
Causal Consistency for Geo-Replicated Cloud Storage under Partial Replication

Min Shen, Ajay D. Kshemkalyani, and Ta-yuan Hsu

University of Illinois at Chicago
Chicago, IL 60607, USA

Email: {mshen6, ajay, thsu4}@uic.edu

Abstract—Data replication is a common technique used for
fault-tolerance in reliable distributed systems. In geo-replicated
systems and the cloud, it additionally provides low latency.
Recently, causal consistency in such systems has received much
attention. However, all existing works assume the data is fully
replicated. This greatly simplifies the design of the algorithms
to implement causal consistency. In this paper, we propose that
it can be advantageous to have partial replication of data, and
we propose two algorithms for achieving causal consistency in
such systems where the data is only partially replicated. This
is the first work that explores causal consistency for partially
replicated geo-replicated systems. We also give a special case
algorithm for causal consistency in the full-replication case.

Keywords-causal consistency; causality; cloud computing;
distributed computing; geo-replicated storage; replication

I. INTRODUCTION

Data replication is commonly used for fault tolerance in

reliable distributed systems. It also reduces access latency in

the cloud and geo-replicated systems. With data replication,

consistency of data in the face of concurrent reads and

updates becomes an important problem. There exists a spec-

trum of consistency models in distributed shared memory

systems [19]: linearizability (the strongest), sequential con-

sistency, causal consistency, pipelined RAM, slow memory,

and eventual consistency (the weakest). These consistency

models represent a trade-off between cost and convenient

semantics for the application programmer.
Recently, consistency models have received attention in

the context of cloud computing with data centers and geo-

replicated storage, with product designs from industry, e.g.,

Google, Amazon, Microsoft, LinkedIn, and Facebook. The

CAP Theorem by Brewer [16] states that for a replicated,

distributed data store, it is possible to provide at most two

of the three features: Consistency of replicas, Availability

of Writes, and Partition tolerance. In the face of this theo-

rem, most systems such as Amazon’s Dynamo [12] chose

to implement eventual consistency [7], which states that

eventually, all copies of each data item converge to the

same value. Besides the above three features, two other

desirable features of large-scale distributed data stores are:

low Latency and high Scalability [22]. Causal consistency is

the strongest form of consistency that satisfies low Latency

[22], defined as the latency less than the maximum wide-area

delay between replicas. Causal consistency in distributed

shared memory systems was proposed by Ahamad et al.

[1]. Causal consistency has been studied by Baldoni el

al. [5], Mahajan et al. [24], Belaramani et al. [6], and

Petersen et al. [25]. More recently, in the past four years,

causal consistency has been studied and/or implemented by

numerous researchers [2], [3], [4], [13], [14], [20], [22], [23].

Many of these do not provide scalability as they use a form

of log serialization and exchange to implement causal con-

sistency. More importantly, all the works assume Complete

Replication and Propagation (CRP) based protocols. These

protocols assume full replication and do not consider the

case of partial replication. This is primarily because full

replication makes it easy to implement causal consistency.

Case for Partial Replication

Our proposed protocols for causal consistency are de-

signed for partial replication across the distributed shared

memory. We now make a case for partial replication. (1) Par-

tial replication is more natural for some applications. Con-

sider the following example. A user U’s data is replicated

across multiple data centers located in different regions.

If user U’s connections are located mostly in the Chicago

region and the US West coast, the majority of views of user

U’s data will come from these two regions. In such a case,

it is an overkill to replicate user U’s data in data centers

outside these two regions, and partial replication has very

small impact on the overall latency in this scenario. With

p replicas placed at some p of the total of n data centers,

each write operation that would have triggered an update

broadcast to the n data centers now becomes a multicast

to just p of the n data centers. This is a direct savings

in the number of messages and p is a tunable parameter.

(2) For write-intensive workloads, it naturally follows that

partial replication gives a direct savings in the number of

messages without incurring any delay or latency for reads.

(3) Recent researchers have explicitly acknowledged that

providing causal consistency under partial replication is a

big challenge. For example, Lloyd et al. [22] and Bailis

et al. [3] write: “While weaker consistency models are

often amenable to partial replication, allowing flexibility in

the number of datacenters required in causally consistent

replication remains an interesting aspect of future work.” (4)

The supposedly higher cost of tracking dependency meta-

data, which has deterred prior researchers from considering

partial replication, is relatively small for applications such

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.68

509

2015 IEEE International Parallel and Distributed Processing Symposium Workshop

978-1-4673-7684-6/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.68

509

as Facebook, where photos and large files are uploaded. In

addition, the protocols for causal consistency that we present

are efficient and have relatively low meta-data overheads.

Contributions

We present the first algorithms for implementing causal

consistency in partially replicated distributed shared memory

systems.

1) Algorithm Full-Track is optimal in the sense defined

by Baldoni et al. [5], viz., the protocol can update

the local copy as soon as possible while respecting

causal consistency. This reduces the false causality in

the system.

2) Algorithm Full-Track can be made further optimal in

terms of the size of the local logs maintained and

the amount of control information piggybacked on

the update messages, by achieving minimality. The

resulting algorithm is Algorithm Opt-Track.

3) As a special case of Algorithm Opt-Track, we present

Algorithm Opt-Track-CRP, that is optimal in a fully

replicated shared memory system. This algorithm is

optimal not only in the sense of Baldoni et al. but also

in the amount of control information used in local logs

and on update messages. The algorithm is significantly

more efficient than the Baldoni et al. protocol for the

complete replication case.

A causal distributed shared memory is implemented using

message passing under the covers. An added contribution

of our algorithms is that they integrate ideas from the

message passing paradigm with ideas from the shared mem-

ory paradigm and show how to attain optimality in time

overhead, space overhead, and message overhead for causal

memories.

