a 

real-time problem, the polynomial time algorithm (i.e., Min-Conn) 
is more favorable. 
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