
l

s

l
zing
ure. The

of intervals
across

of
Information Processing Letters 87 (2003) 243–249

www.elsevier.com/locate/ip

Distributed algorithm to detect strong conjunctive predicate

Punit Chandra, Ajay D. Kshemkalyani∗

Computer Science Department, University of Illinois at Chicago, Chicago, IL 60607, USA

Received 21 November 2002; received in revised form 24 March 2003

Communicated by K. Iwama

Abstract

This paper presents an on-line distributed algorithm for detection ofDefinitely(φ) for the class of conjunctive globa
predicates. The only known algorithm for detection ofDefinitely(φ) uses a centralized approach. A method for decentrali
the algorithm was also given, but the work load is not fairly distributed and the method uses a hierarchical struct
centralized approach has a time, space, and total message complexity of O(n2m), wheren is the number of processes andm is
the maximum number of messages sent by any process. The proposed on-line distributed algorithm uses the concept
rather than events, and assumesp is the maximum number of intervals at any process. The worst-case time complexity
all the processes is O(min(pn2,mn2)). The worst-case space overhead across all the processes is min(2mn2,2pn2).
 2003 Elsevier B.V. All rights reserved.

Keywords: Distributed computing; Predicate detection; Causality; Global state

1. Introduction • Definitely(φ): For every consistent observation
im-
yn-
us-
nd
n-
cu-

ion

the execution, there exists a global state of it in

d
ate
l.
to

e
bal

ny
ce

sed
tive
hers
his

erved
Predicate detection in a distributed system is
portant for various purposes such as monitoring, s
chronization and coordination, debugging, and ind
trial process control. Cooper and Marzullo [2] a
Marzullo and Neiger [12] defined two modalities u
der which a predicate can hold for a distributed exe
tion.

• Possibly(φ): There exists a consistent observat
of the execution such thatφ holds in global state
of the observation.

* Corresponding author.
E-mail addresses: pchandra@cs.uic.edu (P. Chandra),

ajayk@cs.uic.edu (A.D. Kshemkalyani).

0020-0190/$ – see front matter 2003 Elsevier B.V. All rights res
doi:10.1016/S0020-0190(03)00295-3
whichφ holds.

Possibly(φ) andDefinitely(φ) have also been referre
to as the weak and strong modalities for predic
φ, respectively, in the literature [5,6]. Marzullo et a
[2,12] proposed an online centralized algorithm
detectPossibly(φ) and Definitely(φ) for an arbitrary
predicateφ. The algorithm works by building a lattic
of global states. Although it detects generalized glo
predicates, the complexity of the algorithm isen,
where e is the maximum number of events on a
process, andn is the number of processes. To redu
the complexity of the algorithm, researchers focu
on special classes of global predicates. Conjunc
global predicates is such class. Several researc
have presented polynomial time algorithms for t

.

244 P. Chandra, A.D. Kshemkalyani / Information Processing Letters 87 (2003) 243–249

class of global predicates. Garg and Waldecker [5,6]
presented centralized algorithms to detectPossibly(φ)

nd

oller
ich
the
the

t al.
rage
-

ing
e-

sses
ch
al-

te
ion
ess
els
i-
om
d.
thm
c-

uly

e-
-
als

ase

ly
ce

s is

e

number of messages and has a worst-case message
space overhead of O(min(pn2,mn2)).

m in
age
r on

ng

ree
and
s
s.
by
[3,

e-

he
tor

ess
f
the

ent
se
or
n

um
and Definitely(φ) with message space, storage, a
time complexity of O(n2m), wherem is the maximum
number of messages sent by any process. St
and Schneider [14] presented an algorithm wh
combines the Garg–Waldecker [5] approach with
approach of Marzullo et al. [2,12], and thus has
best of both the approaches.

