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Abstract—In large-scale networks where a continuously on-
going monitoring program is needed, using traditional predi-
cate detection algorithms might cause the system to have a sin-
gle point of failure. This paper presents an on-line distributed
algorithm that detects strong conjunctive predicates and we
show that it is resilient to node failures. Our algorithm assumes
a pre-constructed spanning tree in the system, and detects all
satisfactions of the predicate in a hierarchical manner. Our
algorithm is able to detect predicates at each level in the
hierarchy, thus becoming resilient to node failures because
of the capability to detect a partial predicate of the global
predicate. This hierarchical detection manner also provides a
finer-grained monitoring in those large-scale networks where
grouping is established and the monitoring happens at the
group level. Furthermore, comparing with other detection
algorithms, our algorithm incurs a low space/time cost, which
is distributed across all the nodes in the network, and a low
message complexity. This makes our algorithm applicable in a
resource-constraint network.

Keywords-distributed system; predicate detection; fault-
tolerant; large-scale network

I. INTRODUCTION

Detecting predicates over a distributed execution is impor-

tant for various purposes such as monitoring, synchroniza-

tion, coordination, and debugging. In recent years, predicate

detection has found applications in large-scale networks

such as WSNs [1] and modular robotics [2], [3], where

individual nodes have only limited computation resources

and are subject to node failures. With these properties, new

solutions that conserve the limited resources and take into

consideration the potential failures of the nodes are needed.
There are many predicate types and detection algorithms

studied in the literature for traditional distributed systems

(see [4] for a survey). One way to categorize a predicate

is based on the function on the variables involved in the

predicate [5]:

1) A relational predicate is a predicate that is expressed

as an arbitrary relation on the variables in the system.

Let xi and yj be local variables at process Pi and Pj ,

respectively. Φ = “avg(xi, yj) = 35” is a relational

predicate.

2) A conjunctive predicate is a predicate that can be

expressed as the conjunction of local predicates.

Ψ = “xi > 20 ∧ yj < 45” is a conjunctive predicate.

Due to the asynchrony in message transmissions and in

local executions, different executions of the same distributed

program can generate different sequences of global states.

Therefore, whether a predicate gets satisfied within all

consistent observations of an execution or within some

consistent observation of an execution, can be different.

Thus, two modalities under which a predicate Φ can hold

[6] have been defined.

1) Possibly(Φ): There exists a consistent observation of

the execution such that Φ holds in a global state of

the observation.

2) Definitely(Φ): For every consistent observation of the

execution, there exists a global state of it in which

Φ holds. This type of predicates is also called strong

predicates in [7].

Algorithms to detect both Possibly(Φ) and Definitely(Φ)
for a conjunctive or relational predicate are given in [6].

However, it has been shown that detecting a relational

predicate is an NP-complete problem. Due to the exponential

complexity of detecting relational predicates, most work on

predicate detection is focused on conjunctive ones.

In [7], [8], Garg and Waldecker gave centralized algo-

rithms to detect Definitely (Φ) and Possibly(Φ), respectively.

In [7], they presented an interval-based approach to detect

Definitely(Φ). In [4], an algorithm that adopts a unified

approach to detect both Possibly(Φ) and Definitely(Φ) based

on intervals was given. For a network of n processes and

an execution in which the local predicate becomes true at

most p times at a process, the detection algorithm in [4] has

a space and time complexity of O(pn2). It also generates

O(pn) messages, each of size O(n).

The above centralized algorithms has the drawback that

all the computation occurs at a single process. This uneven

distribution of time and space complexity makes such al-

gorithms undesirable in systems where individual processes

have limited resources. Several distributed algorithms were

thus proposed. Garg and Chase [9] and Hurfin et al. [10]

presented distributed algorithms to detect Possibly(Φ). Both

algorithms have space, time and message complexities being

O(mn2), where m is the maximum number of messages

sent by any process. Chandra and Kshemkalyani [11] gave
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a distributed algorithm for detecting Definitely(Φ). Its space

and time complexities are O(min(pn,mn2)) and its mes-

sage complexity is O(min(pn2,mn2)).
When detecting predicates in continuous monitoring pro-

grams, usually the application requires the monitoring pro-

gram to raise an alarm each time the predicate occurs. In

such cases, none of these algorithms [7], [8], [9], [10],

[11] are applicable. As shown in [12], these algorithms

can detect predicates only once and will hang after the

initial detection. They cannot detect multiple occurrences

because detecting subsequent occurrences is not simply

rerunning those one-time detection algorithms, but requires

elaborate processing to ensure safety and liveness. In [12],

a centralized repeated detection algorithm which can detect

all occurrences of Definitely(Φ) in O(pn3) time is given.

However, all the time/space costs incurred by this algorithm

happen at the sink. In networks where individual nodes

only have limited computation resources, the centralized

algorithm is not desirable. Furthermore, this algorithm, as

also the other centralized detection algorithms [4], [7], [8],

will fail when one node fails. Even the distributed detection

algorithms [9], [10], [11] have the same problem because

there will be no progress after any one node failure.

In this paper, we present a decentralized algorithm that

detects Definitely(Φ) within a large-scale network. This

algorithm assumes a pre-constructed spanning tree in the

network and detects the predicate in a hierarchical manner.

By establishing a hierarchy in the network, our algorithm

divides the task of detecting a predicate among different lev-

els in the hierarchy. Each node detects the predicate within

the subtree rooted at itself. If one node fails, the detection

of the predicate in the remaining processes could be easily

resumed because the hierarchical detection manner gives our

algorithm the ability to detect a partial predicate of the global

predicate. In addition, our algorithm detects the predicates

in a repeated manner [12]. In long-running applications

where continuous monitoring is required, repeated detection

is essential because manual intervention after one detection

of predicate satisfaction to reset the detection algorithm is

not practical or even possible. Furthermore, the hierarchical

structure of our algorithm can also provide a finer-grained

monitoring in those large-scale networks where grouping is

established and the monitoring is needed at the group level.