A short announcement of these results appears as [27].

Organization

Section II gives the causal memory model. Section III

presents two algorithms that implement causal consistency

under partial replication and a special case algorithm dealing

with full replication. Section IV analyses the complexity of

the algorithms. Section V gives a discussion. Section VI

concludes.

II. SYSTEM MODEL

A. Causally Consistent Memory

The system model is based on that proposed by Ahamad

et al. [1] and Baldoni et al. [5]. We consider a system

which consists of n application processes ap1, ap2, . . . , apn

interacting through a shared memory Q composed of q
variables x1, x2, . . . , xq. Each application process api can

perform either a read or a write operation on any of the q
variables. A read operation performed by api on variable

xj which returns value v is denoted as ri(xj)v. Similarly,

a write operation performed by api on variable xj which

writes the value u is denoted as wi(xj)u. Each variable has

an initial value ⊥.

By performing a series of read and write operations, an

application process api generates a local history hi. If a

local operation o1 precedes another operation o2, we say

o1 precedes o2 under program order, denoted as o1 ≺po o2.

The set of local histories hi from all n application processes

form the global history H . Operations performed at distinct

processes can also be related using the read-from order,

denoted as ≺ro. Two operations o1 and o2 from distinct

processes api and apj respectively have the relationship

o1 ≺ro o2 if there are variable x and value v such that

o1 = w(x)v and o2 = r(x)v, meaning that read operation

o2 retrieves the value written by the write operation o1. It

is shown in [1] that

• for any operation o2, there is at most one operation o1

such that o1 ≺ro o2;

• if o2 = r(x)v for some x and there is no operation o1

such that o1 ≺ro o2, then v =⊥, meaning that a read

with no preceding write must read the initial value.

With both the program order and read-from order, the

causality order, denoted as ≺co, can be defined on the set

of operations OH in a history H . The causality order is the

transitive closure of the union of local histories’ program

order and the read-from order. Formally, for two operations

o1 and o2 in OH , o1 ≺co o2 if and only if one of the

following conditions holds:

1) ∃api s.t. o1 ≺po o2 (program order)

2) ∃api, apj s.t. o1 and o2 are performed by api and apj

respectively, and o1 ≺ro o2 (read-from order)

3) ∃o3 ∈ OH s.t. o1 ≺co o3 and o3 ≺co o2 (transitive

closure)

Essentially, the causality order defines a partial order on the

set of operations OH . For a shared memory to be causal

memory, all the write operations that can be related by the

causality order have to be seen by each application process

in the order defined by the causality order.

B. Underlying Distributed Communication System

The shared memory abstraction and its causal consistency

model is implemented on top of the underlying distributed

message passing system which also consists of n sites

connected by FIFO channels, with each site si hosting

an application process api. Since we assume a partially

replicated system, each site holds only a subset of variables

xh ∈ Q. For application process api, we denote the subset of

variables kept on the site si as Xi. If the replication factor of

the shared memory system is p and the variables are evenly

replicated on all the sites, then the average size of Xi is pq
n .

To facilitate the read and write operations in the shared

memory abstraction, the underlying message passing system

provides several primitives to enable the communication

between different sites. For the write operation, each time

510510

an application process api performs w(x1)v, it invokes

the Multicast(m) primitive to deliver the message m
containing w(x1)v to all sites that replicate the variable

x1. For the read operation, there is a possibility that an

application process api performing read operation r(x2)u
needs to read x2’s value from a remote site since x2

is not locally replicated. In such a case, it invokes the

RemoteFetch(m) primitive to deliver the message m
containing r(x2)u to a pre-designated site replicating x2 to

fetch its value u. This is a synchronous primitive, meaning

that it will block until returning the variable’s value. If the

variable to be read is locally replicated, then the application

process simply returns the local value.

The read and write operations performed by the ap-

plication processes also generate events in the underlying

message passing system. The following list of events are

generated at each site:

• Send event. The invocation of Multicast(m) prim-

itive by application process api generates event

sendi(m).
• Fetch event. The invocation of RemoteFetch(m)

primitive by application process api generates event

fetchi(f).
• Message receipt event. The receipt of a message m

at site si generates event receipti(m). The message

m can correspond to either a sendj(m) event or a

fetchj(f) event.

• Apply event. When applying the value written by the

operation wj(xh)v to variable xh’s local replica at

application process api, an event applyi(wj(xh)v) is

generated.

• Remote return event. After the occurrence of event

receipti(m) corresponding to the remote read

operation rj(xh)u performed by apj , an event

remote returni(rj(xh)u) is generated which

transmits xh’s value u to site sj .

• Return event. Event returni(xh, v) corresponds to the

return of xh’s value v either fetched remotely through a

previous fetchi(f) event or read from the local replica.

To implement the causal memory in the shared memory

abstraction, each time an update message m corresponding

to a write operation wj(xh)v is received at site si, a new

thread is spawned to check when to locally apply the

update. The condition that the update is ready to be applied

locally is called activation predicate in [5]. This predicate,

A(mwj(xh)v, e), is initially set to false and becomes true
only when the update mwj(xh)v can be applied after the

occurrence of local event e. The thread handling the local

application of the update will be blocked until the activation

predicate becomes true, at which time the thread writes

value v to variable xh’s local replica. This will generate the

applyi(wj(xh)v) event locally. Thus, the key to implement

the causal memory is the activation predicate.

