
Information Processing Letters 111 (2011) 447–452
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Repeated detection of conjunctive predicates in distributed executions

Ajay D. Kshemkalyani

University of Illinois at Chicago, Chicago, IL 60607, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 September 2010
Received in revised form 28 December 2010
Accepted 23 January 2011
Available online 4 February 2011
Communicated by G. Chockler

Keywords:
Distributed computing
Predicate detection
Intervals
Monitoring
Causality
Global state

Given a conjunctive predicate φ over a distributed execution, this paper gives an algorithm
to detect all interval sets, each interval set containing one interval per process, in which
the local values satisfy the Definitely(φ) modality. The time complexity of the algorithm
is O (n3 p), where n is the number of processes and p is the bound on the number of
times a local predicate becomes true at any process. The paper also proves that unlike the
Possibly(φ) modality which admits O (pn) solution interval sets, the Definitely(φ) modality
admits O (np) solution interval sets. The paper also gives an on-line test to determine
whether all solution interval sets can be detected in polynomial time under arbitrary fine-
grained causality-based modality specifications.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Predicate detection over a distributed execution is im-
portant for various purposes such as monitoring, syn-
chronization and coordination, debugging, and industrial
process control. Due to asynchrony in message transmis-
sions and in local executions, different executions of the
same distributed program go through different sequences
of global states. We often need to make assertions about
all states in all possible executions of a distributed pro-
gram. Therefore, two modalities have been defined under
which a predicate φ can hold for a distributed execu-
tion [4].

• Possibly(φ): There exists a consistent observation of
the execution such that φ holds in a global state of
the observation.

• Definitely(φ): For every consistent observation of the
execution, there exists a global state of it in which φ

holds.

E-mail address: ajay@uic.edu.
0020-0190/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2011.01.016
An online centralized algorithm to detect Possibly(φ) and
Definitely(φ) for an arbitrary predicate φ was given in [4].
The algorithm works by building a lattice of global states.
Although it detects generalized global predicates, the time
complexity of the algorithm is en , where e is the max-
imum number of events on any process, and n is the
number of processes. To reduce the complexity of the al-
gorithm, researchers focused on special classes of global
predicates. Conjunctive global predicates form a popular
class for many applications [11], and they can be detected
under these modalities in polynomial time. This paper con-
siders only conjunctive predicates.

For conjunctive predicates, there are time intervals at
each process during which the local predicate is true.
A global solution under the Possibly or Definitely modal-
ity identifies I , a set of intervals, containing one interval
per process in which the local predicate is true, such that
the intervals in I are related by the modality. During such
intervals, actual values of the variables, those in consecu-
tive local states, and those in the corresponding composite
global states, do not matter [1,5–8,17]. (Identifying each
composite global state in a set of intervals is relevant more
for non-conjunctive predicates, for which the algorithm in
[4] or more efficient techniques like computation slicing
[15,16] can be used.)

http://dx.doi.org/10.1016/j.ipl.2011.01.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:ajay@uic.edu
http://dx.doi.org/10.1016/j.ipl.2011.01.016

448 A.D. Kshemkalyani / Information Processing Letters 111 (2011) 447–452
Fig. 1. Example execution using a timing diagram to illustrate the bound on the number of solution interval sets. The message-passing is not shown.
For an execution in which a local predicate becomes
true at most p times at a process and n is the number
of processes, the best algorithms for detecting Possibly(φ)

[6] and Definitely(φ) [7] have time complexity O (n2 p) at a
central server process. Several distributed algorithms have
also been proposed, e.g., [1,5,8,17]. However, all these al-
gorithms detect only the first interval set in which φ is
satisfied under the modality.

We address the problem of identifying all solution in-
terval sets I in a distributed execution that satisfy the Def-
initely modality, not just the first solution set. This problem
arises in sensing applications where the monitor program
has to raise an alarm each time a predicate becomes true
under a certain modality. For example, (i) reset ther-
mostat to 27deg each time “motion detect-
ed” ∧ “temp > 30deg” becomes true; (ii) lock
the office_door each time “lights off” ∧
“no motion detected” becomes true; and (iii)
raise alarm each time “stock_S > 85” ∧
“commodity_C � 20” becomes true. This problem
cannot be solved by simply re-executing the algorithms
[6,7] to detect the modality (Possibly or Definitely, respec-
tively). To appreciate this, consider an example execution,
such as that in Fig. 1, in which there is no message com-
munication, or messages might be sent after each interval
but asynchronously reach other processes at the end of
the execution. In this case, it is necessary for each inter-
val to be considered as a possible candidate for inclusion
in a global solution set I . It is not hard to observe that
there are pn “interval sets” in the state–interval lattice.
Under the Possibly modality, all of these interval sets are
solutions to our problem – hence enumerating them will
cost Ω(pn) time. The current algorithm for detecting the
first solution that satisfies Possibly (running in O (n2 p)) is
clearly inadequate.