Distributed algorithms to detectPossibly(φ) have
been presented by Garg and Chase [4] and Hurfin e
[7]. Both the algorithms have message space, sto
and time complexity of O(n2m). There does not ex
ist any distributed algorithm to detectDefinitely(φ),
which is a much harder problem than detect
Possibly(φ). In [6], Garg and Waldecker gave a d
centralized approach for detectingDefinitely(φ). The
decentralized approach divides the set of proce
into multiple groups with a checker process for ea
group. The checker process uses the centralized
gorithm to check for a strong conjunctive predica
within its group. It then sends selected informat
about a partial potential solution to a higher proc
in the hierarchy. This process is repeated at all lev
until the final solution is found at the top of the h
erarchy. The problems with this technique stem fr
the fact that the workload is not uniformly distribute
The checker process still uses a centralized algori
within its group. Further, due to the hierarchical stru
ture of the algorithm, this can not be considered tr
distributed.

We present an on-line distributed algorithm for d
tection of Definitely(φ) that avoids the above prob
lems. The algorithm uses the concept of interv
rather than events, and assumesp is the maximum
number of intervals at any process. The worst-c
space overhead across all the processes is min(2pn2,

2mn2). This is equivalent to min(2pn,2mn) per proc-
ess if the destinations of themn messages are even
divided among then processes. The worst-case spa
overhead at a process is min(2pn,2mn(n − 1)). The
worst-case time complexity across all the processe
O(min(pn2,mn2)). This is equivalent to O(min(pn,

mn)) per process if the destinations of themn mes-
sages are evenly divided among then processes. Th
worst-case time complexity at a process is O(min(pn,

mn2)). The algorithm uses at most O(min(pn2,mn2))
2. System model and background

We assume an asynchronous distributed syste
which n processes communicate by reliable mess
passing. Messages may be delivered out of orde
the channels. A poset event structure model(E,≺),
where≺ is an irreflexive partial ordering representi
the causality relation [10] on the event setE, is used
as the model for a distributed system execution. Th
kinds of events are considered: send, receive,
internal events.E is partitioned into local execution
at each process. LetN denote the set of all processe
EachEi is a totally ordered set of events executed
processPi . We assume vector clocks are available
13]. Each process maintains a vector clockV of size
n = |N | integers, by using the following rules.

(1) Before an internal event at processPi , the process
Pi executesVi[i] = Vi[i] + 1.

(2) Before a send event at processPi , the process
Pi executesVi[i] = Vi[i] + 1. It then sends the
message timestamped byVi .

(3) When processPj receives a message with tim
stamp T from processPi , Pj executes(∀k ∈
[1, . . . , n]) Vj [k] = max(Vj [k], T [k]); Vj [j] =
Vj [j] + 1 before delivering the message. T
timestamp of an event is the value of the vec
clock when the event occurs.

A conjunctive predicate is of the form
∧

i φi , where
φi is a predicate defined on variables local to proc
Pi . Let φi,j denoteφi ∧ φj . Let us define durations o
interest at each process as the durations in which
local predicate is true. Such an interval at processPi

is identified by the (totally ordered) subset of adjac
events ofEi for which the predicate is true. We u
V −

i (X) andV +
i (X) to denote the vector timestamp f

intervalX at processPi at the start and the end of a
interval, respectively.

We assume that intervalsX and Y occur atPi

andPj , respectively, and are denoted asXi andYj ,
respectively. We also assume that there are a maxim
of p intervals at any process. For any two intervalsX

andX′ that occur at the same process, ifX ends before

P. Chandra, A.D. Kshemkalyani / Information Processing Letters 87 (2003) 243–249 245

X′ begins, then we say thatX is a predecessor of X′
andX′ is asuccessor of X.

