C/Ii]'H Available at

= www.ComputerScienceWeb.com Information
mﬂ% POWERED BY SCIENCE @DIRECT“ Processing
Letters
ELSEVIER Information Processing Letters 87 (2003) 243—-249

www.elsevier.com/locatefipl

Distributed algorithm to detect strong conjunctive predicates

Punit Chandra, Ajay D. Kshemkalyani

Computer Science Department, University of Illinois at Chicago, Chicago, IL 60607, USA
Received 21 November 2002; received in revised form 24 March 2003

Communicated by K. lwama

Abstract

This paper presents an on-line distributed algorithm for detectioDedihitely(¢) for the class of conjunctive global
predicates. The only known algorithm for detectiorDafinitely(¢) uses a centralized approach. A method for decentralizing
the algorithm was also given, but the work load is not fairly distributed and the method uses a hierarchical structure. The
centralized approach has a time, space, and total message complexity?ef)Qwheren is the number of processes ands
the maximum number of messages sent by any process. The proposed on-line distributed algorithm uses the concept of interval
rather than events, and assumeis the maximum number of intervals at any process. The worst-case time complexity across
all the processes is@in(pn?, mn?)). The worst-case space overhead across all the processes2smfin2pn?).
00 2003 Elsevier B.V. All rights reserved.

Keywords: Distributed computing; Predicate detection; Causality; Global state

1. Introduction o Definitely(¢): For every consistent observation of
the execution, there exists a global state of it in
which ¢ holds.

Predicate detection in a distributed system is im-
portant for various purposes such as monitoring, syn-
chronization and coordination, debugging, and indus-
trial process control. Cooper and Marzullo [2] and
Marzullo and Neiger [12] defined two modalities un-
der which a predicate can hold for a distributed execu-
tion.

Possibly(¢) andDefinitely(¢) have also been referred
to as the weak and strong modalities for predicate
¢, respectively, in the literature [5,6]. Marzullo et al.
[2,12] proposed an online centralized algorithm to
detectPossibly(¢) and Definitely(¢) for an arbitrary
predicatep. The algorithm works by building a lattice
of global states. Although it detects generalized global
predicates, the complexity of the algorithm é§,
wheree is the maximum number of events on any
process, and is the number of processes. To reduce
the complexity of the algorithm, researchers focused
mspondmg author. on special (_:Iasses_ of global predicates. Conjunctive
E-mail addresses: pchandra@cs.uic.edu (P. Chandra), global predicates is such class. Several researchers
ajayk@cs.uic.edu (A.D. Kshemkalyani). have presented polynomial time algorithms for this

e Possibly(¢): There exists a consistent observation
of the execution such that holds in global state
of the observation.

0020-0190/$ — see front mattér 2003 Elsevier B.V. All rights reserved.
d0i:10.1016/S0020-0190(03)00295-3



244 P. Chandra, A.D. Kshemkalyani / Information Processing Letters 87 (2003) 243-249

class of global predicates. Garg and Waldecker [5,6] number of messages and has a worst-case message

presented centralized algorithms to deféadsibly(¢) space overhead of @in(pn?, mn?)).

and Definitely(¢) with message space, storage, and

time complexity of @n?m), wherem is the maximum

number of messages sent by any process. Stoller2. System model and background

and Schneider [14] presented an algorithm which

combines the Garg—Waldecker [5] approach with the ~ We assume an asynchronous distributed system in

approach of Marzullo et al. [2,12], and thus has the Whichn processes communicate by reliable message

best of both the approaches. passing. Messages may be delivered out of order on
Distributed algorithms to dete@ossibly(¢) have  the channels. A poset event structure mode! <),

been presented by Garg and Chase [4] and Hurfin et al.where< is an irreflexive partial ordering representing

[7]. Both the algorithms have message space, storagethe causality relation [10] on the event getis used

and time complexity of @2m). There does not ex- ~ aS the model for a distribut(_ed system executior_1. Three

ist any distributed algorithm to deteBtefinitely(¢), kinds of events are considered: send, receive, and

which is a much harder problem than detecting internal eventsk is partitioned into local executions

Possibly(). In [6], Garg and Waldecker gave a de- At €ach process. Let denote the set of all processes.