We note that the algorithm for detecting Definitely is
very similar to that for Possibly and both cost O (n2 p) to
detect the first solution set. Although we cannot polynomi-
ally detect all solution sets for Possibly, this paper proposes
an algorithm that detects every solution set that satisfies
Definitely in O (n3 p) time. We also prove that there are
only O (np) solutions (interval sets) that can satisfy the
predicate under the Definitely modality, unlike the case for
the Possibly modality which admits up to O (pn) solution
sets.

2. Model and background

We assume an asynchronous distributed system in
which n processes communicate by reliable message pass-
ing. Messages may be delivered out of order on the chan-
nels. A poset event structure model (E,→), where → is
an irreflexive partial ordering representing the causality
relation [12] on the event set E , is used as the model for
a distributed system execution. Three kinds of events are
considered: send, receive, and internal events. E is parti-
tioned into local executions at each process. Let N denote
the set of all processes. Each Ei is a totally ordered set of
events executed by process Pi . We assume vector clocks
are available [13,14]. Each process maintains a vector clock
V of size n = |N| integers, by using the following rules.
(1) Before an internal event at process Pi , the process Pi
executes V i[i] = V i[i] + 1. (2) Before a send event at pro-
cess Pi , the process Pi executes V i[i] = V i[i] + 1. It then
sends the message timestamped by V i . (3) When process
P j receives a message with timestamp T from process
Pi , P j executes (∀k ∈ [1, . . . ,n]) V j[k] = max(V j[k], T [k]);
V j[j] = V j[j]+1 before delivering the message. The times-
tamp of an event is the value of the vector clock when the
event occurs.

A conjunctive predicate φ = ∧
i φi , where φi is a pred-

icate defined on variables local to process Pi . Let us de-
fine durations of interest at each process as the durations
in which the local predicate is true. Such an interval at
process Pi is identified by the (totally ordered) subset of
adjacent events of Ei for which the predicate is true. We
use V −

i (X) and V +
i (X) to denote the vector timestamp for

interval X at process Pi at the start and the end of X , re-
spectively.

We assume that intervals X and Y occur at Pi and P j ,
respectively, and are denoted as Xi and Y j , respectively.
We also assume that there are a maximum of p intervals
at any process. For any two intervals X and X ′ that occur
at the same process, if X ends before X ′ begins, we say
that X ′ is a successor of X and denote it as X ′ = succ(X).

For intervals X and Y , we define: X ↪→ Y iff ∃x ∈
X,∃y ∈ Y , x → y. The relation ↪→ is used by the algo-
rithm to detect Definitely(φ). In terms of vector times-
tamps, Xi ↪→ Y j iff V −

i (Xi)[i] � V +
j (Y j)[i].

The following two results [7,9] are used in the context
of detecting Definitely(φ).

Theorem 1. Let φi, j = φi ∧φ j . Definitely(φi, j) holds if and only
if Xi ↪→ Y j and Y j ↪→ Xi .

Theorem 1 holds when the local predicate is false in the
initial state and final state. To uphold the theorem when φi
is true in these states, one can engineer as follows. When
φi is true in the initial state, Pi broadcasts a control mes-
sage that is received by all in their initial states, inducing

A.D. Kshemkalyani / Information Processing Letters 111 (2011) 447–452 449
type Log
start: array[1...n] of integer
end: array[1...n] of integer

queue of Log: Q 1, Q 2, . . . Q n =⊥
set of int: updatedQueues, newUpdatedQueues = ∅
int: MaxVector[1 . . .n]
int: count

When an interval begins:
Logi .start = V −

i
When an interval ends:
Logi .end = V +

i
Send Logi to P0

On receiving an interval from process P z at P0:
(1) Enqueue the interval onto queue Q z

