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Abstract—Many advances have been made in the design of full
replication protocols in distributed systems. Causal consistency in
such systems has received great interest. However, most existing
works focus on the implementation in full replication because
it simplifies designing the algorithm. More recently, interest
in full replication has shifted to focus on the development of
partial replication protocols which emphasize a better network
capacity utilization. In this paper, we present the analytic data to
compare the performances of three proposed protocols in partial
replication and full replication. We also give simulation results to
present the advantage of partial replication over full replication.

I. INTRODUCTION

Distributed systems are commonly designed to improve the

deployment of data storages across multiple geographically

diverse sites connected by reliable data networks. Due to

the independence of hardware maintenance and management,

this model for fault tolerance can avoid systematic disasters

resulting from operation failures at individual sites [1]. It

can also significantly reduce access latency and provide high

availability, because replicas are available in close proximity

to users in multiple sites. Implementing a consistency model

is one of the most important problems for data replication

mechanisms. The CAP Theorem [2] states that for a replicated,

distributed data store, it can only have at most two of the three

features: Consistency, Availability, and Partition tolerance.

Besides the above three features, two other desirable features

of large-scale distributed data stores are: low Latency (defined

as the latency less than the maximum wide-area delay between

replicas) and high Scalability [3].

Among several common consistency models in distributed

shared memory systems [4], causal consistency is an attractive

choice of one of the strongest weaker-than-strong consistency

models that satisfies low Latency [3]. More recently, in the

past few years, causal consistency has been studied and/or

implemented by numerous researchers [5], [6], [7], [8], [9],

[10], [3], [11]. Many of these do not provide scalability as

they use a form of log serialization and exchange to implement

causal consistency. More importantly, all the works assume

Complete Replication and Propagation (CRP) based protocols.

These protocols assume full replication and do not consider

the case of partial replication. This is primarily because full

replication makes it easy to implement causal consistency.

Furthermore, there are no experimental or simulation results

about the analysis of the performance trade-off between full

replication and partial replication.

In [12], three protocols have been proposed for causal

consistency. Two of them are designed for partial replication.

Another one is designed for full replication. Although partial

replication can avoid taking unnecessary network capacity and

hardware resources theoretically, it is a challenge to implement

partial replication compared with full replication. This is

primarily because of the higher complexity and overheads

(e.g., additional communication workloads and larger meta-

data) of tracking causal dependency between operations. With

the increasing usage of multimedia and social networks, where

photos and video are uploaded, the average size of the payload

increases. Hence, the additional overhead of partial replica-

tion is relatively small in comparison with those raw data.

Furthermore, for write-intensive workloads, partial replication

can offer a direct savings in the number of communication

messages without significantly increasing any delay for read

operations.

Contributions

This paper is the first work that explores the trade-off

between partial replication and full replication analytically.

We quantitatively evaluate the performance of the three op-

timal protocols of [12] for implementing causal consistency

under partial replication and under full replication. The three

protocols are as follows.

1) The Full-Track protocol is optimal in the sense defined

by Baldoni et al. [13]. This protocol primarily reduces

the false causality in the partial replica system.

2) The Opt-Track protocol can further optimize the size of

the local logs maintained and the amount of dependency

information piggybacked on the multicast messages re-

sulting from write operations.

3) The Opt-Track-CRP protocol, derived from Opt-Track, is

optimal in a fully replicated system.

We first simulate the Opt-Track and Full-Track protocols

within partially replicated systems to compare their perfor-

mance. We present that Opt-Track outperforms Full-Track in

network capacity and shows the advantage in write-intensive
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workloads. Then, we simulate Opt-Track-CRP and optP [13]

within fully replicated systems to compare their efficiency.

Opt-Track-CRP is optimal not only in the sense of Baldoni

et al. but also in the amount of control information used in

local logs and on update messages.

In addition to simulating the performances within partially

replicated systems and within fully replicated systems, we

also explore the trade-off between partial replication and full

replication analytically. We show the advantage of partial

replication over full replication.

Organization

Section II outlines the causal memory model. Section III

reviews Full-Track, Opt-Track, and Opt-Track-CRP. Section

IV presents the communication models for simulating the

optimal protocols proposed under partial replication and under

full replication. Section V shows all the simulation results

and analytically illustrates the performance trade-off between

partial replication and full replication. Section VI gives the

conclusion.

II. SHARED MEMORY SYSTEM MODEL

A. Causally Consistent Shared Memory

The system architecture is based on that proposed by

Ahamad et al. [14] and Baldoni et al. [13]. We consider support

for n asynchronous application processes ap1, ap2, . . ., apn,

interacting through a distributed shared memory Q composed

of q variables x1, x2, . . ., xq. Application processes run on

processors which are distributed across a wide-area network.

Each api can execute either a read or a write operation on any

of the q variables. When an application process api invokes a

read operation, it returns value v stored in variable xj , denoted

as ri(xj)v. Similarly, when api invokes a write operation to

put a new value u in variable xj , it is denoted as wi(xj)u.

The initial value of each variable is ⊥.