C. Activation Predicate

To demonstrate the activation predicate, Baldoni et al. [5]

defined a new relation, →co, on send events generated in the

underlying message passing system. Let w(x)a and w(y)b
be two write operations in OH . Then, for their corresponding

send events in the underlying message passing system,

sendi(mw(x)a) →co sendj(mw(y)b) iff one of the following

conditions holds:

1) i = j and sendi(mw(x)a) locally precedes

sendj(mw(y)b)
2) i �= j and returnj(x, a) locally precedes

sendj(mw(y)b)
3) ∃sendk(mw(z)c), such that sendi(mw(x)a) →co

sendk(mw(z)c) →co sendj(mw(y)b)
Notice that the relation defined by →co is actually a subset

of Lamport’s “happened before” relation [21], denoted by

→. If two send events are related by →co, then they are also

related by →. However, the other way is not necessarily true.

Even though sendi(mw(x)a) → sendj(mw(y)b), if there is

no return event that occurred and i �= j, these two send

events are concurrent under the →co relation. The difference

between these two relations is essential under the context

of causal memory. The →co relation better represents the

causality order in the shared memory abstraction as it prunes

the “false causality”1 introduced in the underlying message

passing system, where message receipt events may causally

relate two send events while their corresponding write opera-

tions in the shared memory abstraction are concurrent under

the ≺co relation. Actually, in [5], the authors have shown that

sendi(mw(x)a) →co sendj(mw(y)b) ⇔ w(x)a ≺co w(y)b.

With the →co relation defined, Baldoni et al. gave an

optimal activation predicate in [5] as follows:

AOPT (mw, e) ≡� ∃mw′ : (sendj(mw′) →co sendk(mw)
∧ applyi(w′) �∈ Ei|e)

where Ei|e is the set of events happened at the site si up

until e (excluding e).

This activation predicate cleanly represents the causal

memory’s requirement: a write operation shall not be seen by

an application process before any causally preceding write

operations. It is optimal because the moment this activation

predicate AOPT (mw, e) becomes true is the earliest instant

that the update mw can be applied. The activation predicate

used in the original paper describing causal memory [1] uses

the happened before relation. This activation predicate is

given below as AORG. As shown by Baldoni et al. [5], it

does not achieve optimality.

AORG(mw, e) ≡� ∃mw′ : (sendj(mw′) → sendk(mw)
∧ applyi(w′) �∈ Ei|e)

1False causality was identified by Lamport [21] and later discussed by
others [3], [4], [8], [11], [15], [20].

511511

III. ALGORITHMS

We design two algorithms – Algorithm Full-Track and

Algorithm Opt-Track – implementing causal memories in a

partially replicated distributed shared memory system, both

of which adopt the optimal activation predicate AOPT . Al-

gorithm Opt-Track is a message and space optimal algorithm

for a partially replicated system. Subsequently, as a special

case of this algorithm, we derive an optimal algorithm –

Algorithm Opt-Track-CRP – for the fully replicated case,

that is optimal and has lower message size, time, and space

complexities than the Baldoni et al. algorithm [5].

A. Full-Track Algorithm

Since the system is partially replicated, each application

process performing a write operation will only write to a

subset of all the sites in the system. Thus, for an applica-

tion api and a site sj , not all write operations performed

by api will be seen by sj . This makes it necessary to

distinguish the destinations of api’s write operations. The

activation predicate AOPT requires tracking the number of

updates received that causally happened before under the

→co relation. In order to do so in a partially replicated

scenario, it is necessary for each site si to track the number

of write operations performed by every application process

apj to every site sk. We denote this value as Writei[j][k].
Application processes also piggyback this clock value on

every outgoing message generated by the Multicast(m)
primitive. The Write matrix clock tracks the causal relation

under the →co relation, rather than the causal relation under

the → relation.

Another implication of tracking under the →co relation

is that the way to merge the piggybacked clock with the

local clock needs to be changed. In Lamport’s happened

before relation →, a message transmission generates a

causal relationship between two processes. However, under

the →co relation, it is reading the value that was written

previously by another application process that generates

a causal relationship between two processes. Thus, the

Write clock piggybacked on messages generated by the

Multicast(m) primitives should not be merged with the

local Write clock at the message reception. It should be

delayed until a later read operation which reads the value

that comes with the message.

The formal algorithm is listed in Algorithm 1. At each

site si, the following data structures are maintained:

1) Writei[1 . . . n, 1 . . . n]: the Write clock (initially set

to 0s). Writei[j, k] = a means that the number of

updates sent by application process apj to site sk that

causally happened before under the →co relation is a.

2) Applyi[1 . . . n]: an array of integers (initially set to

0s). Applyi[j] = a means that a total number of a
updates written by application process apj have been

applied at site si.

Algorithm 1: Full-Track Algorithm (Code at site si)

WRITE(xh, v):

1 for all sites sj that replicate xh do
2 Writei[i, j] + +;

3 Multicast[m(xh, v, Writei)] to all sites sj (j �= i) that
replicate xh;

4 if xh is locally replicated then
5 xh := v;
6 Applyi[i] + +;
7 LastWriteOni〈h〉 := Writei;

READ(xh):

8 if xh is not locally replicated then
9 RemoteFetch[f(xh)] from predesignated site sj that

replicates xh to get xh and LastWriteOnj〈h〉;
10 ∀k, l ∈ [1 . . . n], Writei[k, l] :=

max(Writei[k, l], LastWriteOnj〈h〉.Write[k, l]);

11 else
12 ∀k, l ∈ [1 . . . n], Writei[k, l] :=

max(Writei[k, l], LastWriteOni〈h〉.Write[k, l]);

13 return xh;

On receiving m(xh, v, W) from site sj :

14 wait until
(∀k �= j, Applyi[k] ≥ W [k, i] ∧Applyi[j] = W [j, i]− 1);

15 xh := v;
16 Applyi[j] + +;
17 LastWriteOni〈h〉 := W ;

On receiving f(xh) from site sj :

18 return xh and LastWriteOni〈h〉 to sj ;

3) LastWriteOni〈variable id, Write〉: a hash map of

Write clocks. LastWriteOni〈h〉 stores the Write
clock value associated with the last write operation on

variable xh which is locally replicated at site si.