(2) if (number of intervals on Q z is 1) then
(3) updatedQueues = {z}
(4) while (updatedQueues
= ∅)
(5) newUpdatedQueues = ∅
(6) for each i ∈ updatedQueues
(7) if (Q i is non-empty) then
(8) X = head of Q i

(9) for j = 1 to n (i
= j)
(10) if (Q j is non-empty) then
(11) Y = head of Q j

(12) if X .end[j] < Y .start[j] then // test X .end[i] < Y .start[i] for Possibly
(13) newUpdatedQueues = {i} ∪ newUpdatedQueues
(14) if Y .end[i] < X .start[i] then // test Y .end[j] < X .start[j] for Possibly
(15) newUpdatedQueues = { j} ∪ newUpdatedQueues
(16) Delete heads of all Q k , where k ∈ newUpdatedQueues
(17) updatedQueues = newUpdatedQueues
(18) if (all queues are non-empty) and (updatedQueues = ∅) then
(19) Heads of queues identify intervals that form solution set I
(20) for k = 1 to n
(21) MaxVector[k] = head(Q k).end[k]
(22) for k = 1 to n
(23) count = 0
(24) for l = 1 to n (l
= k)

(25) if head(Q k).end[l] < MaxVector[l] then
(26) count + +
(27) if count = n − 1 then
(28) newUpdatedQueues = {k} ∪ newUpdatedQueues
(29) Delete heads of all Q k , where k ∈ newUpdatedQueues
(30) updatedQueues = newUpdatedQueues

Fig. 2. On-line algorithm at the data fusion server P0 to detect all solution interval sets that satisfy Definitely for a conjunctive predicate.
the → relation. Analogously, when φi is true in the final
state (and no messages were sent since it became true), Pi

broadcasts a control message that is received by all in the
final state.

Theorem 2. For a conjunctive predicate φ , Definitely(φ) holds
if and only if Definitely(φi, j) is true for all process pairs P i and
P j in N.

Problem statement. In a distributed execution, identify
each set I of intervals, containing one interval from each
process, such that (i) the local predicate φi is true in Ii ∈ I ,
and (ii) for each pair of processes Pi and P j , Ii ↪→ I j and
I j ↪→ Ii are true, i.e., Definitely(φi, j) holds.
3. Algorithm

The algorithm is given in Fig. 2. Lines (1)–(19) include
the logic to find the first solution I for Definitely(φ), based
on [7]. This code “terminates” when the first solution is
found and the intervals at the heads of the queues form I .
However, intervals in this solution may be part of other
solutions that also satisfy Definitely(φ). The challenge for
detecting all solutions is two-fold.

1. Polynomial solvability test: To determine whether any
of these intervals at the heads of the queues can be
deleted, or need to be retained because they can all
be parts of other solutions (as is the case for Possibly).
If the head of even one queue cannot be safely deleted,

450 A.D. Kshemkalyani / Information Processing Letters 111 (2011) 447–452
then the algorithm to detect all interval sets that sat-
isfy the modality may take exponential time.

2. Identifying intervals for deletion: If any of these inter-
vals in the solution set, that are now at the heads
of their queues, can be deleted, then to identify and
delete such intervals.

Given Xi, Y j in a solution I , we have Definitely(Xi, Y j).
An interval Xi ∈ I cannot be deleted from head(Q i) if it
is potentially part of another solution, i.e., Definitely(Xi,

succ(Y j)) may potentially be true for any Y j ∈ I . Equa-
tion 1 expresses Definitely(Xi, succ(Y j)) in terms of times-
tamps of Xi and succ(Y j).

Definitely
(

Xi, succ(Y j)
)

⇔ Xi ↪→ succ(Y j) ∧ succ(Y j) ↪→ Xi

⇔ true ∧ succ(Y j) ↪→ Xi

//Xi ↪→ Y j ⇒ Xi ↪→ succ(Y j)

⇔ V −(
succ(Y j)

)[j] � V +(Xi)[j] (1)

Then, if ∀Y j(j
= i) ∈ I , the right-hand side (R.H.S.) of
Eq. (1) is false, we have that ∀ j(j
= i), succ(Y j)
↪→ Xi .
Hence Definitely(Xi, succ(Y j)) is false for all Y j ∈ I , and Xi
can safely be deleted because it cannot overlap with the
successor of any other interval in the current solution. So
we have:

dequeue
(
head(Q i)

