10 August 199
North-Holland, Anm.

and G.S. Lueker, A
est-first sequences of
3, Math. Oper. Res. ¢

gorithms minimizing
roperties, Acta In.

1al spacing, Urilitgs

1ds on the expecta-
g applications, Oper.

Kan, the asympiotic
Jper. Res. 12 (1987)

S. Johnson, Perfor-
rorithms, Oper. Res.

Computers and In-
‘9).

ssing timing anoma-
16-429,
lifferencing method
er Science Division,

1 for the oscillation

! quantile process,
7-136.
s of Order Statistics

ns of Mathematical

orithm for balanced
. Comput. 21 (1992)

parallel machines
26 (1990) 195-242.

{nformation Processing Letters 43 (1992) 47-52
North-Holland

10 August 1992

An efficient implementation of vector clocks

Mukesh Singhal and Ajay Kshemkalyani

Depariment of Computer and Information Science, The Ohio State University, Columbus, OH 43210, USA

Communicated by L. Kott
Received 4 January 1991
Revised 18 June 1991 and 28 January 1992

Abstract

Singhal, M. and A. Kshemkalyani, An efficient implementation of vector clocks, information Processing Letters 43 (1992)

47-52.

The system of vector clocks is an essential tool for designing distributed algorithms and reasoning about them. We present
an efficient implementation of vector clocks that reduces the size of timestamp related information to be transferred in a

message. The implementation assumes FIFO message de
system.

livery and is resilient to changes in the topology of the distributed

Keywords: Distributed computing systems, efficient implementation, logical time, vector time, causal ordering

1. Introduction

We model a distributed system as a graph
(V, E) with arbitrary connectivity, where V is the
set of processes and ECV XV is a set of unidi-
rectional logical FIFO channels. Process a can
communicate with process b if there is a logical
channel from a to b. Events at a process can be
internal events, message send events, or message
receive events. Lamport defines happens before
(or the causality relation), an irreflexive, partial
order on the set of events as follows [7]: For
events e and e’, e happens before e’ is the small-
est transitive relation satisfying the following con-
ditions, (i) e and e’ are events in the same
process and e precedes e’, and (ii) e is a message
send event and e’ is the corresponding message

Correspondence to: M. Singhal, Department of Computer
and Information Science, The Ohio State University, 2036
Neil Avenue Mall, Columbus, OH 43210, USA.

1020-0190 /92 /$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

receive event. Lamport further defines a system
of clocks wherein the “timestamp” of an event 18
the local clock value and e happens before e’ =
timestamp(e) < timestamp(e').

Recently, Mattern and Fidge formalized the
notion of vector clocks which exactly characterize
the causal order among events in a distributed
system [5,10]. In this paper, we present an effi-
cient technique to maintain vector clocks. In vec-
tor clocks, logical time is defined to be a vector of
length N. (N is the number of processes in the
system.) The logical time at process iis T, and
the timestamp of a message msg is msg.T. (Tj]
and msg.T1j], respectively, denote the jth com-
ponent of these time vectors.)

The logical time at a process (site /node)
evolves as follows:

(a) When an internal event or a send event
occurs at process i, Tj{i}=Tli]+ 1.

(b) Every message contains the current clock
value, T,, of its sender process i.

47

R e e S 0

Volume 43, Number 1

(c) When process i receives a message msg,
then Vj do,

if j=1i
then T;[j]=T[j] + 1,
else T;[j]:= max(T;[j], msg.T[]).

Thus the jth component of the time vector at
a process reflects the highest value of the jth
component of all timestamped messages it has
received. Note that only T[i] reflects the local
activities at process i and T[] reflects what
process i knows about the local timestamp (i.e.,
activities) of process j. Thus, time vector T; re-
flects what process i knows of the latest state
(local time) of all other processes. Note that each
component of a time vector progresses indepen-
dently.

An ordering relation “<” between vector
timestamps is defined as follows T, <T, iff (Vk),
T[k] < <Tlk]land T, # T,. Note that T, < T; iff the
event at T happened before [7] the event at T,
Thus, vector clocks [5,10] characterize the exact
causal order among distributed events [14] as a
partial order which is weaker than the total order
of Lamport’s clocks [7]. The system of vector time
is a viable tool for analyzing the dynamics of
distributed systems because it is capable of iden-
tifying causal ordering among events in a dis-
tributed system. The concept of vector clocks/
timestamps has been indirectly used before in file
consistency [13], distributed debugging [4], dis-
tributed mutual exclusion [15), distributed recov-
ery [16], implementing causal distributed shared
memory [1], execution tracing for testing dis-
tributed software [8] and in causal broadcast /
multicast in the ISIS system [2].