We can see from this algorithm that, instead of merging

the piggybacked Write clock at message reception, it is

delayed until a later read operation at line (10) and (12).

This implements tracking causality under the →co relation.

Furthermore, the activation predicate AOPT is implemented

at line (14).

Note that size n2 matrices were previously used for causal

message ordering in message-passing systems [26].

B. Opt-Track Algorithm

Algorithm Full-Track achieves optimality in terms of

the activation predicate. However, in other aspects, it can

still be further optimized. We notice that, each message

corresponding to a write operation piggybacks an O(n2)
matrix, and the same storage cost is also incurred at each site

si. Kshemkalyani and Singhal proposed the necessary and

sufficient conditions on the information for causal message

ordering and designed an algorithm implementing these

optimality conditions [17], [18] (hereafter referred to as

the KS algorithm). The KS algorithm aims at reducing the

message size and storage cost for causal message ordering

512512

Figure 1. Illustration of the two conditions for destination information to be redundant. (a) For causal message ordering algorithms, the information is
“s2 is a destination of M”. The causal future of the relevant message delivery events are shown in dotted lines. (b) For causal memory algorithms, the
information is “s2 is a destination of m”. The causal future of the relevant apply and return events are shown in dotted lines.

algorithms in message passing systems. The ideas behind

the KS algorithm exploit the transitive dependency of causal

deliveries of messages. In the KS algorithm, each site keeps

a record of recently received messages from each other site.

The list of destinations of the message is also kept in each

record (the KS algorithm assumes multicast communication)

and is progressively pruned, as described below. With each

outgoing message, these records are also piggybacked. The

KS algorithm achieves another optimality, in the sense that

no redundant destination information is recorded. There are

two situations when the destination information can become

redundant. These are illustrated in Fig 1(a).

1) When message M is delivered at site s2 (we denote

this event as e), then the information that s2 is part

of message M ’s destination no longer needs to be

remembered in the causal future of e. This is because

the delivery of M at s2 is guaranteed at events in the

causal future of e.

In addition, we implicitly remember in the causal

future of e that M has been delivered to s2, to clean

the logs at other sites.

2) Consider two messages M and M ′ such that M ′ is

sent in the causal future of sending M and both mes-

sages have site s2 as the receiver. Then the information

that s2 is part of message M ’s destinations no longer

needs to be remembered in the causal future of the

delivery events (denoted as e′) of message M ′ at all

recipient sites sk. (In fact, the information need not

even be transmitted on M ′ sent to sites sk, other

than to site s2.) This is because by ensuring message

M ′ is causally delivered at s2 with respect to any

message M ′′ that is also sent to s2 in the causal future

of sending M ′, it can be inferred using a transitive

argument that message M should have already been

delivered at s2 before M ′′ is delivered.

In addition, we implicitly remember in the causal

future of events of type e′ that M has been delivered

to s2, to clean the logs at other sites.

Remembering implicitly means inferring that information

from other later or more up to date log entries, without

storing that information.

Although the KS algorithm is for message passing sys-

tems, its ideas of deleting unnecessary dependency informa-

tion still apply to distributed shared memory systems. We

can adapt the KS algorithm to a partially replicated shared

memory system to implement causal memory there. Now,

each site si will maintain a record of the most recent updates

received from every site, that causally happened before under

the →co relation. Each such record also keeps a list of

destinations representing the set of replicas receiving the

corresponding update. When performing a write operation,

the outgoing update messages will piggyback the currently

stored records. When receiving an update message, the

optimal activation predicate AOPT is used to determine

when to apply the update. Once the update is applied, the

piggybacked records will be associated with the updated

variable. When a later read operation is performed on the up-

dated variable, the records associated with the variable will

be merged into the locally stored records to reflect the causal

dependency between the read and write operations. Similar

to the KS algorithm, we can prune redundant destination

information using the following two conditions. These are

illustrated in Fig 1(b).

• Condition 1: When an update m corresponding to write

operation w(x)v is applied at site s2, then the informa-

tion that s2 is part of the update m’s destinations no

longer needs to be remembered in the causal future of

the event apply2(w).
In addition, we implicitly remember in the causal future

of event return2(x, v) that m has been delivered to s2,

to clean the logs at other sites.

• Condition 2: For two updates mw(x)v and m′
w′(y)v′

such that send(m) →co send(m′) and both updates

are sent to site s2, the information that s2 is part of

513513

update m’s destinations is irrelevant in the causal future

of the event apply(w′) at all sites sk receiving update

m′. (In fact, it is redundant in the causal future of

send(m′), other than m′ sent to s2.) This is because,

by transitivity, applying update m′ at s2 in causal order

with respect to a message m′′ sent causally later to s2

will infer the update m has already been applied at s2.

In addition, we implicitly remember in the causal future

of events returnk(y, v′) that m has been delivered to

s2, to clean the logs at other sites.

Notice that, in the KS algorithm, even if the destination

list in a message M ’s record becomes ∅ at a certain event

e in site si, that record still needs to be kept until a

later message from message M ’s sender is delivered at si.

This is because although M ’s destination list becomes ∅

at si, it might still be non-empty at other sites. Thus, by

piggybacking M ’s record with an empty destination list, we

can prune M ’s destination list at other sites in the causal

future of event e. This is illustrated in Fig 2. Notice that,

after the deliveries of message M2 and M3, the destination

list in the message M1’s record at site s4 becomes empty.