-

ct

the

ses
the

d

he
ant
lly

be

Proof. As Definitely(φi,j) is not true, from Theorem 1
eitherX �↪→ Y or Y �↪→ X. Hence by Lemma 1, either

rob-

og-

-

y
e

its

eeds
last

es-
sses.

e

n-
For intervalsX andY , Lamport defined the follow
ing relation [11]:X ↪→ Y iff ∃x ∈ X,∃y ∈ Y,x ≺ y.
The relation↪→ is used by our algorithm to dete
Definitely(φ). In terms of vector timestamps,Xi ↪→
Yj if V −

i (Xi)[i] � V +
j (Yj)[i].

3. Algorithm to detect Definitely(φ)

The vector timestamps of the start of and of
end of an interval form a data typeLog, as shown in
Fig. 1. When an interval completes at processPi , the
interval’sLog is added to a local queueQi selectively,
based on a criterion explained later. The proces
collectively run a token-based algorithm to process
queues.

The following two results given on p. 297 of [8] an
in [9] are used in the context of detectingDefinitely(φ).

Theorem 1. Definitely(φi,j) holds if and only if Xi ↪→
Yj and Yj ↪→ Xi .

Theorem 2. For a conjunctive predicate φ, Definite-
ly(φ) holds if and only if Definitely(φi,j) is true for all
process pairs Pi and Pj in N .

In order for a distributed algorithm to process t
queued intervals efficiently, we first show an import
result about when two given intervals may potentia
be a part of the solution.

Lemma 1. For intervals Xi and Yj at the head of
Qi and Qj , respectively, if Xi �↪→ Yj then interval Yj

should be dequeued from the queue Qj .

Proof. From the definition of ↪→, we get that
V −

i (X)[i] �� V +
j (Y)[i]. For any intervalX′ which

succeeds intervalX, V −
i (X)[i] < V −

i (X′)[i], thus
V −

i (X′)[i] �� V +
j (Y)[i], which impliesX′ �↪→ Y . So

Y can never be a part of the solution and should
deleted from the queue.✷
Lemma 2. If Definitely(φi,j) does not hold for interval
pair Xi and Yj at the head of Qi and Qj , respectively,
then either interval Xi or interval Yj can be removed
from its queue Qi or Qj , respectively.
X or Y is deleted corresponding to these cases.✷
Based on Theorems 1 and 2, we state our p

lem in terms of detectingDefinitely(φi,j) for pairs of
processes, along the lines of detecting pairwise orth
onal relations [1].

Problem statement. In a distributed execution, iden
tify a set of intervalsI containing one interval from
each process, such that (i) the local predicateφi is true
in Ii ∈ I, and (ii) for each pair of processesPi andPj ,
Definitely(φi,j) holds, i.e.,Ii ↪→ Ij andIj ↪→ Ii .

Before presenting the algorithm, we justify wh
the Log of an interval is stored in the local queu
conditionally, as shown in Fig. 1. An intervalY at
Pj is deleted if on comparison with some intervalX

on Pi , X �↪→ Y , i.e.,V −
i (X)[i] �� V +

j (Y)[i]. Thus the
interval (Y) being deleted or retained depends on
value ofV +

j (Y)[i]. The valueV +
j (Y)[i] changes only

when a message is received. Hence an interval n
to be stored only if a receive has occurred since the
time aLog of a local interval was queued.

The token-based algorithm uses three types of m
sages (see Fig. 2) that are sent among the proce
Request messages of typeREQUEST, reply mes-
sages of typeREPLY, and token messages of typ
TOKEN, are denotedREQ, REP, and T , respec-
tively. In the algorithm (see Fig. 3), only the toke
holder process can sendREQs and receiveREPs. The
process (Pi) having the token sendsREQs to all other
processes (line 3f).Logi.start[i] and Logi.end[j] for

type Log
start: array[1. . . n] of integer;
end: array[1. . . n] of integer;

type Q: queue ofLog;

When an interval begins:
Logi .start = V −

i .
When an interval ends:
Logi .end = V +

i
if (a receive event has occurred since the last time

a Log was queued onQi) then
EnqueueLogi on to the local queueQi .