centralized approach for detectimgfinitely(¢). The EachE; is a totally ordered set of events exe_cuted by

decentralized approach divides the set of processesPTOCESsPi. We assume vector clocks are available [3,

into multiple groups with a checker process for each 13]. anh process ma|.nta|ns a vect_or claclof size

group. The checker process uses the centralized al-"" = IN| integers, by using the following rules.

gorithm to check for a strong conjunctive predicate

within its group. It then sends selected information

about a partial potential solution to a higher process

in the hierarchy. This process is repeated at all levels

until the final solution is found at the top of the hi-

erarchy. The problems with this technique stem from (3) When proces®; receives a message with time-

the fact that the workload is not uniformly distributed. stamp T from {)rocessP- P, executes(Vk e

The checker process still uses a centralized algorithm [ n]) Vi[k] = max(%fy-[ki TIK): Vilj] =

within its group. Further, due to the hierarchical struc- / S ed

ture of the algorithm, this can not be considered truly

(1) Before aninternal event at proces the process
P; executed/;[i] = Vi[i] + 1.

(2) Before a send event at proceBs the process
P; executesV;[i] = V;[i] + 1. It then sends the
message timestamped by.

Viljl + 1 before delivering the message. The
timestamp of an event is the value of the vector

distributed. - _ clock when the event occurs.
We present an on-line distributed algorithm for de-
tection of Definitely(¢) that avoids the above prob- A conjunctive predicateis of the form/\, ¢;, where

lems. The algorithm uses the concept of intervals . is a predicate defined on variables local to process
rather than events, and assumess the maximum  p, | et¢, ; denotep; A ¢;. Let us define durations of
number of intervals at any process. The worst-case jnterest at each process as the durations in which the
space overhead across all the processes is2pif, local predicate is true. Such an interval at procBss
2mn?). This is equivalent to mig2pn, 2mn) per proc- s identified by the (totally ordered) subset of adjacent
ess if the destinations of then messages are evenly events ofE; for which the predicate is true. We use
divided among the processes. The worst-case space v, (X) andV;" (X) to denote the vector timestamp for

overhead at a process is rt@pn, 2mn(n — 1)). The interval X at processP; at the start and the end of an
worst-case time complexity across all the processes isinterval, respectively.

O(min(pn?, mn?)). This is equivalent to @nin(pn, We assume that interval®¥ and Y occur at P;

mn)) per process if the destinations of the: mes- and P;, respectively, and are denoted Es andY,
sages are evenly divided among th@rocesses. The  respectively. We also assume that there are a maximum
worst-case time complexity at a process @ (pn, of p intervals at any process. For any two intervls

mn?)). The algorithm uses at most(@in(pn?, mn?)) andX’ that occur at the same processXiends before



P. Chandra, A.D. Kshemkalyani / Information Processing Letters 87 (2003) 243-249 245

X’ begins, then we say that is a predecessor of X’ Proof. AsDefinitely(¢; ;) is nottrue, from Theorem 1
andX’ is asuccessor of X. eitherX & Y orY ¢+ X. Hence by Lemma 1, either

For intervalsX andY, Lamport defined the follow- X or Y is deleted corresponding to these cases.
ing relation [11]: X — Y iff 3x € X,y e ¥V, x < y.

The relation— is used by our algorithm to detect Based on Theorems 1 and 2, we state our prob-
Definitely(¢). In terms of vector timestamp; — lem in terms of detectin@efinitely(¢; ;) for pairs of
Y;if vio (Xpli] < V]*(Yj)[i]. processes, along the lines of detecting pairwise orthog-

onal relations [1].

3. Algorithm to detect Definitely(¢) Problem statement. In a distributed execution, iden-
tify a set of intervalsZ containing one interval from
The vector timestamps of the start of and of the each process, such that (i) the local predigatis true
end of an interval form a data tygeog, as shownin in J; € Z, and (ii) for each pair of process@andP;,
Fig. 1. When an interval completes at proc@ssthe Definitely(¢; ;) holds, i.e.J; < I; andl; < I,.
interval'sLog is added to a local queug; selectively, Before presenting the algorithm, we justify why
based on a criterion explained later. The processesthe Log of an interval is stored in the local queue
collectively run a token-based algorithm to process the conditionally, as shown in Fig. 1. An interval at

queues. P; is deleted if on comparison with some interval

The following two results givenon p. 297 of [8]and  on P, X <4 Y, i.e., Vo (0Ol V]ﬁr(y)[,'], Thus the
in [9] are used in the context of detectiDgfinitely(¢). interval (¥) being deleted or retained depends on its

N _ _ value oij’L(Y)[i]. The vaIuer*(Y)[i] changes only
Theorem 1. Definitely(¢;, ;) holdsif and only if X; — when a message is received. Hence an interval needs
YjandY; — X;. to be stored only if a receive has occurred since the last
time alLog of a local interval was queued.