)
iff

∀Y j(j
= i) ∈ I, V −(
succ(Y j)

)[j] > V +(Xi)[j] (2)

Eq. (2) expresses the timestamp test for deleting the
interval at the head of a queue. A drawback of this test is
that the timestamps of the successors of Y j are needed.
As we do not know the values of V −(succ(Y j))[j] for all
the future intervals succ(Y j), and we would like to prune
all the queues (e.g., Q i) as soon as possible, we use the
following fact that expresses “the start timestamp of any
successor of Y j is greater than the end timestamp of Y j ”:

V −(
succ(Y j)

)[j] > V +(Y j)[j] (3)

Eq. (3), in conjunction with the timestamp test in the
R.H.S. of Eq. (2), gives the implication:

V +(Y j)[j] > V +(Xi)[j]
⇒ V −(

succ(Y j)
)[j] > V +(Xi)[j] (4)

This implication allows us to use the following ap-
proximation, (that uses only timestamps of intervals in I ,
instead of those of all successor intervals), to determine
whether it is safe to dequeue Xi ∈ I from Q i of Eq. (2).

dequeue
(
head(Q i)

)
iff

∀Y j(j
= i) ∈ I, V +(Y j)[j] > V +(Xi)[j] (5)

The approximation of Eq. (5), expressed in terms of
timestamps of intervals, is implemented in the algorithm,
lines (20)–(30). The code of lines (18)–(30) can also be de-
centralized and used to repeatedly detect solution interval
sets in conjunction with the distributed algorithm in [1].
If the R.H.S. of Eq. (5) is satisfied, then the R.H.S. of
Eq. (2) is satisfied, and Xi is dequeued safely. On the other
hand, if the R.H.S. of Eq. (5) is not satisfied but the R.H.S.
of Eq. (2) is satisfied, then Xi is not dequeued due to the
approximation of Eq. (5) that is implemented instead of
the accurate condition of Eq. (2).

4. Correctness and complexity

The interval set forming the first solution is correctly
detected using the logic of lines (1)–(19).

Theorem 3 (Safety). Once a solution I is detected, only inter-
vals Xi ∈ I that cannot be part of another solution are deleted
from their queues.

Proof. The algorithm deletes only those intervals in lines
(20)–(30) that satisfy the R.H.S. of Eq. (5), and hence the
R.H.S. of Eq. (2). These intervals are never going to be part
of another solution. Therefore, even if the R.H.S. of Eq. (5)
is an approximation to the R.H.S. of Eq. (2), it guarantees
safety in dequeuing. �

The next solution is again found by the logic of lines
(1)–(19).

The following theorem is useful to show that all solu-
tions can be detected in polynomial time.

Theorem 4 (Liveness). For any solution set I , at least one inter-
val gets deleted from its queue.

Proof. We take recourse to a global time axis. Let Xi ∈ I
be that interval that finishes earliest and let Y j be any
other interval in the solution set I . Such an Xi must sat-
isfy Eq. (5) because ∀ j, V j[j] ticks when Y j completes and
hence Y j .end happens later in global time than Xi .end; im-
plying that Y j .end[j] � Xi .end[j]. Hence such an Xi gets
deleted in lines (20)–(30).

Therefore, even if the R.H.S. of Eq. (5) is an approxima-
tion to the R.H.S. of Eq. (2), it guarantees liveness by way
of dequeuing member(s) from I . �
Theorem 5. The number of solution sets for Definitely(φ) for a
conjunctive predicate φ is bounded by n(p − 1) + 1.

Proof. From Theorem 4, the number of solution interval
sets is bounded by the total number of intervals, viz., np.
As a solution set contains n intervals, this bound is more
accurately stated as n(p − 1) + 1.

Fig. 1 gives an example execution where this bound is
achieved. The rectangles denote the local intervals. Mes-
sages are sent and received at least once from each inter-
val to each overlapping interval, but are not depicted in
the figure to keep it simple. In this example, the intervals
numbered {x, x + 1, . . . , x + n − 1} form a solution set, for
all x ∈ [1,n(p − 1) + 1]. �
Theorem 6. All solution sets satisfying Definitely(φ) for a con-
junctive predicate φ can be detected in O (n3 p) time.