Fig. 1. Tracking intervals locally at processPi .

246 P. Chandra, A.D. Kshemkalyani / Information Processing Letters 87 (2003) 243–249

type REQUEST //used byPi to send a request to eachPj

start: integer; //containsLogi.start[i] for the interval at the queue head ofPi
end: integer; //containsLogi.end[j] for the interval at the queue head ofPi , when sending toPj

type REPLY //used to send a response to a received request
updated: set of integer; //contains the indices of the updated queues

type TOKEN //used to transfer control between two processes
updatedQueues: set of integer; //contains the index of all the updated queues

Fig. 2. Data types used by messages.

(1) Process Pi initializes local state
(1a) Qi is empty.

(2) Token initialization
(2a) A randomly elected processPi holds the tokenT .
(2b) T .updatedQueues = {1,2, . . . , n}.
(3) RcvToken: When Pi receives a token T

(3a) Remove indexi from T .updatedQueues
(3b) wait until (Qi is nonempty)
(3c) REQ.start = Logi.start[i], whereLogi is the log at head ofQi

(3d) for j = 1 ton

(3e) REQ.end = Logi.end[j]
(3f) Send the requestREQ to processPj

(3g) wait until (REPj is received from each processPj)
(3h) for j = 1 ton

(3i) T .updatedQueues = T .updatedQueues ∪ REPj.updated
(3j) if (T .updatedQueues is empty)then
(3k) Solution detected. Heads of the queues identify intervals that form the solution.
(3l) else
(3m) if (i ∈ T .updatedQueues) then
(3n) dequeue the head fromQi

(3o) Send token toPk wherek is randomly selected from the setT .updatedQueues.

(4) RcvReq: When a REQ from Pi is received by Pj

(4a) wait until (Qj is nonempty)
(4b) REP.updated = ∅
(4c) Y = head of local queueQj

(4d) V −
i

(X)[i] = REQ.start andV +
i

(X)[j] = REQ.end
(4e) DetermineX ↪→ Y andY ↪→ X

(4f) if (Y �↪→ X) then REP.updated = REP.updated ∪ {i}
(4g) if (X �↪→ Y) then
(4h) REP.updated = REP.updated ∪ {j}
(4i) DequeueY from local queueQj

(4j) Send replyREP to Pi .

Fig. 3. Distributed algorithm to detectDefinitely(φ).

the interval at the head of the queueQi are pig- Pj compares the piggybacked intervalX with the

gybacked on the requestREQ sent to processPj interval Y at the head of its queueQj (line 4e).

ter-
(lines 3c–3e). On receiving aREQ from Pi , process
 As per Lemma 1, the comparisons between in

P. Chandra, A.D. Kshemkalyani / Information Processing Letters 87 (2003) 243–249 247

vals on processPi and Pj can result in these out-
comes.

x

er.

ated

the
the

f)

o
e

Theorem 3. When a solution I is detected by the
algorithm, the solution is correct, i.e., for each pair

e-

ty.

ch
der’s

st
d.
t

en
en
-
re
dex

s,
c-
me

each
rder
(1) Definitely(φi,j) is satisfied.
(2) Definitely(φi,j) is not satisfied and intervalX can

be removed from the queueQi . The process inde
i is stored inREP.updated (line 4f).

(3) Definitely(φi,j) is not satisfied and intervalY can
be removed from the queueQj . The interval at
the head ofQj is dequeued and process indexj is
stored inREP.updated (lines 4g, 4h).

Note that outcomes (2) and (3) may occur togeth
After the comparisons,Pj sendsREP to Pi . Once
the token-holder processPi receives aREP from all
other processes, it stores the indices of all the upd
queues in the setT .updatedQueues (lines 3h, 3i).
A solution, identified by the setI formed by the
interval Ik at the head of each queueQk , is detected
if the setupdatedQueues is empty. Otherwise, if index
i is contained inT .updatedQueues, processPi deletes
the interval at the head of its queueQi (lines 3m,
3n). As the setT .updatedQueues is non-empty, the
token is sent to a process selected randomly from
set (line 3o). We now prove the correctness of
algorithm.