Theorem 2. For a conjunctive predicate ¢, Definite- The token-based algorithm uses three types of mes-
ly(¢) holdsif and only if Definitely(¢; ;) istruefor all sages (see Fig. 2) that are sent among the processes.
process pairs P; and P; in N. Request messages of tyfREQUEST, reply mes-

o . sages of typeREPLY, and token messages of type
In order for a distributed algorithm to process the TOKEN, are denotedREQ, REP, and T, respec-
queued intervals efficiently, we first show an important tjyely. In the algorithm (see Fig. 3), only the token-
result about when two given intervals may potentially noider process can seEQs and receiv&EPs. The
be a part of the solution. process P;) having the token send®EQs to all other

rocesses (line 3flogj.start[i] and Log;.end[j] for
Lemma 1. For intervals X; and Y; at the head of P ( >-0g g /

Q; and Q;, respectively, if X; & Y; then interval Y;
should be dequeued fromthe queue Q ;.

type Log
start: array{1...n] of integer;

. end: arrayf1...n] of integer;
Proof. From the definition of<—, we get that

Vl_(X)[l] =4 VJ+(Y)[Z] For any interval X’ which type Q: queue ofLog;
succeeds intervak, V" (X)[i] < V7 (X)[i], thus When an interval begins:
VT (XNi] & Vj+(Y)[i], which impliesX’ < Y. So Log; .start =V,

Y can never be a part of the solution and should be When an interval ends:

deleted from the queue.O Log;.end = V;*

if (a receive event has occurred since the last time
Lemma 2. If Definitely(¢;, ;) doesnot hold for interval alogwas queued o®;) then
pair X; and Y; at thehead of Q; and Q , respectively, Enqueud.og; on to the local queu@; .

then either interval X; or interval Y; can be removed
fromits queue Q; or Qj, respectively_ Fig. 1. Tracking intervals locally at proce#s.



246 P. Chandra, A.D. Kshemkalyani / Information Processing Letters 87 (2003) 243-249

type REQUEST /lused byP; to send a request to eaéh
start: integer; /lcontaing og;.start[i] for the interval at the queue head Bf
end: integer; /lcontain&og;.end[ ] for the interval at the queue head Bf, when sending t;
type REPLY /lused to send a response to a received request
updated: set of integer; /[contains the indices of the updated queues
type TOKEN /lused to transfer control between two processes
updatedQueues: set of integer; //contains the index of all the updated queues

Fig. 2. Data types used by messages.

(1) Process P; initializeslocal state
(1a) Q; isempty.

(2) Token initialization
(2a)  Arandomly elected proce$s holds the tokery.
(2b)  T.updatedQueues=1{1, 2,...,n}.

(3) RevToken: When P; receivesatoken T

(3a) Remove index from T.updatedQueues

(3b)  wait until (Q; is nonempty)

(3c) REQ.start = Logj.start[i], wherelLog; is the log at head oD;
(3d) for j=1ton

(3e) REQ.end = Log;.end[ /]

(3f) Send the reque&EQ to processP;

(3g)  wait until (REP; is received from each procesy)

(3h) for j=1ton

(3i) T .updatedQueues = T .updatedQueues U REP;.updated
(3)) if (T.updatedQueues is empty)then

(3K) Solution detected. Heads of the queues identify intervals that form the solution.
3l dse

(3m) if (i € T.updatedQueues) then

(3n) dequeue the head fro®y

(30) Send token t@;, wherek is randomly selected from the sEtupdatedQueues.