A.D. Kshemkalyani / Information Processing Letters 111 (2011) 447–452 451
Proof. Let k be the total number of steps executed, and
let s ∈ [0,n(p − 1) + 1] be the actual number of solution
interval sets. Each interval at the head of a queue incurs
a cost c of O (n) due to the role of X in line (8) and the
ensuing loop of line (9). Thus, k/c = np, the total number
of intervals, and k = O (n2 p) to find zero or one solution in
the whole execution. We refine this to account for the cost
of detecting all solution sets.

For each solution interval set I ,

• Each interval at the head of a queue incurs a cost of
O (n) due to the role of X in line (8) and the ensuing
loop of line (9). A time cost of n2 is incurred to find a
solution;

• To dequeue at least one interval from I , time cost is
n2 in lines (20)–(30).

Thus the total number of execution steps for processing
the intervals in one I are O (2n2).

Then for every c (= n) operations out of k − (2n2)s op-
erations, one interval must get deleted from the head of
its queue as it does not go towards forming a solution. We

thus have k−(2n2)s
c = np. As s � n(p − 1) + 1, we have k

maximized at k = O (n2 p) + O (n3 p) = O (n3 p).
In essence, at O (n2) cost, at least one interval gets

deleted from some solution set; as there are up to a maxi-
mum of np solution interval sets, the upper bound on time
complexity is O (n3 p). �

However, as explained by a counter-example in Sec-
tion 1, for Possibly(φ), the number of solution sets is
O (pn) even though the algorithm is very similar to that
for Definitely(φ); only the tests in lines (12) and (14) are
different as shown in the comments of Fig. 2.

5. Discussion

We now extend our analysis of the condition(s) for re-
peated detection of conjunctive predicates in polynomial
time, for a wide class of modalities, besides Possibly and
Definitely. The approach is a generalization of that in Sec-
tion 3.

Possibly and Definitely are two special cases of fine-
grained modalities on predicates, as shown in [10] using
the theory in [9]. Any pair of intervals at two processes
can be related in only one way out of a complete set �
of 40 possible orthogonal ways. These 40 relations come in
pairs; if R(X, Y) then R−1(Y , X). For each pair of processes
(Pi, P j), we can specify a set r∗

i j ⊆ � such that some rela-
tion in r∗

i j for that Pi and P j must hold in a solution. Now
consider the objective where we need to identify one in-
terval per process such that some relation in r∗

i j must hold
for each (Pi, P j) process pair. This gives rise to a prob-
lem specification space of size (240–1)Cn

2 , of which Possibly
and Definitely are only two special cases. This was formal-
ized as the problem Fine_Rel′ in [2] and a O (n2 p) time
algorithm was given to detect the solution. The theory was
further extended and distributed algorithms were given in
[3] to solve this problem. Polynomial time solutions were
possible only under a certain condition that was specified
using the prohibition function.
Definition 1. For each ri j ∈ �, prohibition function H(ri j) =
{R ∈ � | if R(Xi, Y j) is true, then ri j(Xi, succ(Y j)) is false
for all succ(Y j)}.

If for each r∗
i j , the following CONVEXITY property held,

then a polynomial time solution to problem Fine_Rel′ was
possible.

Definition 2. CONVEXITY: ∀R /∈ r∗
i j: (∀ri j ∈ r∗

i j, R ∈ H(ri j)

∨ ∀r ji ∈ r∗
ji, R−1 ∈ H(r ji)).

The CONVEXITY property was necessary and sufficient
to detect the first solution in polynomial time. We can
observe that for the Fine_Rel′ modalities, the CONVEX-
ITY property will not hold for detecting all solutions in
polynomial time. Once a solution set I is detected (us-
ing the algorithms in [2,3]), we need to be able to safely
prune at least one of the intervals in I to avoid queue
build-up, analogous to the first challenge in Section 3. De-
fine R I

i j (Xi, Y j) ∈ r∗
i j to be the relation from � that holds

between intervals Xi, Y j ∈ I . Then, we formulate the fol-
lowing analog of Eq. (2), in terms of the above theory and
without using timestamps.

dequeue
(
head(Q i)

)
iff

∀Y j(j
= i) ∈ I, R I
i j ∈

⋂

ri j∈r∗
i j

H(ri j) (6)