By executing a sequence of read and write operations, an

application process api generates a local history hi. If a local

operation o1 precedes another operation o2, it represents that

o1 precedes o2 under program order, denoted as o1 ≺po o2. The

collection of local histories hi for all n application processes

compose a global history H in which the set of operations

is defined as OH . Operations executed at distinct processes

can also be related using the read-from order, denoted as

≺ro. Two operations o1 and o2 from distinct processes api

and apj respectively have the relationship o1 ≺ro o2 if there

exist o1 = w(x)v and o2 = r(x)v such that read operation

o2 retrieves the value stored by the write operation o1. As

shown in [14],
• for any operation o2, there is at most one operation o1

such that o1 ≺ro o2;

• if o2 = r(x)v for some variable x and there exists no

operation o1 such that o1 ≺ro o2, then the return value v
is ⊥.

Given both the program order and read-from order, the

causality order ≺co can be defined on the operation set OH .

The causality order typically maintains the transitive closure

of the union of local histories’ program order and the read-

from order. For two operations o1 and o2 in OH , o1 ≺co o2 if

and only if one of the following three conditions is satisfied:

1) program order : ∃api s.t. o1 ≺po o2

2) read-from order : ∃api, apj s.t. o1 and o2 are executed

by api and apj respectively, and o1 ≺ro o2

3) transitive closure : ∃o3 ∈ OH s.t. o1 ≺co o3 and o3 ≺co

o2

Significantly, the causality order profiles the partial order on

the operation set OH . All the write operations that are related

by the causality order have to be seen by each application

process in the order defined by the causality relation.

B. Underlying Distributed Communication System

We now describe the abstract design that supports a dis-

tributed shared memory for a non-fully replicated system and

applies the principle of causal consistency. Our communication

system is implemented on top of the underlying reliable

distributed asynchronous message passing system with n sites,

each of which hosts an application process api connected by

FIFO channels. Each site holds only a subset of variables

xh ∈ Q. For application process api, the subset of variables

stored on the site si is denoted as Xi. If the replica factor

of the shared memory system is p and variables are evenly

replicated on all the sites, then the average size of Xi is pq
n .

The execution of an operation at site si generates a sequential

event. Application process api is in charge of performing the

actual operation events at site si.

To implement the read and write operations in the dis-

tributed shared memory communication abstraction, the un-

derlying message passing system provides several primitives

to enable the communication between different sites. For the

write operation, whenever application process api executes

w(xi)v, it utilizes the reliable Multicast(m) primitive to

deliver the message m including w(xi)v to all sites that

replicate the variable xi. For the read operation, there are two

different scenarios. First, application process api executing

read operation r(x2)u needs to read the value of x2 from a

remote replicated site when x2 is not locally replicated in site

si. In such a case, it invokes the reliable RemoteFetch(m)

primitive to send the message m including r(x2) to a pre-

designated site replicating x2 to fetch the value of x2. This

is a synchronous process. It indicates that the fetch primitive

will block until it returns the variable’s value. Second, if the

variable x2 to be read is locally replicated, then application

process api simply returns the corresponding local value.

The read and write operations executed by the application

processes formally generate six kinds of events in the un-

derlying communication message passing system. They are

generated at each site as shown in the following list.

• Send event. The invocation of Multicast(m) primitive

by application process api generates event sendi(m).
• Fetch event. The invocation of RemoteFetch(m)

primitive by application process api generates event

fetchi(m).
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• Message receipt event. The receipt of a message m
at site si generates event receipti(m). The delivered

message m can correspond to either a sendj(m) event

or a fetchj(m) event sent from site sj .

• Apply event. When applying the value written by the

operation wj(xh)v to the local variable xh replicated at

site si, an event applyi(wj(xh)v) is generated by api.

• Remote return event. After the occurrence of

event receipti(m) corresponding to the remote

read operation rj(xh)u executed by apj , an event

remote returni(rj(xh)u) is generated to transmit

variable xh’s value u to site sj .

• Return event. Return event returni(xh, v) corresponds

to the return of variable xh’s value either fetched remotely

through a requested fetchi(xh) or read from the local

replica.

To implement the causal distributed shared memory ab-

straction, when an update message corresponding to a write

operation wj(xh)v is received at site si, a new thread will be

invoked to determine when to locally apply the update access.

The condition that the update access is ready to be applied

locally is defined as the activation predicate in [13].

This predicate, A(mwj(xh)v, e), is initially set to false and

becomes true only when the update mwj(xh)v can be applied

after the occurrence of local event e. The thread handling the

local application of the update access will be halted until the

activation predicate A becomes true, at which time the thread

writes value v to variable xh’s local replica. This will generate

the applyi(wj(xh)v) event locally. Thus, the key to implement

the causal memory is the activation predicate.

III. OPTIMAL PROTOCOLS

We designed two protocols, Full-Track and Opt-Track,

implementing causal memories in a partially replicated dis-

tributed shared memory system [12], both of which adopt

the optimal activation predicate AOPT . A new relation, →co,

defined by Baldoni et al. on Send events can be used to

demonstrate AOPT . The relation defined by →co is actually a

subset of Lamport’s “happened before” relation [15], denoted

by →. Opt-Track is a message and space optimal protocol for

a partially replicated system. Subsequently, as a special case

of this algorithm, we derived another optimal protocol - Opt-

Track-CRP - for the fully replicated case [12], that is optimal

and has lower message size, time, and space complexities than

the Baldoni et al. approach [13].