(4) RevReg: When a REQ from P; isreceived by P;
(4a) wait until (Q; is nonempty)

(4b) REP.updated =¢

(4c) Y =head of local queu@ ;

(4d) V. (X)li] = REQ.start andV;" (X)[j] = REQ.end
(4e) DetermineX < Y andY < X

(4f)  if (Y & X) then REP.updated = REP.updated U {i}
(49) if (X ¥ Y)then

(4h) REP.updated = REP.updated U { j}

(4i) Dequeuey from local queueQ ;

(4)) SendrephREPto P;.

Fig. 3. Distributed algorithm to deteBxefinitely(¢).

the interval at the head of the queu® are pig- P; compares the piggybacked interval with the
gybacked on the reque®REQ sent to processP; interval Y at the head of its queu@; (line 4e).
(lines 3c—3e). On receiving BEQ from P;, process  As per Lemma 1, the comparisons between inter-



P. Chandra, A.D. Kshemkalyani / Information Processing Letters 87 (2003) 243-249

vals on process?; and P; can result in these out-
comes.

(1) Definitely(¢;, ;) is satisfied.

(2) Definitely(¢;, ;) is not satisfied and intervad can
be removed from the queu®;. The process index
i is stored inREP.updated (line 4f).

(3) Definitely(¢;, ;) is not satisfied and interval can
be removed from the queu@;. The interval at
the head oD ; is dequeued and process indeis
stored inREP.updated (lines 4g, 4h).

Note that outcomes (2) and (3) may occur together.

After the comparisonsp; sendsREP to P;. Once
the token-holder proces® receives aREP from all

other processes, it stores the indices of all the updated

gueues in the sef.updatedQueues (lines 3h, 3i).
A solution, identified by the sef formed by the
interval I, at the head of each quey#,, is detected
if the setupdatedQueuesis empty. Otherwise, if index
i is contained irT".updatedQueues, processP; deletes
the interval at the head of its queug (lines 3m,
3n). As the setl.updatedQueues is non-empty, the

token is sent to a process selected randomly from the
set (line 30). We now prove the correctness of the

algorithm.

Lemma 3. If Definitely(¢; ;) is not true for a pair of
intervals X; and Y;, then either i or j isinserted into
T .updatedQueues.

Proof. From Lemma 2, ifDefinitely(¢; ;) is not sat-
isfied, then eitherX; or Y; should get deleted. In
the algorithm of Fig. 3, the test on either (line 4f)
or (line 4g) will be true. Hence, eitheror j is in-
serted inREP.updated which is later merged into
T.updatedQueues (line 3i). O

Lemma 4. An interval is deleted from queue Q; at
process P; if and only if the index i is inserted into
T.updatedQueues.

Proof. When comparing two intervalX and Y at
P;, Y is deleted (line 4i) if and only ifj is inserted
into REP.updated (line 4h) (which is later merged into
T .updatedQueues) as (lines 4h, 4i) are the part of the
sameif block. Similarly X is deleted (line 3n) if and
only if i € T.updatedQueues (lines 3m, 3n). O

247

Theorem 3. When a solution Z is detected by the
algorithm, the solution is correct, i.e., for each pair
P;, P; € N, the intervals I; = head(Q;) and I; =
head(Q ;) are such that /; — I; and /; — I; (and
hence by Theorems 1 and 2, Definitely(¢) must be
true).

Proof. Itis sufficient to prove that for the solution de-
tected, which happens at the tinfeupdatedQueues
is empty (line 3j), (i) Definitely(¢;, ;) is satisfied for
all pairs ¢, j), and (ii) none of the queues is empty.
To prove (i) and (ii), note that wheR.updatedQueues
is empty (line 3j), the token must have visited each
process at least once because only the token-holder’s
index can be removed fror.updatedQueues. Fur-
ther, note that eacly, j) pair has been tested at least
once forDefinitely(¢;, ;) when the solution is detected.
To prove (i), it follows from Lemma 3 that
Definitely(¢;, ;) is satisfied for all pairgi, j) when
T .updatedQueues = ¢. For any (i, j) pair, consider
the latest timer; ; when the given(i, j) pair was
tested. To prove (ii), it remains to show that between
t; ; and the time that the solution is declared when
T .updatedQueues = ¢, none of these intervals com-
pared at; ; is dequeued. If one of these intervals were
to get dequeued, then by Lemma 4, that process index
(say,i) would get inserted irf".updatedQueues and
the token would have to re-visit that proceBs re-
sulting in another test fo¢, j), a contradiction. The
result follows. O

Theorem 4. If a solution Z exists, i.e., for each pair
P;, P; € N, the intervals I;, I; belonging to Z are
such that I; — I; and I; — I; (and hence from
Theorems 1 and 2, Definitely(¢) must be true), then
the solution is detected by the algorithm.