For a spanning tree of height h and degree d, our hierar-

chical algorithm has a global time complexity of O(d2pn2)
and a global space complexity of O(pn2), distributed across

all nodes in the network. Comparing with the only algorithm

capable of doing repeated detection [12], which is central-

ized and incurs an O(pn3) time complexity and an O(pn2)
space complexity, our algorithm is superior in performance

since d2 is less than n for any spanning tree with h > 2
(essentially any non-centralized configuration). Also, the

message complexity of hierarchical detection is significantly

lower, as shown in a later section. A comparison between

the two algorithms is given in Table I. Notice that n = dh.

Table I
COMPLEXITY COMPARISON BETWEEN HIERARCHICAL DETECTION AND

THE CENTRALIZED REPEATED DETECTION ALGORITHM

Our Hierarchical Centralized Repeated
Algorithm Detection Algorithm [12]

Space Complexity O(pn2) O(pn2)
(distributed across (at the sink node)

all processes)

Time Complexity O(d2pn2) O(pn3)
(distributed across (at the sink node)

all processes)

Message Complexity pn p
(dh−2d)(dh−d−h)−d

(d−1)2

Contributions of this paper:
1) We present the first decentralized hierarchical algo-

rithm to detect Definitely(Φ) in a large-scale dis-

tributed system.

2) The hierarchical detection manner of our algorithm

makes our algorithm failure-resilient. In our algorithm,

each process detects the predicate in the subtree rooted

at itself. When a process fails, the detection of the

predicate in the remaining processes could be easily

resumed because our algorithm has the ability to detect

a partial predicate of the global predicate. The same

cannot be achieved by the existing centralized or

distributed detection algorithms.

3) Hierarchical detection, which is also strongly desirable

for large-scale systems, necessarily requires to detect

all occurrences of the predicate satisfaction, which we

do in our algorithm. None of the existing detection

algorithms for Definitely(Φ) (except the recent central-

ized algorithm in [12]) can do such repeated detection.

4) We give a performance analysis of our hierarchical

detection algorithm for message , space and time

complexity. The result shows that our algorithm is

superior to the only known algorithm for repeated

detection [12], which is centralized.

The rest of the paper is organized as follows. Section II

gives the system model and background on interval-based

predicate detection algorithms. Section III presents the hier-

archical detection algorithm and its theoretical foundation.

Section IV analyses the complexity of the hierarchical

detection algorithm. Conclusions are given in Section V.

II. SYSTEM MODEL AND BACKGROUND

A. System Model

A distributed system is an undirected graph (P,L), where

P is the set of processes and L is the set of communication

links. Let n = |P |. The n processes asynchronously commu-

nicate with each other via the channels in L. We do not as-

sume FIFO channels, thus the messages may be delivered out

of order. The execution of process Pi produces a sequence

of events Ei = 〈e0i , e1i , e2i , · · · 〉, where eki is the kth event at

process Pi. An event at a process can be message receiving,
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message sending, or an internal event. Let E = ∪i∈PEi

denote the set of events executed in a distributed execution.

The causal precedence relation between events induces an

irreflexive partial order on E. This relation is defined as

Lamport’s “happens before” relation [13], and denoted as

≺. An execution of a distributed system is thus denoted by

the tuple (E,≺).
If the network is a wireless network, each process can

communicate only with other processes within communica-

tion range. Thus, the topology of such a network cannot be

considered as a complete graph, and messages transmitted

within such a network usually traverses multiple hops.

We also assume vector clocks [14], [15] are available.

Each process maintains a vector clock V of n integers. The

vector clock is updated according to the following rules.

1) Before an internal event happens at process Pi, Vi[i] =
Vi[i] + 1.

2) Before process Pi sends a message, it first executes

Vi[i] = Vi[i] + 1, then it sends the message piggy-

backed with Vi.

3) When a process Pj receives a message with timestamp

U from Pi, it executes

∀k ∈ [1 . . . n], Vj [k] = max(Vj [k], U [k]);
Vj [j] = Vj [j] + 1;
before delivering the message.

The ≺ relation between two events can be checked by

comparing their corresponding vector clock timestamps,

i.e., ei ≺ ej ⇔ Vei < Vej , where Vei < Vej means

∀a ∈ [1, n], Vei [a] ≤ Vej [a] and ∃b ∈ [1, n] such that

Vei [b] < Vej [b]. Henceforth, we use the notation ≺ between

two events and < between their corresponding vector times-

tamps interchangeably.

B. Background

An interval at a process Pi is the time duration in which

the local predicate is true. Due to the lack of synchronized

physical clocks at each process, the start and end events of

an interval x, denoted as min(x) and max(x), respectively,

are identified by vector clocks [14], [15]. The detection

of either Possibly(Φ) or Definitely(Φ) is to identify a set

of intervals, containing one interval per process in which

the local predicate is true, such that a certain condition is

satisfied within this set. In [8], [7], [16], it was shown that

the conditions to be satisfied for Possibly(Φ) or Definitely(Φ)
to hold within a set X of intervals are as follows:

Possibly(Φ) : ∀xi, xj ∈ X,max(xi) �≺ min(xj) (1)

Definitely(Φ) : ∀xi, xj ∈ X,min(xi) ≺ max(xj) (2)

Sink process P1 locally maintains n queues, Q1, Q2, . . . ,
Qn. Whenever a new interval x occurs at some process

Pi, Pi sends the vector clock timestamps corresponding to

min(x) and max(x) to P1. P1 then enqueues the interval

x onto queue Qi. By tracking the intervals from all n

processes, P1 checks the heads of all n queues using

the condition in (1) or (2) to see whether Possibly(Φ)
or Definitely(Φ) is detected. If any interval is found to

violate those conditions, P1 deletes this interval from its

corresponding queue.