Lemma 3. If Definitely(φi,j) is not true for a pair of
intervals Xi and Yj , then either i or j is inserted into
T .updatedQueues.

Proof. From Lemma 2, ifDefinitely(φi,j) is not sat-
isfied, then eitherXi or Yj should get deleted. In
the algorithm of Fig. 3, the test on either (line 4
or (line 4g) will be true. Hence, eitheri or j is in-
serted in REP.updated which is later merged into
T .updatedQueues (line 3i). ✷
Lemma 4. An interval is deleted from queue Qi at
process Pi if and only if the index i is inserted into
T .updatedQueues.

Proof. When comparing two intervalsX and Y at
Pj , Y is deleted (line 4i) if and only ifj is inserted
into REP.updated (line 4h) (which is later merged int
T .updatedQueues) as (lines 4h, 4i) are the part of th
sameif block. SimilarlyX is deleted (line 3n) if and
only if i ∈ T .updatedQueues (lines 3m, 3n). ✷
Pi,Pj ∈ N , the intervals Ii = head(Qi) and Ij =
head(Qj) are such that Ii ↪→ Ij and Ij ↪→ Ii (and
hence by Theorems 1 and 2, Definitely(φ) must be
true).

Proof. It is sufficient to prove that for the solution d
tected, which happens at the timeT .updatedQueues
is empty (line 3j), (i)Definitely(φi,j) is satisfied for
all pairs (i, j), and (ii) none of the queues is emp
To prove (i) and (ii), note that whenT .updatedQueues
is empty (line 3j), the token must have visited ea
process at least once because only the token-hol
index can be removed fromT .updatedQueues. Fur-
ther, note that each(i, j) pair has been tested at lea
once forDefinitely(φi,j) when the solution is detecte

To prove (i), it follows from Lemma 3 tha
Definitely(φi,j) is satisfied for all pairs(i, j) when
T .updatedQueues = ∅. For any (i, j) pair, consider
the latest timeti,j when the given(i, j) pair was
tested. To prove (ii), it remains to show that betwe
ti,j and the time that the solution is declared wh
T .updatedQueues = ∅, none of these intervals com
pared atti,j is dequeued. If one of these intervals we
to get dequeued, then by Lemma 4, that process in
(say, i) would get inserted inT .updatedQueues and
the token would have to re-visit that processPi , re-
sulting in another test for(i, j), a contradiction. The
result follows. ✷
Theorem 4. If a solution I exists, i.e., for each pair
Pi,Pj ∈ N , the intervals Ii , Ij belonging to I are
such that Ii ↪→ Ij and Ij ↪→ Ii (and hence from
Theorems 1 and 2, Definitely(φ) must be true), then
the solution is detected by the algorithm.

Proof. Consider then intervals, one at each proces
that form thefirst solution. We prove using contradi
tion that none of these intervals gets deleted. Assu
that intervalIj is the first interval forming a part of
the solution to get deleted. We then haveI ′

i �↪→ Ij ,
which implies that some predecessor intervalIi of I ′

i

must form part of the solution withIj and thus satisfy
(Ii ↪→ Ij ∧ Ij ↪→ Ii). But this impliesIi already got
deleted in some earlier test, because intervals at
process are examined and deleted serially in the o

248 P. Chandra, A.D. Kshemkalyani / Information Processing Letters 87 (2003) 243–249

of their occurrence. This is a contradiction. Hence, no
interval forming a part of the solution gets deleted.