The interval Xi at the head of Q i can be dequeued only
if the R.H.S. of Eq. (6) holds. Informally, we can dequeue
Xi if, for every other process P j , Xi will not satisfy any
of the relations in r∗

i j with any succ(Y j) interval. Assuming

R I
i j (Xi, Y j) has been determined while detecting the solu-

tion, the additional cost of executing the test in Eq. (6) for
all i ∈ N is O (n2). Note that the test can be executed only
at run-time because we do not know beforehand which
R I

i j (Xi, Y j) ∈ r∗
i j will hold in a particular solution I . Sim-

ply using the input specification of r∗
i j and checking for

each R ∈ r∗
i j in Eq. (6), instead of checking for the actual

R I
i j (Xi, Y j) is an over-kill and gives false negatives for the

polynomial solvability test.

References

[1] P. Chandra, A.D. Kshemkalyani, Distributed algorithm to detect
strong conjunctive predicates, Information Processing Letters 87 (5)
(September 2003) 243–249.

[2] P. Chandra, A.D. Kshemkalyani, Causality-based predicate detection
across space and time, IEEE Transactions on Computers 54 (11)
(2005) 1438–1453.

[3] P. Chandra, A.D. Kshemkalyani, Data stream based global event mon-
itoring using pairwise interactions, Journal of Parallel and Distributed
Computing 68 (6) (2008) 729–751.

[4] R. Cooper, K. Marzullo, Consistent detection of global predicates, in:
Proc. ACM/ONR Workshop on Parallel and Distributed Debugging,
May 1991, pp. 163–173.

[5] V.K. Garg, C. Chase, Distributed detection of conjunctive predicates,
in: Proc. IEEE International Conference on Distributed Computing
Systems, June 1995, pp. 423–430.

[6] V.K. Garg, B. Waldecker, Detection of weak unstable predicates in dis-
tributed programs, IEEE Trans. Parallel and Distributed Systems 5 (3)
(Mar. 1994) 299–307.

452 A.D. Kshemkalyani / Information Processing Letters 111 (2011) 447–452
[7] V.K. Garg, B. Waldecker, Detection of strong unstable predicates
in distributed programs, IEEE Trans. Parallel and Distributed Sys-
tems 7 (12) (Dec. 1996) 1323–1333.

[8] M. Hurfin, M. Mizuno, M. Raynal, M. Singhal, Efficient distributed
detection of conjunctions of local predicates, IEEE Transactions on
Software Engineering 24 (8) (1998) 664–677.

[9] A.D. Kshemkalyani, Temporal interactions of intervals in distributed
systems, Journal of Computer and System Sciences 52 (2) (April
1996) 287–298.

[10] A.D. Kshemkalyani, A fine-grained modality classification for global
predicates, IEEE Transactions on Parallel and Distributed Sys-
tems 14 (8) (August 2003) 807–816.

[11] A.D. Kshemkalyani, M. Singhal, Distributed Computing: Principles, Al-
gorithms, and Systems, Cambridge University Press, 2008.

[12] L. Lamport, Time, clocks, and the ordering of events in a distributed
system, Communications of the ACM 21 (7) (July 1978) 558–565.
[13] F. Mattern, Virtual time and global states of distributed systems, in:
Parallel and Distributed Algorithms, North-Holland, 1989, pp. 215–
226.

[14] M. Raynal, M. Singhal, Logical time: capturing causality in distributed
systems, IEEE Computer 29 (2) (Feb. 1996) 49–56.

[15] A. Sen, V.K. Garg, On checking whether a predicate definitely holds,
in: Proc. 3rd Int. Workshop on Formal Approaches to Testing of Soft-
ware (FATES 2003), in: Lecture Notes in Computer Science, vol. 2931,
Springer, 2004, pp. 15–29.

[16] A. Sen, V.K. Garg, Formal verification of simulation traces using com-
putation slicing, IEEE Transactions on Computers 56 (4) (2007) 511–
527.

[17] S. Stoller, F. Schneider, Faster possibility detection by combining two
approaches, in: Proc. 9th International Workshop on Distributed Al-
gorithms, in: Lecture Notes in Computer Science, vol. 972, Springer,
1995, pp. 318–332.

	Repeated detection of conjunctive predicates in distributed executions
	Introduction
	Model and background
	Algorithm
	Correctness and complexity
	Discussion
	References