III. HIERARCHICAL DETECTION

A. Basic Idea and Challenges

Our hierarchical detection algorithm works in the follow-

ing way. We assume a spanning tree is already constructed

in the network. This algorithm utilizes this spanning tree to

establish a hierarchy for detecting Definitely(Φ). Each non-

leaf nodes in the tree only maintains queues to track intervals

that are sent by its children or that occur locally. Whenever

a new interval occurs at a leaf node, it is transmitted to the

leaf node’s parent which tries to detect the predicate within

the subtree rooted at itself. If the predicate is detected in the

subtree, the root of the subtree aggregates the set of intervals

within which the predicate is detected, and transmits this

aggregated interval to its parent. The aggregated interval

is treated as a normal interval at the higher levels in the

hierarchy, and is used for detecting the predicate within

an even larger subtree. Once an aggregated interval is

sent to the parent (higher level process), the parent detects

occurrences of the predicate within the larger subtree rooted

at itself using aggregated intervals received from its children,

and generates the aggregated intervals for its level once

a satisfaction of the predicate is detected. Whenver the

predicate is detected at some subtree, the root of that subtree

will perform the operations necessary for doing repeated

detection within that subtree. The same procedure repeats

at each level of the hierarchy. At the root of the spanning

tree, the predicate is detected for the entire network.

From the above description, we can see that the difficulties

in realizing this algorithm are: (i) how to aggregate a

set of intervals, and (ii) how to do repeated detection of

Definitely(Φ) using aggregated intervals from a lower level

in the hierarchy.

In [7], the authors outlined an approach to do hierarchical

detection of Definitely(Φ) by trying to address (i) above.

However, their solution lacks in the following 2 aspects.

1) In [7], the authors assumed a specific partial order in

a set of intervals where Definitely(Φ) is detected. This

P
2   

P
3  

 

P
1   

P
4   

Figure 1. The approach in [7] works only if the intervals are nested.
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partial order requires that the intervals in the set can be

ordered into x1, x2, . . . , xk such that ∀i, j ∈ [1, k], if

i < j then min(xi) ≺ min(xj)∧max(xj) ≺ max(xi).
As a result, their solution requires the set of intervals

within which Definitely(Φ) is detected to be nested,

meaning that the intervals in the set establish a relation

as shown in Figure 1. However, the relation shown in

Figure 1 will not always hold in a set of intervals

satisfying Definitely(Φ), as we will show in Figure 3.

2) The approach outlined in [7] does not do repeated

detection. Being able to detect all occurrences of

the predicate at each level is essential to hierarchical

detection. This statement is justified using Figure 2.

We assume the hierarchy is formed as shown in Figure

2(a). From Figure 2(b), we can observe that the first set of

intervals detected at P2 satisfying Definitely(Φ) consists of

x1 and x2, and its aggregation will be sent to the process in

the higher level, i.e., P3. In addition to receiving this solution

set, after P3 receives interval x5 from P4 and interval

x4 occurs at P3, P3 will start the detection at the higher

level. However, Definitely(Φ) cannot be detected in the set

{x1, x2, x4, x5}. If only a one-time detection algorithm runs

at P2, which is the case in the approach in [7], then the only

set of intervals P2 ever reports to P3 is {x1, x2} and the later

occurrence of the predicate for P1 and P2 in the set {x1, x3}
will be ignored. Therefore, the set {x1, x3, x4, x5} within

which the predicate could be detected for all 4 processes
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Figure 2. (a) The spanning tree consists of 4 processes. (b) Timing diagram
showing the relation between intervals from those 4 processes. (c) The
spanning tree reconnected after a node failure happens at process P3.

will never be detected by P3. This example shows that being

able to find all occurrences of the predicate at each level is

necessary to the hierarchical detection algorithm.

Without a proper way to aggregate intervals and without

a way to repeatedly detect predicates, the approach given

in [7] will fail to detect the predicates at the intermediate

nodes as well as at the top of the hierarchy.

B. Example Scenario of Our Algorithm

In this subsection, still using Figure 2, we show how our

algorithm handles this example scenario.

When Definitely(Φ) is first detected in {x1, x2} at P2

for processes P1 and P2, our algorithm will identify one

interval from this set such that it will never form part of

a future solution set detected by P2. After identifying such

an interval, in this case x2, P2 will remove x2 from its

corresponding queue after sending the aggregated interval

of set {x1, x2} to P3. P2 then continues the detection for

later occurrences of the predicate. When interval x3 finishes,

P2 will detect a second occurrence of the predicate within

the subtree rooted at P2 in the set {x1, x3}. P2 sends

another aggregated interval of this set to P3. At process

P3, after local interval x4 finishes and P3 receives the

aggregation of {x1, x2} from P2 and the interval x5 from

P4, P3 will attempt to detect the predicate at its level. The

first attempt will fail, since the set {x1, x2, x4, x5} does

not satisfy Definitely(Φ). As part of this failed attempt, P3

will remove the aggregation of {x1, x2} from its queue.

When P3 receives the aggregation of {x1, x3} from P2, a

second attempt to detect the predicate begins. This time, the

predicate is detected in the set {x1, x3, x4, x5}. Thus the

predicate is detected for all 4 processes.

If P3 fails after interval x4 finishes, our algorithm will

reconnect the spanning tree. The resulting tree could be the

one shown in Figure 2(c). In this case, P2 will report its later

aggregated interval of the set {x1, x3} to its new parent,

P4. P4 will still be able to detect the predicate in the set

{x1, x3, x5} for the remaining processes P1, P2 and P4. The

failure of P3 will not affect the detection of the predicate

in the remaining processes because what is lost is only the

local intervals from P3. In contrast, the only other repeated

detection algorithm [12], which is centralized, will fail to

detect future occurrences of the predicate if the sink fails

because all intervals sent to the sink will be lost.