he
f
ing
in
al

get
that

res
m
ill
no

ets

of
ges
f

a

me

es,

h

ase

n it

r
cess

Note that the worst case just discussed is for a
single process. The worst-case system-wide space

e,
d.
d
e

sses

es
oss

sses

ss is

x-

),
red

te
-

ity

the
this

s
x-
Observe from (line 3a) that for each hop of t
token, the size ofT .updatedQueues decreases by 1 i
no interval is deleted from any queue in the ensu
REQ-REP phase (refer Lemma 4). It follows that
at most each(n − 1) consecutive hops, the interv
at the head of the queue of some process must
replaced by the immediate successor interval at
process, otherwiseT .updatedQueues becomes empty
and a solution gets detected. This guarantees prog
and within a finite number of steps, the interval fro
each process forming a part of the first solution w
be at the head of the corresponding queue. As
such interval gets deleted, within|T .updatedQueues|
hops of the token after this state, the solution g
detected. ✷.

3.1. Complexity analysis

The complexity analysis can be done in terms
two parameters—the maximum number of messa
sent per process (m) and the maximum number o
intervals per process (p).

3.1.1. Space complexity at P1 to Pn

(1) In terms of m: From Fig. 1, observe that theLog
for an interval is stored on the queue only if
receive has occurred since the last time aLog for
an interval was stored on the queue (at the sa
process). As there are a total ofnm messages
exchanged between all processes, a total ofnm

interval Logs are stored across all the queu
though not necessarily at the same time.
• As the vector timestamp at the start (V +) and at

the end (V −) of each interval is stored in eac
Log and there are a total ofmn Logs stored
on the various process queues, the worst-c
space overhead across all processes ismn ·2n =
2mn2.

• For a process, the worst case occurs whe
receivesm messages from all the othern − 1
processes. The number ofLogs stored on the
process queue ism(n − 1), oneLog for each
receive event. As eachLog contains two vecto
timestamps, the worst-case space at the pro
is m(n − 1) · 2n = O(mn2).
s

overhead always remains 2mn2.
(2) In terms of p: The total number ofLogs stored

at each process isp because in the worst cas
the Log for each interval may need to be store
As eachLog has size 2n, the worst-case overhea
is 2np integers over allLogs per process, and th
worst-case space complexity across all proce
is 2n2p = O(n2p).

As the total number ofLogs stored on all the process
is min(np,mn), the worst-case space overhead acr
all the processes is min(2n2p,2n2m). This is equiva-
lent to min(2np,2nm) per process if themn message
destinations are divided equally among the proce
(implying that each process has up to min(p,m)

Logs). The worst-case space overhead at a proce
min(2np,2n(n − 1)m).

3.1.2. Time complexity
The two components contributing to time comple

ity areRcvReq andRcvToken.

RcvReq: In the worst case, the number ofREQs re-
ceived by a process is equal to the number ofLogs
on all other processes, because aREQ is sent only
once for eachLog. The total number ofLogs over
all the queues is min(np,mn) (see Section 3.1.1
hence the number of interval pairs compa
per process is min((n − 1)p,m(n − 1)). As it
takes O(1) time to executeRcvReq, the worst-
case time complexity per process forRcvReq
is O(min(np,mn)). As the processes execu
RcvReq in parallel, this is also the total time com
plexity for RcvReq.

RcvToken: The token makes at most min(np,mn)hops
serially and each hop requires O(n) time com-
plexity. Hence the worst-case time complex
for RcvToken across all processes is O(min(pn2,

mn2)). In the worst case, a process receives
token each time its queue head is deleted, and
can happen as many times as the number ofLogs
at the process. As the number ofLogs at a proces
is min(p,m(n−1)), the worst-case time comple
ity per process is O(min(pn,mn2)).

P. Chandra, A.D. Kshemkalyani / Information Processing Letters 87 (2003) 243–249 249

The worst-case time complexity across all the proc-
esses is O(min(pn2,mn2)). This is equivalent to

-
ses

s is

s
of

l the

the

nal
on
ut.