If we delete M1’s record at this time, then when message

M4 is later sent to site s3, there is no way for s3 to

know that it can delete site s2 from its local record of

message M1’s destination list. M1’s record can be deleted

at site s4 after another message from s1 is delivered at

s4. This technique is important for achieving optimality of

no redundant destination information of already delivered

messages (Condition 1) and of messages guaranteed to be

delivered in causal order (Condition 2). However, note that

such records with ∅ destination lists may accumulate. Only

the latest such record per sender needs to be maintained; the

presence of other such records can be implicitly inferred.

s1

s2

s3

s4

M1

M1.Dests = {s3}

M1.Dests = {s2}

M1.Dests = {s2}

M1.Dests = ∅

M1.Dests = ∅

M2

M3 M4

Figure 2. Illustration of why it is important to keep a record even if its
destination list becomes empty.

With the above discussion, we give the formal algorithm

in Algorithm 2. The following data structures are maintained

at each site:

1) clocki: local counter at site si for write operations

performed by application process api.

2) Applyi[1 . . . n]: an array of integers (initially set to

0s). Applyi[j] = a means that a total number of a
updates written by application process apj have been

applied at site si.

3) LOGi = {〈j, clockj , Dests〉}: the local log (initially

set to empty). Each entry indicates a write operation

in the causal past. Dests is the destination list for that

write operation. Only necessary destination informa-

tion is stored.

4) LastWriteOni〈variable id, LOG〉: a hash map of

LOGs. LastWriteOni〈h〉 stores the piggybacked

LOG from the most recent update applied at site si

for locally replicated variable xh.

Notice that lines (4)-(6) and lines (10)-(11) prune the

destination information using condition 2, while lines (29)-

(30) use condition 1 to prune the redundant information.

Also, in lines (7)-(8) and in the PURGE function (see

Algorithm 3), entries with empty destination list are kept as

long as and only as long as they are the most recent update

from the sender. This implements the optimality techniques

described before. The optimal activation predicate AOPT is

implemented in lines (24)-(25).

Algorithm 3 gives the procedures used by Algorithm

Opt-Track (Algorithm 2). Function PURGE removes old

records with ∅ destination lists, per sender process. On

a read operation of variable xh, function MERGE merges

the piggybacked log of the corresponding write to xh with

the local log LOGi. In this function, new dependencies

get added to LOGi and existing dependencies in LOGi

are pruned, based on the information in the piggybacked

data Lw. The merging implements the optimality techniques

described before.

At the expense of slightly larger message overhead, we

can distribute the Write processing in lines (3)-(8) of Al-

gorithm 2 to the receivers’ sites after line (27). Instead of

the loop in line (4), send the LOG; and on its receipt, for

each entry o in Lw, subtract xh.replicas from o.Dests.

This reduces the time complexity of a write operation from

O(n2p) to O(n2).

C. Opt-Track-CRP: Adapting Opt-Track Algorithm to Fully-
Replicated Systems

Algorithm Opt-Track can be directly applied to fully

replicated shared memory systems. Furthermore, since in the

full replication case, every write operation will be sent to

exactly the same set of sites, namely all of them, there is no

need to keep a list of the destination information with each

write operation. Each time a write operation is sent, all the

write operations it piggybacks as its dependencies will share

the same set of destinations as the one being sent, and their

destination list will be pruned by condition 2. Also, when a

write operation is received, all the write operations it pig-

gybacks also have the receiver as part of their destinations.

514514

Algorithm 2: Opt-Track Algorithm (Code at site si)

WRITE(xh, v):

1 clocki + +;
2 for all sites sj(j �= i) that replicate xh do
3 Lw := LOGi;
4 for all o ∈ Lw do
5 if sj �∈ o.Dests then

o.Dests := o.Dests \ xh.replicas;
6 else o.Dests := o.Dests \ xh.replicas ∪ {sj};

7 for all oz,clockz ∈ Lw do
8 if oz,clockz .Dests = ∅ ∧ (∃o′z,clock′

z
∈ Lw|clockz <

clock′
z) then remove oz,clockz from Lw;

9 send m(xh, v, i, clocki, xh.replicas, Lw) to site sj ;

10 for all l ∈ LOGi do
11 l.Dests := l.Dests \ xh.replicas;

12 PURGE;
13 LOGi := LOGi ∪ {〈i, clocki, xh.replicas \ {si}〉};
14 if xh is locally replicated then
15 xh := v;
16 Applyi[i] + +;
17 LastWriteOni〈h〉 := LOGi;

READ(xh):

18 if xh is not locally replicated then
19 RemoteFetch[f(xh)] from predesignated site sj that

replicates xh to get xh and LastWriteOnj〈h〉;
20 MERGE(LOGi, LastWriteOnj〈h〉);

21 else MERGE(LOGi, LastWriteOni〈h〉);
22 PURGE;
23 return xh;

On receiving m(xh, v, j, clockj , xh.replicas, Lw) from site sj :

24 for all oz,clockz ∈ Lw do
25 if si ∈ oz,clockz .Dests then wait until

clockz ≤ Applyi[z];

26 xh := v;
27 Applyi[j] := clockj ;
28 Lw := Lw ∪ {〈j, clockj , xh.replicas〉};
29 for all oz,clockz ∈ Lw do
30 oz,clockz .Dests := oz,clockz .Dests \ {si};

31 LastWriteOni〈h〉 := Lw;

On receiving f(xh) from site sj :

32 return xh and LastWriteOni〈h〉 to sj ;

So, when checking for the activation predicate at line (24)-

(25) in Algorithm 2, all piggybacked write operations need

to be checked. With these additional properties in the full

replication scenario, we can represent each individual write

operation using only a 2-tuple 〈i, clocki〉, where i is the site

id and clocki is the local write operation counter at site si

when the write operation is issued. In this way, we bring the

cost of representing a write operation from potentially O(n)
down to O(1). This improves the algorithm’s scalability

when the shared memory is fully replicated.