From this example, we can observe that the key aspects

of our hierarchical detection algorithm lie in

1) the way to aggregate a solution set, and

2) the way to identify at least one interval from a solu-

tion set for removal to ensure progress for repeated

detection

at each level in the hierarchy. In the rest of this section, we

will show how we solve these problems.
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C. Aggregation of Intervals to Detect Definitely(Φ)

In [7], [16], it was shown that for Definitely(Φ) to hold

in a set X of intervals, the following needs to be true

∀xi, xj ∈ X,min(xi) < max(xj)

This property was named as overlap(X). Our objective is to

decentralize the detection of Definitely(Φ). We first consider

the scenario where Definitely(Φ) has been detected in each

of the two sets of intervals X and Y and we want to detect

Definitely(Φ) in X ∪ Y .

Assume now, we have 4 processes in the network with

their timing diagram shown in Figure 3(a). The intervals

occurring at each process are shaded. The vector clock

timestamps identifying the lower and higher bound of each

interval are also illustrated in the figure. Intervals x1 from

process P1 and x2 from process P3 form set X , while

intervals y1 and y2 from process P2 and P4, respectively,

form set Y . It can be checked that both overlap(X) and

overlap(Y ) are true.

Now, to show that Definitely(Φ) is also detected in all 4

processes, or equivalently overlap(X ∪Y ), we need to show

∀i, j ∈ {1, 2},min(xi) < max(yj) ∧min(yj) < max(xi)
(3)

From Figure 3(b), we can observe that, if we take the

component-wise maximum of min(x1) and min(x2) (illus-

trated in bold) to form a new vector u, then the first conjunct

in Eq. (3) is equivalent to

∀j ∈ {1, 2}, u < max(yj) (4)

Furthermore, if we take the component-wise minimum of

max(y1) and max(y2) (illustrated in underline) to form

another new vector r, then Eq. (4) is equivalent to u < r.

The same operations can also be applied to show the second

conjunct of Eq. (3) using aggregated vectors v and q.

This gives the inspiration to aggregate a set of intervals

into a single one to detect Definitely(Φ) in a larger set of

intervals. For sets X and Y in Figure 3, their aggregated

intervals are denoted as 
(X) and 
(Y ), respectively. The

way to aggregate those two sets using component-wise

minimum or maximum is shown in Figure 3(b).

Formally, for an arbitrary set X of intervals, for which

overlap(X) is true, we define an aggregation function 
(X)
of intervals in X , in terms of vector timestamps, as:

∀i ∈ [1, n],min(
(X))[i] = max
x∈X

(min(x)[i]) (5)

∀i ∈ [1, n],max(
(X))[i] = min
x∈X

(max(x)[i]) (6)

With this formal definition of the aggregation function 
,

we show the following theorem.

Theorem 1. Let X , Y and Z be sets of intervals, such
that Z = X ∪ Y . Then overlap(Z) iff overlap(X) ∧
overlap(Y ) ∧ overlap(
(X),
(Y )).

Proof: (⇒) overlap(X) and overlap(Y ) are clearly

true since X,Y ⊆ Z. Now consider an interval y ∈
Y . Since overlap(Z), ∀x ∈ X,min(x) < max(y).
Thus min(
(X)) < max(y). Since this is true for all

y ∈ Y , min(
(X)) < max(
(Y )). The same deduc-

tion applies to min(
(Y )) < max(
(X)). So, we have

overlap(
(X),
(Y )).
(⇐) From overlap(
(X),
(Y )) we have min(
(X)) <

max(
(Y )) ∧ min(
(Y )) < min(
(X)). For any inter-

val x ∈ X , we have min(x) < min(
(X)). For any

interval y ∈ Y , we have max(
(Y )) < max(y). Since

min(
(X)) < max(
(Y )), we have for any x ∈ X and

any y ∈ Y , min(x) < max(y). Similarly, we can deduce

that for any x ∈ X and any y ∈ Y , min(y) < max(x).
Since we already have overlap(X) and overlap(Y ), now

we have overlap(Z).
Theorem 1 shows that we can aggregate a set of intervals

X into a single interval 
(X) which can represent the entire

set in detecting Definitely(Φ) within an even larger set of

intervals. 
(X) is uniquely identified by min(
(X)) and

max(
(X)). These are not events but cuts in execution

(E,≺), identified by their vector timestamps.

Theorem 1 only covers the scenario of two sets of inter-

vals and their union. In the spanning tree, some processes

may have more than 2 children. Below, we extend Theorem

1 to scenarios involving more than two sets of intervals.

Lemma 1. Let X1, X2, . . . , Xd be d sets of in-
tervals, and Z be the union of all d sets. Thus
Z = ∪d

i=1Xi. Then overlap(Z) iff ∧d
i=1overlap(Xi) ∧

overlap(
(X1),
(X2), . . . ,
(Xd))

Proof: (⇒) ∧d
i=1overlap(Xi) is clearly true since

Xi ⊂ Z. Since overlap(Z), we have ∀i, j ∈
[1, d], overlap(Xi ∪ Xj). Thus, according to Theorem 1,

we have ∀i, j ∈ [1, d], overlap(
(Xi),
(Xj)). This means,

∀i, j ∈ [1, d],min(
(Xi)) < max(
(Xj)). Thus, we have

overlap(
(X1),
(X2), . . . ,
(Xd))
(⇐) Since ∧d

i=1overlap(Xi) ∧ overlap(
(X1),
(X2),
. . . ,
(Xd)), we have ∀i, j ∈ [1, d], overlap(Xi∪Xj). This

means, by picking any two intervals y1, y2 from Z, it is

always true that min(y1) < max(y2). This is because there

will always be a pair of i, j ∈ [1, d], such that y1 ∈ Xi and

y2 ∈ Xj . So, we have overlap(Z).
For our hierarchical detection algorithm, each process Pi

in the spanning tree detects Definitely(Φ) within the subtree

rooted at itself. Once the predicate is detected, Pi aggregates

the set of intervals within which the predicate is detected

using 
 and sends the aggregated interval to its parent.