A. Full-Track Protocol [12] for Partially Replicated Systems

Since the system is partially replicated, each application

process performing a write operation will only write to a

subset of all the sites in the system. Thus, for an application

api and a site sj , not all write operations performed by api

will be seen by sj . This makes it necessary to distinguish the

destinations of api’s write operations. The activation predicate

AOPT requires tracking the number of updates received that

causally happened before under the →co relation. In order to

do so in a partially replicated scenario, it is necessary for each

site si to track the number of write operations performed by

every application process apj to every site sk. We denote this

value as Writei[j][k]. Application processes also piggyback

this clock value on every outgoing message generated by the

Multicast(m) primitive. The Write matrix clock tracks the

causal relation under the →co relation, rather than the causal

relation under the → relation.

Another implication of tracking under the →co relation

is that the way to merge the piggybacked clock with the

local clock needs to be changed. In Lamport’s “happened

before” relation →, a message delivery generates a causal

relationship between two processes. However, under the →co

relation, it is reading the value that was written previously by

another application process that generates a causal relationship

between two processes. Thus, the Write clock piggybacked

on messages generated by the Multicast(m) primitives should

not be merged with the local Write clock at the message

reception. It should be delayed until a later read operation

which reads the value that comes with the message. At each

site si, the following data structures are maintained:

1) Writei[n×n]: the Write clock. Writei[j, k] = c means

that the number of updates sent by application process

apj to site sk that causally happened before under the

→co relation is c.

2) Applyi[1 ∼ n]: an array of integers. Applyi[j] = c means

that a total number of c updates written by application

process apj have been applied at site si.

3) LastWriteOni〈variable id, Write〉: a hash map of

Write clocks. LastWriteOn〈h〉 stores the Write clock

value associated with the last write operation on variable

xh which is locally replicated at site si.

B. Opt-Track Protocol [12] for Partially Replicated Systems

Full-Track protocol achieves optimality in terms of the

activation predicate. However, in other aspects, it can still be

further optimized. We notice that, each message corresponding

to a write operation piggybacks an O(n2) matrix, and the same

storage cost is also incurred at each site si. Kshemkalyani and

Singhal proposed the necessary and sufficient conditions on

the information for causal message ordering and designed an

algorithm implementing these optimality conditions [16],[17]

(hereafter referred to as the KS algorithm). The KS algorithm

aims at reducing the message size and storage cost for causal

message ordering abstractions in message passing systems.

The ideas behind the KS algorithm exploit the transitive

dependency of causal deliveries of messages. In the KS algo-

rithm, each site explicitly keeps a record of recently received

messages from each other site. Such explicit information is

used to track M as long as (i) and (ii) are false.

(i) the message M is delivered to the destination;

(ii) a message has been sent to the destination in the causal

future of send(M).
The list of destinations of the message is also kept in each

record (the KS algorithm assumes multicast communication)

and is progressively pruned, as described below. With each
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outgoing message, these records are also piggybacked. The

KS algorithm achieves another optimality, in the sense that no

redundant destination information is recorded.

Although the KS algorithm is dedicated to message passing

systems, its essential idea of deleting unnecessary dependency

information still applies to distributed shared memory systems.

We can adapt the KS algorithm to a partially replicated dis-

tributed shared memory system to implement causal memory

there. Now, each site si will maintain a record of the most

recent updates received from every site, that causally happened

before under the →co relation. Each such record also keeps

a list of destinations representing the set of replicas receiving

the corresponding update. When performing a write operation,

the outgoing update messages will piggyback the currently

stored records. When receiving an update message, the optimal

activation predicate AOPT is utilized to determine when to

apply the update. Once the update is applied, the piggybacked

records will be associated with the updated variable. When a

later read operation is performed on the updated variable, the

records associated with the variable will be merged into the

locally stored records to reflect the causal dependency between

the read and write operations. Similar to the KS algorithm,

we can prune redundant destination information using the

following two implicit conditions.

1) When an update m derived from write operation w(x)v
is applied at site s2, then the information that s2 is part of

the update m’s destinations no longer needs to be kept in

the causal future of the event apply2(w). It implies that

m has been delivered to s2, to clean the logs at other

sites in the causal future of event return2(x, v).
2) For two updates mw(x)v and m′

w′(y)v′ such that send(m)
→co send(m′) and both updates are sent to site s2, the

information that s2 is part of update m’s destinations is

irrelevant in the causal future of the event apply(w′) at

all sites sk receiving update m′. In reality, it is redundant

in the causal future of send(m′), other than m′ sent to

s2. This is because, by transitivity, applying update m′

at s2 in causal order associated with a message m′′ sent

causally later to s2 can infer the update m has already

been applied at s2. It implies that m has been delivered

to s2, to clean the logs at other sites in the causal future

of events returnk(y, v′).

Such implicit information can be used to learn when explicit

information (i) or (ii) becomes true and can be deleted. The

following data structures are maintained at each site:

1) clocki: local counter at site si for write operations per-

formed by application process api.