[2] R. Cooper, K. Marzullo, Consistent detection of global predi-
cates, in: Proc. ACM/ONR Workshop on Parallel and Distrib-

t pre-
(1)

on-
fer-
30.
d-

rib.

ed-
rib.

t
EE

in
87–

n
ms
er-

a

or-
s,

es,
re
er

ys-
d,

m-
op
i.,
O(min(pn,mn)) per process if themn message des
tinations are divided equally among the proces
(implying that each process has up to min(p,m)

Logs). The worst-case time complexity at a proces
O(min(pn,mn2)).

3.1.3. Message complexity
For eachLog, either no messages are sent, orn − 1

REQs,n − 1 REPs and one tokenT are sent.

• As the total number ofLogs over all the queue
is min(np,mn), hence the worst-case number
messages over all the processes is O(nmin(np,

mn)).
• The size of eachT is equal to O(n), while the

size of eachREP and eachREQ is O(1). Thus
for eachLog, the message space overhead is O(n)

if any messages are sent for thatLog. Hence the
worst-case message space overhead over al
processes is equal to O(nmin(np,mn)).

Acknowledgements

This material is based upon work supported by
National Science Foundation under Grant No.CCR-
9875617.

References

[1] P. Chandra, A.D. Kshemkalyani, Detection of orthogo
interval relations, in: Proc. 9th International Conference
High Performance Computing, in: Lecture Notes in Comp
Sci., Vol. 2552, Springer, Berlin, 2002, pp. 323–333.
uted Debugging, May 1991, pp. 163–173.
[3] C.J. Fidge, Timestamps in message-passing systems tha

serve partial ordering, Australian Comput. Sci. Comm. 10
(1988) 56–66.

[4] V. Garg, C. Chase, Distributed algorithms for detecting c
junctive predicates, in: Proc. 15th IEEE International Con
ence on Distributed Computing Systems, 1995, pp. 423–4

[5] V.K. Garg, B. Waldecker, Detection of weak unstable pre
icates in distributed programs, IEEE Trans. Parallel Dist
Systems 5 (3) (1994) 299–307.

[6] V.K. Garg, B. Waldecker, Detection of strong unstable pr
icates in distributed programs, IEEE Trans. Parallel Dist
Systems 7 (12) (1996) 1323–1333.

[7] M. Hurfin, M. Mizuno, M. Raynal, M. Singhal, Efficien
distributed detection of conjunctions of local predicates, IE
Trans. Software Engrg. 24 (8) (1998) 664–677.

[8] A.D. Kshemkalyani, Temporal interactions of intervals
distributed systems, J. Comput. System Sci. 52 (2) (1996) 2
298.

[9] A.D. Kshemkalyani, A fine-grained modality classificatio
for global predicates, IEEE Trans. Parallel Distrib. Syste
(2003), to appear; Technical Report UIC-EECS-00-10, Univ
sity of Illinois at Chicago, 2000.

[10] L. Lamport, Time, clocks, and the ordering of events in
distributed system, Comm. ACM 21 (7) (1978) 558–565.

[11] L. Lamport, On interprocess communication, Part I: Basic F
malism; On interprocess communication, Part II: Algorithm
Distrib. Comput. 1 (1986) 77–85; 86–101.

[12] K. Marzullo, G. Neiger, Detection of global state predicat
in: Proc. 5th Workshop on Distributed Algorithms, in: Lectu
Notes in Comput. Sci., Vol. 579, Springer, Berlin, Octob
1991, pp. 254–272.

[13] F. Mattern, Virtual time and global states of distributed s
tems, in: Parallel and Distributed Algorithms, North-Hollan
1989, pp. 215–226.

[14] S. Stoller, F. Schneider, Faster possibility detection by co
bining two approaches, in: Proc. 9th International Worksh
on Distributed Algorithms, in: Lecture Notes in Comput. Sc
Vol. 972, Springer, Berlin, 1995, pp. 318–332.