In fact, Algorithm 2’s scalability can be further improved

in the fully replicated scenario. In the partially replicated

Algorithm 3: Procedures used in Algorithm 2, Opt-

Track Algorithm (Code at site si)

PURGE:
1 for all lz,tz ∈ LOGi do
2 if lz,tz .Dests = ∅ ∧ (∃l′z,t′z ∈ LOGi|tz < t′z) then
3 remove lz,tz from LOGi;

MERGE(LOGi, Lw):

4 for all oz,t ∈ Lw and ls,t′ ∈ LOGi such that s = z do
5 if t < t′ ∧ ls,t �∈ LOGi then mark oz,t for deletion;
6 if t′ < t ∧ oz,t′ �∈ Lw then mark ls,t′ for deletion;
7 delete marked entries;
8 if t = t′ then
9 ls,t′ .Dests := ls,t′ .Dests ∩ oz,t.Dests;

10 delete oz,t from Lw;

11 LOGi := LOGi ∪ Lw;

case, keeping entries with empty destination list as long

as they represent the most recent applied updates from

some site is important, as it ensures the optimality that no

redundant destination information is transmitted. However,

this will also require each site to almost always maintain a

total of n entries. In the fully replicated case, we can also

decrease this cost. We observe that, once a site s3 issues

a write operation w′(x2)u, it no longer needs to remember

any previous write operations, such as w(x1)v, stored in

the local log. This is because all the write operations stored

in the local log share the same destination list as w′. Thus,

by making sure the most recent write operation is applied in

causal order, all the previous write operations sent to all sites

are guaranteed to be also applied in causal order. Similarly,

after the activation predicate becomes true and the write

operation w′ is applied at site s1, only w′ itself needs to

be remembered in LastWriteOn1〈2〉. This is illustrated in

Fig 3.

s1

s2

s3

m(w(x1)v)

m(w′(x2)u)

LOG3 = {w}

LOG1 = {w}

LOG3 = {w′}
return3(x1, v)

send1(m(w))

receive3(m(w))

receive1(m(w′))

send3(m(w′))

LastWriteOn1〈2〉 = {w′}

LastWriteOn3〈1〉 = {w}

Figure 3. In fully replicated systems, the local log will be reset after each
write operation. Also, when a write operation is applied, only the write
operation itself needs to be remembered. For clarity, the apply events are
omitted in this figure.

515515

This way of maintaining local logs essentially means that

each site si now only needs to maintain d + 1 entries at

any time with each entry incurring only an O(1) cost. Here,

d is the number of read operations performed locally since

the most recent local write operation. This is because the

local log always gets reset after each write operation, and

each read operation will add at most 1 new entry into the

local log. Furthermore, if some of these read operations read

variables that are updated by the same application process,

only the entry associated with the very last read operation

needs to be maintained in the local log. Thus, the number

of entries to be maintained in the full replication scenario

will be at most n.

Furthermore, if the application running on top of the

shared memory system is write-intensive, then the local log

will be reset at the frequency of write operations issued

at each site. This means, each site simply cannot perform

enough read operations to build up the local log to reach a

number of n entries. Even if the application is read-intensive,

this is still the case because read-intensive applications

usually only have a limited subset of all the sites to perform

write operations. Thus, in practice, the number of entries

that need to be maintained in the full replication scenario is

much less than n.

With the above discussion, we give the formal algorithm

of a special case of Algorithm 2, optimized for the fully

replicated shared memories. The algorithm is listed in Al-

gorithm 4. Each site still maintains the same data structures

as in Algorithm 2, the only difference lies in that there

is no need to maintain the destination list for each write

operation in the local log, and hence the format of the log

entries becomes the 2-tuple 〈i, clocki〉. Algorithm 4 assumes

a highly simplified form. However, it is very systematically

derived by adapting Algorithm 2 to the fully replicated case.

Algorithm 4 is significantly better than the algorithm in [5]

in multiple respects, as we will show in Section IV.

IV. COMPLEXITY

Four metrics are used in the complexity analysis:

• message count: count of the total number of messages

generated by the algorithm.

• message size: the total size of all the messages gen-

erated by the algorithm. It can be formalized as
∑

i(#
type i messages * size of type i messages).

• time complexity: the time complexity at each site si for

performing the write and read operations.

• space complexity: the space complexity at each site si

for storing local logs and the LastWriteOn log.

The following parameters are used in the analysis:

• n: the number of sites in the system

• q: the number of variables in the shared memory system

• p: the replication factor, i.e., the number of sites at

which each variable is replicated

Algorithm 4: Opt-Track-CRP Algorithm (Code at site

si)

WRITE(xh, v):

1 clocki + +;
2 send m(xh, v, i, clocki, LOGi) to all sites other than si;
3 LOGi := {〈i, clocki〉};
4 xh := v;
5 Applyi[i] := clocki;
6 LastWriteOni〈h〉 := 〈i, clocki〉;

READ(xh):

7 MERGE(LOGi, LastWriteOni〈h〉);
8 return xh;

On receiving m(xh, v, j, clockj , Lw) from site sj :

9 for all oz,clockz ∈ Lw do
10 wait until clockz ≤ Applyi[z]

11 xh := v;
12 Applyi[j] := clockj ;
13 LastWriteOni〈h〉 := 〈j, clockj〉;

MERGE(LOGi, 〈j, clockj〉):

14 for all ls,t ∈ LOGi such that s = j do
15 if t < clockj then delete ls,t from LOGi;

16 LOGi := LOGi ∪ {〈j, clockj〉};

• w: the number of write operations performed in the

shared memory system

• r: the number of read operations performed in the

shared memory system

• d: the number of write operations stored in local log

(used only in the analysis of Opt-Track-CRP algorithm)

Table I summarizes the results. A detailed complexity anal-

ysis is given in [28].