2) Applyi[1 ∼ n]: an array of integers. Applyi[j] = c means

that a total number of c updates written by application

process apj have been applied at site si.

3) LOGi = {〈j, clockj , Dests〉}: the local log (initially set

to empty). Each entry indicates a write operation in

the causal past. Dests is the destination list for that

write operation. Only necessary destination information

is stored.

4) LastWriteOni〈variable id, LOG〉: a hash map of

LOGs. LastWriteOn〈h〉 stores the piggybacked LOG
from the most recent update applied at site si for locally

replicated variable xh.

C. Opt-Track-CRP Protocol [12] : Adapting Opt-Track Pro-
tocol to Fully-Replicated Systems

Opt-Track protocol can be directly applied to fully repli-

cated causal distributed shared memory systems. Furthermore,

since in the full replication case, every write operation will be

sent to exactly the entire set of sites, there is no need to keep

a list of the destination information with each write operation.

Each time a write operation is sent, all the write operations

it piggybacks as its dependencies will share the same set of

destinations as the one being sent, and their destination list will

be pruned by the second implicit condition. Also, when a write

operation is received, all the write operations it piggybacks

also have the receiver as part of their destinations.

With these additional properties in the full replication sce-

nario, we can represent each individual write operation using

only a 2-tuple 〈i, clocki〉, where clocki is the local write

operation counter at site id i when the write operation is

issued. In this way, we bring the cost of representing a write

operation from potentially O(n) down to O(1). This improves

the protocol’s scalability under full replication.

Practically, Opt-Track protocol’s scalability can be further

improved in the fully replicated scenario. Under the partially

replicated system, it is important to keep entries with empty

destination list as long as they represent the most recent up-

dates applied from some site. This ensures the optimality that

no redundant destination information is transmitted. However,

this will also require each site to almost always maintain a

total of n entries. Under the fully replicated scenario, we can

also decrease this cost. By making sure the most recent write

operation is applied in causal order, all the previous write

operations sent to all sites are guaranteed to be also applied

in causal order. Similarly, after a write operation w′ updating

the variable xh is applied at site si, only w′ itself needs to be

stored in LastWriteOni〈xh〉.
For maintaining local logs, each site si now only needs to

maintain d + 1 entries at any time with each entry incurring

only an O(1) cost. Here, d is the number of read operations

performed locally since the most recent local write operation.

This is because the local log always incurs reset after each

write operation, and each read operation will add at most 1

new entry into the local log. Furthermore, if some of these

read operations retrieve variables that are updated by the same

application process, only the entry associated with the very

last read operation needs to be kept in the local log. Thus,

the number of entries to be maintained in the full replication

scenario will be at most n. Furthermore, if the application

running on top of the distributed shared memory system is

write-intensive, then the local log will be reset at the frequency

of write operations generated at each site. It means that each

site simply cannot invoke enough read operations to maintain

the local log to reach a number of n entries. Even if the
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application is read-intensive, only a limited subset of all the

sites perform write operations. Thus, in practice, the number

of entries that need to be maintained in the full replication

scenario is much less than n.

For the fully replicated causal distributed shared memory,

each site still maintains the same data structures as in Opt-

Track. The only difference lies in that there is no need to

maintain the destination list for each write operation in the

local log, and hence the format of the log entries becomes the

2-tuple 〈i, clocki〉. The average message size in Opt-Track-

CRP is significantly less than that in [13], as we will show in

Section V.

IV. SIMULATION SYSTEM MODEL

We consider an asynchronous distributed system. Formally,

a distributed system is composed of a finite set of asyn-

chronous processes running on multiple sites which are dis-

tributed over a wide area and interconnected through a commu-

nication network. To simplify and without loss of generality,

we assume that there is only one process on each site. Each site

has a local memory and can communicate by asynchronous

message passing through TCP channels of the underlying

network. The communication network is reliable and transmits

messages in FIFO order without omissions or duplications.

A. Process Model

1) Partial Replication: A process consists of two major

subsystems viz., the application subsystem and message re-
ceipt subsystem. The application subsystem is responsible for

the functionality of scheduling operation events (write/read)

including two major functions, viz., Write and Read. The

message receipt subsystem is responsible for responding to

remote request service, including two major functions, viz.,

Applying Multicast and Responding Fetch. The application

subsystem executes write and read events. It also maintains a

floating point local clock to generate operation patterns based

on a temporal schedule. For a write operation w(xh)v, the

application subsystem delivers the message m(w(xh)v) and

the corresponding meta-data – local log Lw (in Opt-Track
protocol) or local Write clock (in Full-Track protocol) to

other replicas. For a read operation r(xh), the application

subsystem returns the local variable xh’s value or sends a fetch

message fetch(xh) to a predesignated site to get the remote

variable xh’s value as well as the corresponding meta-data

LastWriteOn〈h〉.
The message receipt subsystem monitors two kinds of in-

coming messages. First, for a multicast message m(w(xh)v),
the message receipt subsystem determines when to apply a

new value v to the variable xh in causal consistency and

then update the meta-data LastWriteOn〈h〉. Second, for a

remote fetch message m(fetch(xh)), it simply replies with

the local value of the variable xh and the corresponding meta-

data LastWriteOn〈h〉 to the requesting site.