Proof. Consider the: intervals, one at each process,
that form thefirst solution. We prove using contradic-
tion that none of these intervals gets deleted. Assume
that intervall; is thefirst interval forming a part of

the solution to get deleted. We then halfes> I;,
which implies that some predecessor interkabf I/
must form part of the solution with; and thus satisfy

(I = I; A I; — I;). But this implies/; already got
deleted in some earlier test, because intervals at each
process are examined and deleted serially in the order



248 P. Chandra, A.D. Kshemkalyani / Information Processing Letters 87 (2003) 243-249

of their occurrence. This is a contradiction. Hence, no Note that the worst case just discussed is for a
interval forming a part of the solution gets deleted. single process. The worst-case system-wide space
Observe from (line 3a) that for each hop of the overhead always remain22.

token, the size of".updatedQueues decreases by 1if  (2) In terms of p: The total number otf.ogs stored

no interval is deleted from any queue in the ensuing at each process igp because in the worst case,
REQ-REP phase (refer Lemma 4). It follows that in the Log for each interval may need to be stored.
at most eachin — 1) consecutive hops, the interval As eachLog has size &, the worst-case overhead
at the head of the queue of some process must get s 2up integers over alLogs per process, and the

replaced by the immediate successor interval at that  \orst-case space complexity across all processes
process, otherwisg&.updatedQueues becomes empty is 212p = O(n?p).

and a solution gets detected. This guarantees progress

and within a finite number of StepS, the interval from As the total number dtogs stored on all the processes
each process forming a part of the first solution will s minnp, mn), the worst-case space overhead across
be at the head of the corresponding queue. As No g| the processes is min2p, 222m). This is equiva-
such interval gets deleted, with|if.updatedQueues| lent to min2np, 2nm) per process if thein message

hops of the token after this state, the solution gets yegtinations are divided equally among the processes

detected. 0. (implying that each process has up to itvn)
_ _ Logs). The worst-case space overhead at a process is
3.1. Complexity analysis min(2np, 2n(n — L)m).

The complexity analysis can be done in terms of )
two parameters—the maximum number of messages>-1-2- Time complexity o _
sent per processn) and the maximum number of The two components contributing to time complex-
intervals per process. ity are RcvReq andRevToken.

RevReg: In the worst case, the number BEQs re-
ceived by a process is equal to the numberagfs
on all other processes, becaudeEq) is sent only
once for eachLog. The total number ofogs over
all the queues is mimp, mn) (see Section 3.1.1),
hence the number of interval pairs compared

3.1.1. Spacecomplexity at Py to P,

(1) Interms of m: From Fig. 1, observe that tHeog
for an interval is stored on the queue only if a
receive has occurred since the last timieog for
an interval was stored on the queue (at the same
process). As there are a total afn messages

exchanged between all processes, a totatmnf per process is mitin —1p,m(n —1)). As it

interval Logs are stored across all the queues, takes Q1) time to executeRcvReq, the worst-

though not necessarily at the same time. case time complexity per process f&cvReq

e As the vector timestamp at the stavt{) and at is O(min(np, mn)). As the processes execute
the end ¢ ~) of each interval is stored in each RecvReq in parallel, this is also the total time com-
Log and there are a total ofin Logs stored plexity for RevReq.
on the various process queues, the worst-case Revioken: The token makes at most ntirp, mn) hops
space overhead across all processesis2n = serially and each hop requires(0 time com-
2mn?. plexity. Hence the worst-case time complexity

e For a process, the worst case occurs when it for RevToken across all processes is(@in(pn?,
receivesn messages from all the other— 1 mn?)). In the worst case, a process receives the
processes. The number bbgs stored on the token each time its queue head is deleted, and this
process queue is&(n — 1), onelLog for each can happen as many times as the numbérogk
receive event. As eadlpbg contains two vector at the process. As the numberlafgs at a process

timestamps, the worst-case space at the process  is min(p, m(n — 1)), the worst-case time complex-
ism(n — 1) - 2n = O(mn?). ity per process is Onin(pn, mn?)).