At higher levels in the spanning tree, the predicate within

the subtree will be detected based on aggregated intervals

received from children processes. Lemma 1 ensures that, by

testing the overlap property on the aggregated intervals, the

predicate can be detected within a larger set of intervals. At

higher levels, the aggregation function will also be applied
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Figure 3. Example showing the aggregation of intervals for detecting Definitely(Φ). (a) The timing diagram of the system is given. An interval from
each process is marked in shade along with the vector clock timestamps identifying the lower and higher bounds. (b) The two sets of intervals X and Y
consisting of intervals from (a) are shown. The way to aggregate each set is also illustrated. Component-wise maximums among all lower bounds in the
same set are marked in bold while the component-wise minimums among all higher bounds in the same set are marked in underline.

to the aggregated intervals. However, we notice that, for two

sets of intervals X and Y ,


(
(X),
(Y )) = 
(X ∪ Y ) (7)

So, applying the aggregation function on aggregated inter-

vals is equivalent to applying it on the union of all sets.

D. Repeated Detection

In [12], the author showed how repeated detection can

be done in the centralized Definitely(Φ) detection algorithm.

Basically, repeated detection requires identifying a certain

interval from a solution set such that this single interval

cannot be part of a future solution set, and then removing

this interval from the corresponding queue.

Doing the same in the hierarchical detection algorithm is

more complex. In the hierarchical algorithm, the detection

takes place at each level. At higher levels, the solution set

consists of both aggregated intervals and non-aggregated

intervals. Each aggregated interval represents a solution set

at the lower level. Identifying a certain interval for removal

now is to identify a solution set that cannot be part of a

future solution at a higher level, and removing an aggregated

interval x in the solution set will remove all the intervals

aggregated by x. This is very different from the situation

in the centralized algorithm in which the sink only needs

to consider non-aggregated intervals. Below, we show how

repeated detection can be done in the hierarchical detection

algorithm.

First, for aggregated intervals generated at the same

process, we have

Theorem 2. For an aggregated interval 
(X) generated
at process Pa and a later aggregated interval 
(X ′) gen-
erated at the same process, min(
(X)) < max(
(X)) <
min(
(X ′)) < max(
(X ′)).

Proof: Since 
(X) is an aggregated interval, the

set of intervals X it aggregates satisfy the condition

overlap(X). Thus ∀xi, xj ∈ X,min(xi) < max(xj).
Also, according to the definition in Eq. (5), we know

that the elements in min(
(X)) and max(
(X)) are

equal to the component-wise maximum or minimum

among all min(xi) and max(xi), respectively. Since

∀xi, xj ∈ X,min(xi) < max(xj), we have ∀xi, xj ∈
X, ∀l ∈ [1, n],min(xi)[l] ≤ max(xj)[l]. Thus, ∀l ∈
[1, n],min(
(X))[l] ≤ max(
(X))[l]. So, min(
(X)) <
max(
(X)). The same can also be shown for 
(X ′).

Since 
(X ′) is generated after 
(X), it means X ′ is a

solution set within the subtree rooted at Pa that occurs after

the solution set X . Thus, there exists at least one interval x′b
in X ′, such that x′b occurs after the corresponding interval

xb in X which comes from the same process. So, we have

max(xb) < min(x′b). Also, according to the definition in

Eq. (5), we know that ∀xi ∈ X, ∀x′i ∈ X ′,max(
(X)) <
max(xi) ∧ min(x′i) < min(
(X ′)). Thus, max(
(X)) <
min(
(X ′)).

For any two intervals x and x′ that occur (local intervals)

or are generated (aggregated intervals) at the same process,

if max(x) < min(x′), we call x′ a successor of x and denote

it as succ(x). Theorems 1 and 2 prove that the aggregated

intervals are treated just as the non-aggregated intervals at

the higher levels in the hierarchy. Now we show how we

can identify an interval, aggregated or not, from a solution
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set such that it can be safely removed.

In order for an interval xi in a solution set to be part of a

future solution set, there needs to be at least one interval xj

from the same solution set, such that overlap(xi, succ(xj))
is true. From [12], we know that this is equivalent to

min(succ(xj)) < max(xi) (8)

Then, if for all interval xj(j �= i) from the solution set X ,

Eq. (8) is false, we have that overlap(xi, succ(xj)) is false

for all xj(j �= i) from the solution set. Thus xi can be safely

removed from the head of the queue. So, we have

remove xi iff

∀xj ∈ X(j �= i),min(succ(xj)) �< max(xi) (9)

Since max(xj) < min(succ(xj)), from [12], we know the

test condition in Eq. (9) can be approximated to

remove xi iff ∀xj ∈ X(j �= i),max(xj) �< max(xi) (10)

Since we do not know the values in min(succ(xj)) until

that interval gets reported from the lower level, in order

to identify the interval for removal as soon as possible,

the approximated condition in Eq. (10) is what we use to

prune the queues. Although it is only an approximation, we

now show that it is actually correct and capable of always

identifying at least one interval for removal.

Theorem 3. (Safety) Once a solution set X is detected at
any process in the hierarchy, only intervals xi ∈ X (xi may
be aggregated or not) that cannot be part of another solution
are removed from their queues.