Message structure. A message is the fundamental entity

that delivers information from a sender process to one or

more receiver processes. The structures of different kinds of

TABLE I
MESSAGE META-DATA STRUCTURES IN PARTIAL REPLICATION

PROTOCOLS

Full-Track Opt-Track
SM (Multicast) xh,v,Write xh,v,Siteid,clock,Lw

FM (Fetch) xh,v xh,v
RM (Remote Return) v,LastWriteOn〈h〉 v,LastWriteOn〈h〉

messages typically follow the data structures shown in Section

III. In partial replication protocols, there are three distinct

messages. Their structures are as shown in the Table I. SM

corresponds to a multicast message generated by send event
to deliver the information of updating variable’s value. FM is

a fetch message caused by a fetch event. RM represents a

remote return message to respond to a remote read operation.

The Full-Track protocol imposes an n × n Write matrix

structure as part of the piggybacked meta-data in SM and

RM messages. The Opt-Track protocol utilizes a list log to

maintain causal ordering information in SM and RM messages.

2) Full Replication: Similarly, a process also consists of

two major subsystems viz., the application subsystem and mes-
sage receipt subsystem, in the full replication protocols. The

functionalities of the two subsystems are very similar to those

of subsystems in partial replication protocols. The application

process consists of Write and Read functions. Specially, the

function Read(xh) only needs to merge the local piggybacked

log LastWriteOn〈h〉 into the local log LOG and then return

the local value of xh. Besides, the message receipt subsystem

only handles the function of Applying Multicast to determine

when to apply a write update.

Message structure. There is only one message type –

SM message corresponding to a write operation for multi-

casting – in Opt-Track-CRP. SM message is represented by

m(xh, v, Siteid, clock, LOG).

B. Simulation Parameters

The system parameters whose effects we examine on the

performance of the Opt-Track partial replication protocol and

the Opt-Track-CRP full replication protocol are as follows:

• Number of Processes (n): In reality, a desirable causal

consistency algorithm must show good performance for

a large number of processes. It may be necessary to

simulate any causal consistency algorithm over a wide

range of the number of processes. The limitation of

the number of processes in the system depends on the

processor model and memory allocation of the bench-

mark device running the simulation. On an Intel Core

2 Duo computer with 16 GB DDR2 and the simulation

framework being implemented in JDK8, we can simulate

up to 40 processes.

• Number of Variables (q): It is the number of variables in

the distributed shared memory system. In a super cloud

storage, q is unbound. In other words, it is also necessary

to set q to be a large number. Due to the memory

limitation, q we used in the benchmark experiment is

one hundred.
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• Replication Factor (p): It is defined as the number of

sites at which each variable is replicated. In full replica-

tion protocols, p = n. In partial replication protocols, we

set p equal to 0.3×n.

• Write Number (w): The number of write operations

performed in the distributed system.

• Read Number (r): The number of read operations per-

formed in the distributed system.

• Write Rate (wrate): It is defined as w
w+r . Binding by

a variety of write rates, we can study performance for

read-intensive and write-intensive application workloads.

• Log Size (d): The number of write operations stored in

local log (used only in the analysis of Opt-Track-CRP).

• Message Count (mc): The total number of messages

generated by all the processes.

• Message Size (ms): The total size of all the messages

generated by all the processes. It is the most important

performance indicator for the benchmark simulation.

C. Process Execution

All the processes in the system are symmetric and generate

operation events (write event or read event) according to a

event schedule planned in advance. The event schedule is

randomly generated. The time interval between two events is

given from 5ms to 2005ms. The processes in the distributed

system execute concurrently. However, simulating each pro-

cess as an independent process at a site invoked interprocess

communication.

When a process gets initialized, it first invokes the message

receipt subsystem. Then, the system executes Scheduled-

ExecutorService in JDK to drive the application subsys-

tem which extends TimerTask class – a JDK scheduling

service to dispose of the scheduling operation events. In the

simulation, the system relies on TCP channels to deliver

messages. While TCP exploits slow start to retransmit the

lost packets, which can lead to high value of transmission time,

it guarantees that messages can be successfully transmitted

without any loss.

An application subsystem stops generating operation events

once it runs out of all the scheduling events and flags its status

as finished. The simulation stops when all the application

subsystems have their status set to ‘finished’.

V. SIMULATION RESULTS AND DISCUSSION

The implementations of the four causal consistency repli-

cated protocols – Full-Track, Opt-Track, Opt-Track-CRP iden-

tified in Section III, and optP in [13] – were realized in

the framework presented in Section IV. The communication

framework and the core algorithms were implemented in JDK

8. The performance metrics used are as follows:

• The ratio of the total message cost for Full-Track vs.

Opt-Track and Opt-Track-CRP vs. optP.

• the average size of the messages transmitted in different

causal consistency replicated protocols.

We report two experiments for each protocol, in each of

which we vary one of the two parameters n and wrate,

respectively. For each combination of parameters in each

experiment, multiple runs were performed for each protocol.