P. Chandra, A.D. Kshemkalyani / Information Processing Letters 87 (2003) 243-249

The worst-case time complexity across all the proc-
esses is @nin(pn?, mn?)). This is equivalent to
O(min(pn, mn)) per process if thenn message des-
tinations are divided equally among the processes
(implying that each process has up to ginvn)
Logs). The worst-case time complexity at a process is
o(min(pn, mn?)).

3.1.3. Message complexity
For eachLog, either no messages are sentger 1
REQs,n — 1 REPs and one tokefi are sent.

e As the total number ofLogs over all the queues
is min(np, mn), hence the worst-case number of
messages over all the processes (& @in(np,
mn)).

e The size of eaclt" is equal to Qn), while the
size of eachREP and eachREQ is O(1). Thus
for eachLog, the message space overhead{s)O
if any messages are sent for thatg. Hence the

worst-case message space overhead over all the

processes is equal to(@min(np, mn)).

Acknowledgements

249

[2] R. Cooper, K. Marzullo, Consistent detection of global predi-
cates, in: Proc. ACM/ONR Workshop on Parallel and Distrib-
uted Debugging, May 1991, pp. 163-173.

[3] C.J. Fidge, Timestamps in message-passing systems that pre-
serve partial ordering, Australian Comput. Sci. Comm. 10 (1)
(1988) 56-66.

[4] V. Garg, C. Chase, Distributed algorithms for detecting con-
junctive predicates, in: Proc. 15th IEEE International Confer-
ence on Distributed Computing Systems, 1995, pp. 423-430.

[5] V.K. Garg, B. Waldecker, Detection of weak unstable pred-
icates in distributed programs, IEEE Trans. Parallel Distrib.
Systems 5 (3) (1994) 299-307.

[6] V.K. Garg, B. Waldecker, Detection of strong unstable pred-
icates in distributed programs, IEEE Trans. Parallel Distrib.
Systems 7 (12) (1996) 1323-1333.

[7] M. Hurfin, M. Mizuno, M. Raynal, M. Singhal, Efficient
distributed detection of conjunctions of local predicates, IEEE
Trans. Software Engrg. 24 (8) (1998) 664-677.

[8] A.D. Kshemkalyani, Temporal interactions of intervals in
distributed systems, J. Comput. System Sci. 52 (2) (1996) 287—
298.

[9] A.D. Kshemkalyani, A fine-grained modality classification
for global predicates, |IEEE Trans. Parallel Distrib. Systems
(2003), to appear; Technical Report UIC-EECS-00-10, Univer-
sity of lllinois at Chicago, 2000.

[10] L. Lamport, Time, clocks, and the ordering of events in a

distributed system, Comm. ACM 21 (7) (1978) 558-565.

[11] L. Lamport, On interprocess communication, Part I: Basic For-

malism; On interprocess communication, Part II: Algorithms,
Distrib. Comput. 1 (1986) 77—-85; 86—101.

This material is based upon work supported by the [12] K. Marzullo, G. Neiger, Detection of global state predicates,

National Science Foundation under Grant KklCR-
9875617.

References

[1] P. Chandra, A.D. Kshemkalyani, Detection of orthogonal
interval relations, in: Proc. 9th International Conference on
High Performance Computing, in: Lecture Notes in Comput.
Sci., Vol. 2552, Springer, Berlin, 2002, pp. 323-333.

in: Proc. 5th Workshop on Distributed Algorithms, in: Lecture
Notes in Comput. Sci., Vol. 579, Springer, Berlin, October
1991, pp. 254-272.

[13] F. Mattern, Virtual time and global states of distributed sys-

tems, in: Parallel and Distributed Algorithms, North-Holland,
1989, pp. 215-226.

[14] S. Stoller, F. Schneider, Faster possibility detection by com-

bining two approaches, in: Proc. 9th International Workshop
on Distributed Algorithms, in: Lecture Notes in Comput. Sci.,
Vol. 972, Springer, Berlin, 1995, pp. 318-332.