In the KS algorithm, although the upper bound on the size

of the log and the message overhead is O(n2) [18], Chandra

et al. [9], [10] showed through extensive simulations that the

amortized log size and message overhead size is O(n). This

is because the optimality conditions implemented ensure that

only necessary destination information is kept in the log.

This also applies to the Opt-Track algorithm because the

same optimization techniques are used. Therefore, although

the total message size complexity of the Opt-Track algorithm

is O(n2pw + nr(n − p)), this is only the asymptotic upper

bound. The amortized message size complexity of the Opt-

Track algorithm is O(npw + r(n − p)). Similarly, although

the space complexity of the Opt-Track algorithm is O(npq),
this is only the asymptotic upper bound. The amortized space

complexity will be O(pq) [9], [10].

V. DISCUSSION

Compared with the existing causal memory algorithms,

our suite of algorithms has advantages in several aspects.

Similar to the complete replication and propagation causal

memory algorithm, OptP, proposed by Baldoni et al., our

algorithm also adopts the optimal activation predicate. How-

516516

Table I
COMPLEXITY MEASURES OF CAUSAL MEMORY ALGORITHMS.

Metric Full-Track Opt-Track Opt-Track-CRP OptP [5]

Message count pw + 2r
(n−p)

n
pw + 2r

(n−p)
n

nw nw

Message size O(n2pw + nr(n− p)) O(n2pw + nr(n− p)) O(nwd) O(n2w)
amortized O(npw + r(n− p))

Time Complexity write O(n2) write O(n2p) write O(n) write O(n)
read O(n2) read O(n2) read O(1) read O(n)

Space Complexity O(npq) O(npq) O(max(n, q)) O(nq)
amortized O(pq)

ever, compared with the Opt-Track-CRP algorithm, the OptP
algorithm incurs a higher cost in the message size complex-

ity, the time complexity for read and write operations, and

the space complexity. This is because the OptP algorithm

requires each site to maintain a Write clock of size n, and

does not take advantage of the optimization techniques in

the KS algorithm.

Compared with other causal consistency algorithms [2],

[3], [4], [6], [13], [14], [20], [22], [23], [24], [25], our

algorithms have the additional ability to implement causal

consistency in partially replicated distributed shared memory

systems. Further, the algorithms in [6], [24], [25] do not

provide scalability as they use a form of log serialization

and exchange to implement causal consistency.

The benefit of doing partial replication compared with

full replication lies in multiple aspects. First, this reduces

the number of messages sent with each write operation.

Although the read operation may incur additional messages,

the overall number of messages can still be lower than the

case of full replication if the replication factor is low and

readers tend to read variables from the local replica instead

of remote ones. Hadoop HDFS and MapReduce is one such

example. The HDFS framework usually chooses a small

constant number as the replication factor even when the

size of the cluster is large. Furthermore, the MapReduce

framework tries its best to satisfy data locality, i.e., assigning

tasks that read only from the local machine. In such a case,

partial replication generates much less messages than full

replication.

Of the four metrics in Table I, message count is the most

important. As the formulas indicate, partial replication gives

a lower message count than full replication if

pw + 2r
(n − p)

n
< nw =⇒ w > 2

r

n
.

This is equivalently stated as: partial replication has a lower

message count if the write rate (defined as wrate = w
w+r) is

such that wrate > 2
2+n .

Fig 4 plots message count as a function of wrate for

n = 10 and various replication factors (p). The p = 10 plot

corresponds to the full replication case. Even for this low n,

partial replication has lower message count for wrate > 2
12 .

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
es

sa
ge

 C
ou

nt

Write Rate (w/(w+r))

Partial Replication versus Full Replication (n=10)

p = 1
p = 3
p = 5
p = 7

p = 10

Figure 4. The graph illustrates message count for partial replication vs.
full replication, by plotting message count as a function of wrate.

Partial replication can also help to reduce the total size of

messages transmitted within the system. Although the two

partial replication causal memory algorithms proposed might

have a higher message size complexity compared with their

counterparts for full replication, this complexity measure-

ment is only for the control messages and does not take

into consideration the size of the data that is actually being

replicated. In modern social networks, multimedia files like

images and videos are frequently shared. The size of these

files is much larger than the control information piggybacked

with them. Doing full replication might improve the latency

for accessing these files from different locations, however it

also incurs a large overhead on the underlying system for

transmitting and storing these files across different sites.

Further, in the scenario depicted in Section I, where

most accesses to a user’s file are located within certain

geographical regions, or the workload is write-intensive, the

improvement in the latency brought by full replication is less

significant compared to the cost it imposes on the underlying

system.

Some of the algorithms for fully replicated data stores

provide causal+ consistency, or convergent consistency [2],

[3], [4], [22], [23]: here, once updates cease, all processes

will eventually read the same value (or set of values) of each

517517

variable. This provides liveness guarantees. We can provide

causal+ consistency for our partially replicated system as

follows: periodically, run a global termination detection

algorithm [19]; once termination is detected, determine the

final set of values of each variable, and use that set to provide

convergent causal consistency.

In our algorithms for partially replicated systems, a read

may be non-local. This can affect availability if the process

read-from is down. If a non-local read does not respond in a

timeout period, then a secondary process is contacted. This

provides better availability in light of the CAP Theorem.