The experimental results of all the runs did not have more than

one percent variation. Thus, only the mean of the multiple runs

is represented for each combination.

Each simulation execution runs 600n operation events

totally. Experimental data was stored after the first 15 %
operation events to eliminate the side effect in startup.

A. Partial Replication Protocols

In the Full-Track protocol, each write operation will only

incur (p−1)+ n−p
n number of SM messages. Some read oper-

ations might need to communicate with a remote site. Assume

that the variables are evenly replicated across the entire system.

Then, an additional 2r (n−p)
n number of FM and RM messages

will be generated. In total, the message count complexity of

the Full-Track protocol is ((p− 1)+ n−p
n )w +2r (n−p)

n . Since

the size of FM is a constant byte count c, the total message size

in Full-Track protocol almost depends on the size of SM and

RM. Furthermore, the Full-Track protocol needs to maintain a

local Write clock matrix, as shown in Section III-A, of size

n2. This Write clock needs to be piggybacked with each SM

or RM message. Hence, the total message size complexity of

the Full-Track protocol is O(n2pw + nr(n− p)).
The Opt-Track protocol is an optimization on top of the

Full-Track protocol. As Opt-Track runs the same message

pattern for both the read and write operations as the Full-Track

protocol, its message count complexity is also the same, being

((p− 1) + n−p
n )w + 2r (n−p)

n . Instead of maintaining a matrix

clock, the Opt-Track protocol keeps a log of only the necessary

write operations that happened in the causal past. Although the

upper bound on the size of the log is O(n2), Chandra et al.

[18] showed through extensive simulations that the amortized

log size is almost O(n). It means that the local log at each

site will only incur an amortized storage cost of O(n). Thus,

the amortized message size complexity of Opt-Track is only

O(npw + r(n− p)).
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Fig. 1. Total message meta-data space overhead as a function of n and
wrate in partial replication protocols.

1) Scalability as a function of n: The number of processes

was varied from 5 up to 40. The wrate is set to be 0.2

(lower write rate), 0.5 (medium write rate), and 0.8 (higher
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write rate), respectively. The results for the ratio of message

space overhead (meta-data size) of Opt-Track to Full-Track

are shown in Fig. 1. With increasing n, the space overhead

ratio rapidly decreases. For the case of 40 processes, for all

the simulations of Opt-Track, the overheads are only around

10 ∼ 20 percent those of Full-Track on different write rates.

For the case of 5 processes, the overheads reported for Opt-

Track for different write rates are around 90 percent of the

ones of Full-Track, but the overhead of Full-Track itself is

low for such a parameter setting. It can also be seen from

Fig. 1 that a higher write rate magnifies the difference of the

message space overhead between Opt-Track and Full-Track.
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Fig. 2. Average message meta-data space overhead as a function of n with
lower wrate (0.2) in partial replication protocols.

2) Impact of write rate wrate: The results for the average

message space overhead are shown in Figs. 2, 3, and 4

according to different write rates, respectively. As discussed

before, the average message overheads of FM in Opt-Track

and Full-Track protocols are constant, very small, and the

same, regardless of write rates. In Full-Track protocol, the

average message space overheads of SM and RM quadratically

increase with n based on our previous discussion. However,

the increasingly lower overheads of SM and RM in Opt-

Track protocol can be seen from the results. Their overheads

appear almost linear in n. This observation can be explained

as follows: Although more explicit information of type “si is a

destination of message m” needs to be maintained in the logs,
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Fig. 3. Average message meta-data space overhead as a function of n with
medium wrate (0.5) in partial replication protocols.
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Fig. 4. Average message meta-data space overhead as a function of n with
higher wrate (0.8) in partial replication protocols.

TABLE II
AVERAGE SM AND RM SPACE OVERHEAD FOR FULL-TRACK AND

OPT-TRACK (KB)

wrate the number of processes
5 10 20 30 40

Opt-Track

SM
0.2 0.489 0.828 1.512 2.241 2.783
0.5 0.464 0.715 1.125 1.442 1.976
0.8 0.450 0.627 0.914 1.194 1.475

RM
0.2 0.432 0.774 1.530 2.351 3.184
0.5 0.436 0.702 1.235 1.656 2.197
0.8 0.555 0.632 0.948 1.288 1.599

Full-Track

SM
0.2 0.518 1.252 3.870 8.028 13.547
0.5 0.522 1.271 3.975 8.127 14.033
0.8 0.524 1.275 3.988 8.410 14.157

RM
0.2 0.493 1.220 3.817 7.959 13.461
0.5 0.497 1.205 3.941 8.117 13.983
0.8 0.499 1.250 3.966 8.369 14.099

each log also involves more implicit information. In [12], it

showed that additional implicit information provides incentive

for the Propagation Constraints to merge and prune the logs

when SM or RM messages are received. The observation from

Figs. 2 to 4 demonstrates the scalability of Opt-Track under

partial replication.