Proof: Since Eq. (10) ⇒ Eq. (9), any interval removed

using the condition in Eq. (10) will also satisfy the condition

in Eq. (9). Thus, those intervals cannot be part of any

future solution set. Therefore, even if Eq. (9) is only an

approximation, it still guarantees safety.

Theorem 4. (Liveness) For any solution set X detected at
any process in the hierarchy, at least one interval (aggre-
gated or not) gets removed from its queue.

Proof: Assume that the condition in Eq. (10) cannot

be satisfied by some solution set X . Then, it means that

for all intervals xi ∈ X , aggregated or not, there exists

another interval xj ∈ X , such that max(xj) < max(xi).
This condition will eventually cause one interval xk to

satisfy max(xk) < max(xk), which is impossible. So the

assumption is false, and thus the condition in Eq. (9) holds

for any solution set. Thus, Eq. (9) guarantees liveness.

With the safety and liveness of the condition in Eq. (10)

proved, we can safely use it to prune the queues so that

future occurrences of the predicate at each level in the

hierarchy can be repeatedly detected.

E. Hierarchical Detection Algorithm

With Theorems 1, 3 and 4, we have the theoretical foun-

dation for the hierarchical detection algorithm we outlined in

Section III-A. The algorithm is listed in Algorithm 1. Each

process in the spanning tree tracks the intervals occurring

locally and those sent from its children. The intervals sent

from the child process can be non-aggregated intervals or

aggregated ones, depending on whether the child is a leaf

node. By checking the intervals received in the queues (Lines

Algorithm 1 Hierarchical decentralized detection of con-

junctive definitely predicates, adapted from [12] (Code for

Pi)

number of children: l

queue for Pi: Q0 ←⊥
queues for children: Q1, Q2, . . . , Ql ←⊥
set of int: updatedQueues, newUpdated ← {}
int: count
On receiving an interval from child Pj at Pi:

1. Enqueue the interval onto queue Qj ;

2. if (number of intervals on Qj is 1) then
3. updatedQueues = {j};
4. while (updatedQueues is not empty)

5. newUpdated = {};
6. for each a ∈ updatedQueues do
7. if (Qa is not empty) then
8. x = head of Qa;

9. for b = 0 . . . l(b �= a) do
10. if (Qb is not empty) then
11. y = head of Qb;

12. if (min(x) �< max(y)) then
13. add b to newUpdated;

14. if (min(y) �< max(x)) then
15. add a to newUpdated;

16. Delete heads of all Qc where c ∈ newUpdated;

17. updatedQueues = newUpdated;

18. if (all queues are non-empty) then
19. if (Pi has parent in the spanning tree) // non-root

20. report �(heads of all queues) to parent;

21. else // root

22. report predicate detected.

23. for (a = 0 . . . l) do
24. count = 0;

25. for (b = 0 . . . l(b �= a)) do
26. for (c = 1 . . . n) do
27. if (max(head(Qa))[c] < max(head(Qb))[c]) then
28. count++;

29. break;

30. if (count = l) then
31. add a to newUpdated;

32. Delete heads of all Qa where a ∈ newUpdated;

33. updatedQueues = newUpdated;
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(1)-(17)), each process attempts to detect the predicate

within the subtree rooted at itself. Once a solution set is

found (Lines (18)), the root of the subtree aggregates the

set and sends it to its parent (Lines (19)-(20)). At the higher

level in the hierarchy, the parent determines if the predicate

can be detected in an even larger subtree rooted at itself

by repeating the same detection procedure (Lines (1)-(17)).

When the root of the spanning detects a solution set, a

satisfaction of the predicate is detected within the whole

network (Lines (21)-(22)).

Each time the predicate is detected at some process,

Lines (23)-(33) prune the heads of the queues so that

future occurrences of the predicate at the same level can

be repeatedly detected. For each interval xi in the solution

set X , this procedure checks xi against all other intervals xj

in X to see if ∀xj ∈ X(j �= i),max(xj) �< max(xi). Each

time an interval xi is to be checked, a counter is initialized to

0. For each interval xj(j �= i), if max(xj) �< max(xi) then

the counter is increased by 1. After xi is checked against

all other intervals xj , if the counter equals l, which is the

total number of intervals in the solution set X minus 1,

then interval xi satisfies the condition in Eq. (10). Thus,

we can safely remove xi from the corresponding queue. In

Algorithm 1, the intervals to be processed can be aggregated

intervals. Thus when comparing the vector timestamps of

two intervals (Lines 12, 14, 26-27), we cannot compare them

in O(1) time as we can do with the normal intervals. This

will affect the time complexity of this algorithm, as we will

show in Section IV-C.

Although Algorithm 1 has the same basic structure as the

centralized algorithm given in [12], it is essentially different.

Algorithm 1 detects Definitely(Φ) in a hierarchical manner

and performs tests on aggregated intervals. Instead of one

central server process maintaining n queues, each process in

Algorithm 1 maintains queues only for itself and its children

in the spanning tree. When the predicate is detected at non-

root processes, the solution set is aggregated for processes

in the higher level to detect the predicate in a larger area.

F. Dealing with Node Failures

When process Pi fails, the local queue in Pi’s parent

Pj corresponding to Pi will not be updated further. Also,

subtrees rooted at Pi’s children will be disconnected from

the spanning tree. Thus, a mechanism to detect node failures

in the spanning tree is needed. This can be achieved by

assuming that each process in the spanning tree sends heart-

beat messages to its parent and children. So, when a process

Pi fails, both its parent and children will stop receiving

heart-beat messages from Pi and know about Pi’s failure.