VI. CONCLUSION

We considered the problem of providing causal consis-

tency in large-scale geo-replicated storage under the as-

sumption of partial replication. This is the first such work

that explores the causal consistency problem for partially

replicated systems and fills in a gap in the literature on

causal consistency in shared memory systems. We proposed

two algorithms to solve the problem. The first algorithm

is optimal in the sense that that each update is applied at

the earliest instant while removing false causality in the

system. The second algorithm is additionally optimal in the

sense that it minimizes the size of meta-information carried

on messages and stored in local logs. We discussed the

conditions under which partial replication can provide less

overhead (transmission and storage) than the full replication

case. In addition, as a derivative of the second algorithm, we

proposed an optimized algorithm that reduces the message

overhead, the processing time, and the local storage cost at

each site in the fully replicated scenario. This algorithm is

better than the Baldoni et al. algorithm.

REFERENCES

[1] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto.
Causal memory: definitions, implementation and program-
ming. Distributed Computing, 9, 1, pages 37–49, 1995.

[2] S. Almeida, J. Leitao, and L. Rodrigues. ChainReaction: a
causal+ consistent datastore based on chain replication. In
ACM Eurosys, pp. 85-98, 2013.

[3] P. Bailis, A. Fekete, A. Ghodsi, J.M. Hellerstein, and I. Stoica.
The potential dangers of causal consistency and an explicit
solution. In ACM SOCC, 2012.

[4] P. Bailis, A. Ghodsi, J.M. Hellerstein, and I. Stoica. Bolt-on
causal consistency. ACM SIGMOD, pp. 761-772, 2014.

[5] R. Baldoni, A. Milani, and S. Piergiovanni. Optimal
propagation-based protocols implementing causal memories.
Distributed Computing, 18, 6, pages 461–474, 2006.

[6] N. Belaramani, M. Dahlin, L. Gao, A. Venkataramani, P. Yala-
gandula, and J. Zheng. Practi replication. In NSDI, 2006.

[7] P. Bernstein and S. Das. Rethinking eventual consistency.
Proc. of the 2013 ACM SIGMOD International Conf. on
Management of Data, 2013.

[8] K. Birman. A response to Cheriton and Skeen’s criticism of
causally and totally ordered communication. In ACM SIGOPS
Operating Systems Review, 28(1): 11-21, 1994.

[9] P. Chandra, P. Gambhire, and A.D. Kshemkalyani. Perfor-
mance of the optimal causal multicast algorithm: A statistical
analysis. IEEE Transactions on Parallel and Distributed
Systems, 15(1), pages 40–52, January 2004.

[10] P. Chandra and A.D. Kshemkalyani. Causal multicast in
mobile networks. Proc. of the 12th IEEE/ACM Symposium
on Modelling, Analysis, and Simulation of Computer and
Communication Systems, pages 213–220, 2004.

[11] D.R. Cheriton and D. Skeen. Understanding the limitations of
causally and totally ordered communication. In ACM SOSP,
1993.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. Proc. of the 19th ACM SOSP, pages 205–220,
2007.

[13] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe:
Scalable causal Consistency using dependency matrices and
physical clocks. In ACM SOCC, 2013.

[14] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Gen-
tleRain: Cheap and scalable causal consistency with physical
clocks. In ACM SOCC, 2014.

[15] P. Gambhire and A.D. Kshemkalyani. Reducing false causal-
ity in causal message ordering. Proc. 7th International High
Performance Computing Conference (HiPC), LNCS 1970,
Springer, pp 61-72, 2000.

[16] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services.
ACM SIGACT News, 2002.

[17] A.D. Kshemkalyani and M. Singhal. An optimal algorithm for
generalized causal message ordering. Proc. of the 15th ACM
Symposium on Principles of Distributed Computing (PODC),
page 87, 1996.

[18] A.D. Kshemkalyani and M. Singhal. Necessary and sufficient
conditions on information for causal message ordering and
their optimal implementation. Distributed Computing, 11, 2,
pages 91–111, 1998.

[19] A.D. Kshemkalyani and M. Singhal. Distributed Computing:
Principles, Algorithms, and Systems. Cambridge University
Press, 2008.

[20] K. Lady, M. Kim, and B. Noble. Declared causality in
wide-area replicated storage. In Workshop on Planetary-Scale
Distributed Systems, 2014.

[21] L. Lamport. Time, clocks and the ordering of events in a
distributed system. Communications of the ACM, 21, pages
558-564, 1978.

[22] W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen.
Don’t settle for eventual: Scalable causal consistency for
wide-area storage with COPS. Proc. of the 23rd ACM SOSP,
pages 401–416, 2011.

[23] W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen.
Stronger semantics for low latency geo-replicated storage. In
NSDI, 2013.

[24] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availabil-
ity, and convergence. Tech. Rep. TR-11-22, Univ. Texas at
Austin, Dept. Comp. Sci., 2011.

[25] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. De-
mers. Flexible update propagation for weakly consistent
replication. In SOSP, 1997.

[26] M. Raynal, A. Schiper, and S. Toueg. The causal ordering
abstraction and a simple way to implement it. Information
Processing Letters, 39, 6, pages 343–350, 1991.

[27] M. Shen, A.D. Kshemkalyani, and T. Hsu. OPCAM: Optimal
algorithms implementing causal memories in shared memory
systems. In ICDCN, Jan 2015.

[28] M. Shen, A.D. Kshemkalyani, and T. Hsu. OPCAM: Optimal
algorithms implementing causal memories in shared memory
systems. Technical Report, Univ. Illinois at Chicago, Dept.
of Computer Science, 2014.

518518