Furthermore, under the same number of processes, we also

compare the average SM and RM message sizes in different

write rates. (The FM message size is an invariant constant

count that is independent of n and wrate. In Full-Track and

Opt-Track, their FM sizes are the same since they use the

same data structure for FM message.) The analytic data is

listed in Table II according to Figs. 2 to 4. The average SM

and RM overheads decrease as the write rate increases in Opt-

Track Protocol. According to algorithm Opt-Track in [12], the

reason can be explained as follows. A read operation will

invoke a MERGE function to merge the piggybacked log

of the corresponding write to that variable with the local log

LOG. Thus, a higher read rate may increase the likelihood

that the size of LOG is enlarged. Furthermore, although a

write operation results in the increase of explicit information,

it comes with a PURGE function to prune the redundant

information, so that the size of LOG could be decreased.

Therefore, a higher write rate with a corresponding lower read

rate results in fewer MERGE and more PURGE operations

generated. The simulation results show that the Opt-Track
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Fig. 5. Total message meta-data space overhead as a function of n and
wrate in full replication protocols.

has a better utilization of network capacity in write-intensive

workloads than in read-intensive ones. On the other hand,

in Full-Track, although the average SM and RM overheads

increase as the write rate does, the increase percentage is only

3% ∼ 1%.

From the above analysis, it can be concluded that the imple-

mentation of the Opt-Track protocol has a better network ca-

pacity utilization and better scalability than Full-Track. These

improvements increase in a higher write-intensive workload.

Note that our simulating numerical data obtained for Opt-

Track protocol does not completely follow the data structures

defined in Section III-B. In partial replication protocols, we

use a matrix clock (Write) in Full-Track and a linked list

log (LOG) in Opt-Track to track the causal relation. These

two data structures occupy the majority of their corresponding

meta-data respectively. Thus, they dictate the trade-off between

Full-Track and Opt-Track. Our simulation platform is based

on JAVA program. Write clock can be realized by a primitive

JAVA integer class matrix. On the other hand, if one wants

to realize LOG log format as shown in Section III-B, it is

necessary to create a user-defined JAVA class list. However,

a user-defined class has some additional overhead against a

primitive class in JAVA. Instead of using a user-defined list

where each entry contains 〈j, clockj , Dests〉, we used three

primitive class lists to maintain 〈j〉, 〈clockj〉, 〈Dests〉 in our

simulation.

B. Full Replication Protocols

The Opt-Track-CRP protocol is a special case of the Opt-

Track protocol dedicated to the full replication scenario. Each

write operation incurs a total of n−1 SM messages, while the

read operation will always read from the local replica and thus

generate no messages. In total, the message count complexity

of the Opt-Track-CRP protocol is (n−1)w. Since Opt-Track-

CRP does not need to store the destination list for each record

of a write operation, there are no n entries in the local log

at each site. This means that the size of the local log is only

determined by the number d of entries in the local log. In

practice, d is a constant value. Thus the message overhead

for each SM corresponding to a write operation is O(d). The
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Fig. 6. Average message meta-data space overhead as a function of n with
lower wrate (0.2) in full replication protocols.
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Fig. 7. Average message meta-data space overhead as a function of n with
medium wrate (0.5) in full replication protocols.
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Fig. 8. Average message meta-data space overhead as a function of n with
higher wrate (0.8) in full replication protocols.

total message space overhead complexity of the Opt-Track-

CRP is O(nwd). The optP proposed by Baldoni et al. [13]

is a complete replication based causal consistency protocol.

However, optP incurs a higher overhead in the message space

complexity. The reason is that optP requires to maintain a

Write clock of size n. Since optP has the same message

pattern for the write and read operations as Opt-Track-CRP,

the message count complexity of the optP is also O(nw). The

total message space overhead is O(n2w).
1) Scalability as a function of n: The results for the ratio

of message space overhead of Opt-Track-CRP to optP are
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TABLE III
AVERAGE SM SPACE OVERHEAD FOR OPT-TRACK-CRP (BYTE)

n wrate=.2 wrate=.5 wrate=.8 optP
5 287.3 277.5 272.9 259

10 300.3 284.3 278.2 309
20 315.5 294.9 288.3 409
30 327.1 305.2 298.4 509
35 332.8 310.1 303.4 559
40 338.4 315.3 308.4 609

shown in Fig. 5. With increasing n, the ratio of total SM space

overhead of Opt-Track-CRP vs. optP decreases. For the case

of 5 processes, the total SM overheads for Opt-Track-CRP are

consistently higher than around 10% of those for optP on a

variety of write rates. For the case of 10 processes, the SM

space overhead for Opt-Track-CRP is still close to that for

optP in a lower write rate 0.2. But their space overhead ratio

is down to 90 percent in a higher write rate 0.8. When the

number of processes is up to 40, the SM space overheads for

Opt-Track-CRP are around 50% to 55% for different write

rates.

2) Impact of write rate wrate: As with partial replication

protocols, a higher write rate makes the total message space

overhead ratio of Opt-Track-CRP vs. optP smaller. The results

for the average SM space overhead are shown in Figs. 6,

7, and 8 in terms of different write rates. As mentioned

before, the average SM space complexity of Opt-Track-CRP

is O(d) but that of optP is O(n). According to Figs. 6 to 8,

Table III presents the analytic data. Obviously, the average

SM space overhead of optP only depends on the number

of processes n, irrespective of wrate. However, under the

same number of processes, the SM space overheads of Opt-

Track-CRP decrease slightly with increasing wrate. This can

be explained as follows: In Opt-Track-CRP protocol, a write

operation does not make the local log size larger than one

and change the remote log size at a receiving site. But a read

operation might incur a growth in the local log size when it

often reads different variables updated via other remote sites.