Pi’s parent Pj will remove its local queue corresponding

to Pi and keep detecting the predicate with the aggregated

intervals from the remaining children. Each subtree rooted

at each of Pi’s children will reconnect itself to the system-

wide spanning tree by establishing a link between a node in

the subtree and its neighbor which is still in the spanning

tree. After this topology change, nodes having new child

processes will create a new local queue to receive aggregated

intervals reported from each new child and detect predicate

within the new subtree. Nodes that lose children processes

will remove the corresponding local queues. This is illus-

trated in Section III-B and Figure 2(a), (c).

Although these two operations change the spanning tree

each time a node fails, due to the fact that the detection of

the predicate happens at each level in the spanning tree,

the failure of Pi will not affect the continuation of the

monitoring of the predicate within the rest of the network

and Theorems 1, 3 and 4 ensure the correctness of further

detection of the predicate within the remaining processes.

IV. COMPLEXITY

Three metrics: space complexity, time complexity and

message complexity, are used in the complexity analysis,

which is done in terms of the following parameters:

• n: the number of nodes in the network

• p: the maximum number of intervals per process

• d: the maximum number of children any process in the

spanning tree can have

• h: the height of the spanning tree

• α: the probability that intervals from d children overlap

and can be aggregated as per Eq. (5) at one higher level.

Table I summarized the results. Notice that n = dh.

A. Message Complexity

In the hierarchical detection algorithm, the messages are

transmitted along the edges of the spanning tree. For the

leaf nodes in the spanning tree, each time an interval occurs

locally, it sends this interval to its parent. A non-leaf node

only sends one aggregated interval to its parent once it

detects the predicate within the subtree rooted at itself.

At a leaf node (level 1), all intervals occurring locally

are sent to its parent. At level i, the number of aggregated

intervals generated by a single process is dα times the

number of intervals received from any child in level i − 1.

This can be justified using the reasoning in [12]. Each time

an aggregated interval is generated at a certain process, the

predicate is detected within the corresponding subtree.

With the above analysis, we know that at level i,
αi−1di−1p number of aggregated intervals will be sent to

level i+1. Then, we can derive the total number of messages

transmitted in the system for Algorithm 1. For a spanning

tree of degree d and height h,

total # of msgs =

h−1∑

i=1

dh−ipdi−1αi−1

= pdh−1 1− αh−1

1− α
(11)

We now compare with the message complexity of the cen-

tralized repeated detection algorithm [12]. Notice that each
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message in hierarchical detection is transmitted only 1 hop,

always to the immediate parent. For a message that traverses

h hops in a wired or wireless network, it is equivalent to h
point-to-point messages, since the communication channels

are occupied h times. Thus, when running the centralized

repeated detection algorithm in the same network where

the sink collects intervals from the other processes via a

spanning tree of degree d and height h, we need to account

for the cost coming from each message having to traverse

several hops to reach the sink.

In the centralized algorithm [12], messages sent from level

i need to traverse h− i hops to reach the sink. Furthermore,

each local interval needs to be transmitted all the way to

the sink. So at level i, across all nodes at that level in the

spanning tree, g(i) = pdh−i(h− i) messages are generated

by the centralized algorithm. We can thus deduce the total

number of messages generated by the centralized repeated

detection algorithm [12].

total # of msgs =

h−1∑

i=1

pdh−i(h− i)

= ph

h−1∑

i=1

dh−i − p

h−1∑

i=1

idh−i (12)

Let k =
∑h−1

i=1 idh−i, then

dk =
h−1∑

i=1

idh−i+1

(d− 1)k =

h∑

i=2

di + (h− 1)d

=
d2(1− dh−1)

1− d
+ (h− 1)d

k =
dh+1 + d2h− 2d2 − dh+ d

(d− 1)2
(13)

Substituting Eq. (13) into Eq. (12), we have

total # of msgs = p
(dh − 2d)(dh− d− h)− d

(d− 1)2
(14)

Figures 4 and 5 compare the message complexity between

Algorithm 1 (Eq. (11)) and the centralized repeated detection

algorithm [12] (Eq. (14)) with different parameters. In Figure

4, d = 2 and α is set to 0.1 and 0.45. In Figure 5, α takes the

same values while d is set to 4. From these two graphs, we

can observe that for the same p, the height h and degree d
of the spanning tree, or equivalently the size of the network,

impacts the total number of messages. Also, with a smaller

α, the number of messages decreases. Furthermore, observe

that p is a linear factor in both Eq. (11) and Eq. (14). So, if

we fix other parameters, as p increases, the total number of

messages also increases linearly. As a conclusion, we can see

that the hierarchical detection algorithm has a better message

complexity comparing to the centralized repeated detection
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algorithm, especially when the system is large-scale.

B. Space Complexity

In hierarchical detection, each process other than the leaf

nodes only needs to maintain O(d) queues. The number of

intervals in the local queue Q0 is O(p). Also, each process

needs to store the aggregate intervals from its O(d) children.

In the worst case, the space complexity is the number of

intervals in all the nodes. Eq. (11) gives the total number of

aggregated intervals. Observe that n = dh. Thus, the total

number of aggregated intervals is affected by 1−αh−1

1−α , which

is
∑h−1

i=1 αi−1 and is bounded by h− 1. Since n = dh, we

know 1−αh−1

1−α is O(log(n)) in the worst case.

Furthermore, for a particular predicate Definitely(Φ) to be

detected in a network, α can be treated as a constant since

α is only related to the predicate to be detected and the

execution of the distributed system. Thus 1−αh−1

1−α is O(1).
1−αh−1

1−α only becomes large when α→ 1 and h is very large.

This means that almost all attempts to detect the predicate

at every level of the hierarchy will succeed in a large-scale

network. This is an impractical assumption. For a practical

value of α, even as large as 0.5, 1−αh−1

1−α is still less than
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or equal to 2 in this particular case. For impractical values

of α, 1−αh−1

1−α will be bounded by min(h, 1
1−α ). Thus, we

assume that the total number of aggregated intervals stored

in all processes is O(pn).
In addition, each process will store its local O(p) in-

tervals, and that is an additional O(pn) intervals across

the whole network. Since the storage size of both regular

intervals and aggregated intervals is O(n), the storage cost

of the hierarchical detection algorithm is O(pn2), distributed

across all the nodes in the network.

Comparing with the centralized repeated detection algo-

rithm [12], which incurs an O(pn2) storage cost at the

sink/root of the spanning tree, hierarchical detection algo-

rithm does not place all the storage cost at a single process,

which makes it suitable for large-scale systems where a

single process cannot afford storing all the data.

C. Time Complexity

From the previous subsection, we know that there are

O(pn) aggregated intervals and O(pn) non-aggregated in-

tervals stored across all nodes in the network. When running

Algorithm 1, each node needs to check all intervals stored

locally (Lines (1)-(22)) to detect Definitely(Φ). Since the

total number of intervals is O(pn), and each interval will be

compared with O(d) other intervals with each comparison

taking O(n) time, Lines (1)-(22) in Algorithm 1 will incur

an O(dn2p) time complexity distributed across all the nodes

in the network. For Lines (23)-(33), each time the predicate

is detected at some node, this part of the code will be

executed. Since Lines (23)-(33) compare the heads of O(d)
queues, each time Lines (23)-(33) execute, they will take

O(d2n) time. Since the total number of aggregated intervals

is O(pn) across all nodes, the maximum number of times the

predicate can be detected across all levels in the spanning

tree is O(pn). Thus, Lines (23)-(33) incurs an O(d2n2p)
time complexity across all iterations and all nodes in the

network. So, in total, the time complexity of the hierarchical

detection algorithm is O(d2n2p), spread across all n nodes.

In a large-scale network running the hierarchical detection

algorithm, h > 2, otherwise the algorithm becomes a

centralized algorithm. Since n = dh, we infer that n > d2.

Thus, comparing the hierarchical detection algorithm with

the centralized repeated detection algorithm, which incurs

an O(pn3) time complexity, the hierarchical detection al-

gorithm has a lower time complexity, especially when h is

large. Furthermore, this time complexity is distributed across

all nodes, which is not the case in the centralized algorithm.

V. CONCLUSIONS

In this paper, we proposed the first decentralized hierar-

chical algorithm that repeatedly detects all occurrences of

Definitely(Φ) for a conjunctive predicate Φ. Such an algo-

rithm is essential for large-scale systems where individual

nodes have limited computation resources and are subject to

failure. Our algorithm detects the predicate at each level in

the hierarchy, and thus is able to detect a partial predicate

of the global predicate. This enables our algorithm to easily

resume the detection after a node failure. Furthermore,

comparing with the only other algorithm capable of doing

repeated detection [12], our algorithm distributes a lower

time cost, and the same space cost, across all processes in

the network, and reduces the number of control messages

significantly.

REFERENCES

[1] M. Shen, A. Kshemkalyani, and A. Khokhar, “Detecting tree
distributed predicates,” 2012 41st International Conference on
Parallel Processing Workshops (ICPPW), pp. 598–599, 2012.

[2] M. D. Rosa, S. Goldstein, P. Lee, P. Pillai, and J. Campbell,
“Programming modular robots with locally distributed pred-
icates,” Proceedings of the IEEE ICRA, 2008.

[3] M. D. Rosa, S. Goldstein, J. C. P. Lee, and P. Pillai, “De-
tecting locally distributed predicates,” ACM Transactions on
Autonomous and Adaptive Systems, June 2011.

[4] A. Kshemkalyani and M. Singhal, Distributed Computing:
Principles, Algorithms, and Systems. Cambridge University
Press, 2008.

[5] R. Cooper and K. Marzullo, “Consistent detection of global
predicates,” Proceedings of the ACM/ONR Workshop on Par-
allel and Distributed Debugging, pp. 163–173, 1991.

[6] ——, “Consistent detection of global predicates,” ACM SIG-
PLAN Notices. Vol. 26., pp. 167–174, 1991.

[7] V. K. Garg and B. Waldecker, “Detection of strong unstable
predicates in distributed programs,” IEEE Transactions on
Parallel & Distributed Systems 7, 12, pp. 1323–1333, 1996.

[8] ——, “Detection of weak unstable predicates in distributed
programs,” IEEE Transactions on Parallel & Distributed
Systems 5, 3, pp. 299–307, 1994.

[9] V. Garg and C. Chase, “Distributed algorithms for detecting
conjunctive predicates,” Proc. 15th IEEE ICDCS, pp. 423–
430, 1995.

[10] M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal, “Efficient
distributed detection of conjunctions of local predicates,”
IEEE Trans. Software Engineering, 24, 8, pp. 664–677, 1998.

[11] P. Chandra and A. Kshemkalyani, “Distributed algorithm to
detect strong conjunctive predicates,” Information Processing
Letters, 87, 5, pp. 243–249, 2003.

[12] A. Kshemkalyani, “Repeated detection of conjunctive predi-
cates in distributed executions,” Information Processing Let-
ters, 111, 9, pp. 447–452, 2011.

[13] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM 21, 7, pp. 558–565, 1978.

[14] F. Mattern, “Virtual time and global states of distributed sys-
tems,” Proceedings of the Parallel and Distributed Algorithms
Conference, pp. 215–226, 1988.

[15] C. Fidge, “Logical time in distributed computing systems,”
IEEE Computer, pp. 28–33, Aug, 1991.

[16] A. Kshemkalyani, “Temporal interactions of intervals in dis-
tributed systems,” Journal of Computer and System Sciences,
52, 2, pp. 287–298, 1996.

1469

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:42:12 UTC from IEEE Xplore.  Restrictions apply. 