Therefore, lower write rate (corresponding to higher read rate)

would cause higher meta-data overhead than higher write rate

(corresponding to lower read rate). In other words, Opt-Track-

CRP protocol has a better utilization of network capacity in

write-intensive workloads than in read-intensive ones.

From the experimental analysis in full replication, we can

conclude that Opt-Track-CRP protocol has a better scalability

and utilization than optP, especially in write-intensive work-

loads.

C. Discussion

Compared with the existing causal distributed shared mem-

ory protocols, our suite of protocols [12] has the additional

ability to implement causal consistency in partially replicated

distributed shared memory systems. Further, the protocols

in [19], [20], [21] do not provide scalability as they use a

form of log serialization and exchange to implement causal

consistency.

TABLE IV
TOTAL MESSAGE COUNT FOR PARTIAL REPLICATION (OPT-TRACK) VS.

FULL REPLICATION (OPT-TRACK-CRP)

n Full Replication Partial Replication
(0.2) (0.5) (0.8) (0.2) (0.5) (0.8)

5 2,036 4,960 8,004 3,208 3,463 3,764
10 8,910 22,266 35,892 8,297 10,234 12,156
20 38,057 95,114 151,905 22,808 35,668 48,128
30 86,826 217,181 347,304 42,600 75,679 108,810
40 156,156 390,039 624,390 69,405 130,572 192,883

The advantage of implementing partial replication compared

with full replication lies in multiple aspects. First, this could

reduce the number of messages for updating or accessing

remote variables. Although the read operation may incur

additional messages, the overall number of messages can still

be lower than that of full replication if the replica factor is

low. Hadoop HDFS and MapReduce is one such example.

The HDFS framework typically chooses a small number as

the replica factor even when the size of the system is large.

Furthermore, the MapReduce framework is dedicated to data

locality optimization to allocate tasks that read only from the

local replicas. In such a system, partial replication generates

much less messages than full replication.

Based on the message count formulas of Opt-Track (par-

tial replicated protocol) and Opt-Track-CRP (full replication

protocol) shown in the previous subsection, partial replication

gives a lower message count than full replication if

((p−1)+
(n− p)

n
)w+2r

(n− p)
n

< (n−1)w ⇒ w > 2
r

n− 1
(1)

wrate is defined as w
w+r . Then, this equation can be ex-

pressed as follows:

wrate >
2

1 + n
(2)

Clearly, this formulates the necessary condition for which

partial replication has a lower message count.

Table IV shows the results of running the same operation

event scheduling using Opt-Track-CRP and Opt-Track, respec-

tively. It presents the total message counts with different write

rates in full replication and partial replication. Except for when

n=5 and wrate=0.2, the message counts for partial replication

are always less than the ones for full replication. The results

in Table IV are in line with the necessary condition – equation

(2).

Partial replication can also help to reduce the total size of

messages transmitted within the system. Although the two

partial replication protocols proposed might have a higher

message size complexity compared with their counterparts for

full replication, this complexity measurement is only for the

control meta-data and does not take into consideration the

size of the data that is actually being replicated. In modern

social networks, multimedia files like images and videos are

frequently shared. The size of these files is much larger

than the control information piggybacked with them. In 2012,
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Johnson et al. [22] addressed that the average web page size

in 2011 was 679KB, which is apparently much larger than the

average meta-data size of Opt-Track. Doing full replication

might improve the latency for accessing these files from

different locations, however it also incurs a large overhead

on the underlying system for transmitting and storing these

files across different sites. Further, where most accesses to a

user’s file are located within certain geographical regions, or

the workload is write-intensive, the improvement in the latency

brought by full replication is less significant compared to the

cost it imposes on the underlying system.

VI. CONCLUSION

We considered the problem of providing causal consis-

tency protocols in large-scale storage systems under partial

replication and full replication. Two optimal protocols – Opt-

Track under partial replication and Opt-Track-CRP under full

replication – have been proposed and proven theoretically their

optimality. However, there is no performance data available,

and an analytical analysis or comparison of their performance.

Hence, this paper conducted a performance analysis of the

message space and message count complexity of them under

a wide range of system conditions using simulations.

The simulations considered two partial replication protocols

(Full-Track and Opt-Track) and two full replicated protocols

(Opt-Track-CRP and optP), and examined the performance by

varying the write rate and the number of processes. Opt-Track

was seen to show significant gains over Full-Track in partial

replication. In full replication, the results also supported that

Opt-Track-CRP performed better than optP in scalability and

network capacity utilization. In particular, as the size of the

system increased to 40 processes, the two optimal protocols

performed very well and have lower meta-data overheads

under high write-intensive workloads. This paper is also the

first such work that explored the trade-off between partial

replication and full replication analytically. We showed the

advantage of partial replication and provided the conditions

under which partial replication can provide less overhead

(transmission and storage) than full replication.
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