However, the system of vector clocks is ineffi-
cient because the size of a timestamp is propor-
tional to the number of processes in the system.
(Charron-Bost has mathematically shown that
causal order preserving clocks must have length
N, the number of processes in the system [3].) If
the number of processes is large, each message
will be large and may have to be split into many
packets. In this paper, we present an efficient
method to maintain vector clocks which can cut

48

INFORMATION PROCESSING LETTERS

down the communication overhead substantially
when FIFO communication channels are avail-

10 August 1992 £

able. The method reduces the size of timestamp |

related information to be transferred in a mes-
sage at the expense of very little extra storage
space at processes. The method is resilient to
changes in the topology of the system such as the
addition and deletion of communication edges.

2. The technique

A process i keeps two additional vectors, viz.,

LU[1..N] and LS[1..N] which are respectively :
called “Last Update” and “Last Sent”. Entry

LUJ] indicates the value of T[i] when process i
last updated entry T}[j]. Clearly, LU[i] = T[i] at
all times. LU[j] needs to be updated only when
the receipt of a message causes i to update entry
T[/j]. Entry LS[j] indicates the value of T[]
when the process i last sent a message to process
J. It needs to be updated only when process i
sends a message to process j. We make the
following interesting observation:

Observation. Since the last communication from

process i to process j, only those elements T[k]

have changed for which LS[j] < LU[k].

Therefore, when process i sends a message to
J, it only needs to send those entries T[k] to
process j for which LS[j] < LU[k].

Our implementation of this observation needs
just O(n) space at each process. Another imple-
mentation of vector clocks [11] requires each pro-
cess to keep the latest vector sent to every other
process, thus, consuming O(n?) space at each
process.

In the proposed technique, a process i needs
to send to process j only a set of tuples
{(x, T[xDILS[j]< LU][x]} instead of a vector of
N entries in a message. Note that this can sub-
stantially reduce the size of information sent in a
message to update vector clocks because only a
fraction of entries of 7, are likely to be modified
between two successive message transfers to a
process. This technique is specially effective when
the number of processes is large because only a

g —— ——

’

Volume 43, Number 1

Pr

few of the process
ing in the update
vector clock betw
transfers to a proc:

' A further optimiz:
never needs to send (,

inde

H

L]

Fig. 2. An example of the

992 Volume 43, Number | INFORMATION PROCESSING LETTERS 10 August 1992
l“y Process 1 *
1il- / {(3.13), (4,6)}
np Process 2
3 3 3
legse =1 3=llw]| s =|w
to 2 5 B [319,46y
N 6 6 6
he
Process 3 20 20 20
{(2,7). (4.6)} ’
Process 4
iz,
’ly Process §
try Fig. 1. Timing diagram for a five-process system.
S i
at] ol
en few of the processes are likely to interact result- We explain the technique with an example of a
[FS]' ing in the update of only a few entries in the five-process system shown using Fig. 1 and Fig. 2.
_l vector clock between two successive message Figure 1 shows a timing diagram for the interac-
'S8 transfers to a process ! tions of process 3 with the other processes. State
hl 1 in Fig. 2 shows the data structure at process 3
€ at T3[3] = 10. Process 3 needs to send a message
U A further optimization, however small, is that process i to process 2. So it updates T3[3] to 11, and notes
m never needs to send (j, T;[j]) to process ;. that since the last time it sent a message to
k]
ljldex] T3 LU3 LS3 index T3 LU3 LST] index T3 LUa LSa
to 1 [3] 27110 1 [3] 2 10 1 [3] 2 [10 8
0 2 10 5 6 2 10 5 11 2 10 5 11
3 101 10 3 11] 11 - 3 12 12 -
is 4 [4] 4 4 | 4| 4 4 161217
2. 5 20 9 3 5 20 9 3 5 20 9 3
> State 1 State 2 State 3
T
h
index[T3 LU;; LS:; index T3 LU3 LS;
Is 1 3 2 13 1 3 2 13
'S 2 10 5 11 2 10 5 14
of 3 13| 13 - 3 14 14 -
- 4 6 12 7 4 6 12 7
1 5 201 9 3 5 201 9 3
j State 4 State 5
a Fig. 2. An example of the data structure to maintain vector timestamps. The states of the data structure at process 3 from T5(3]=10
1 toT43]=14ina five-process system.
1
3
49

Volume 43, Number 1

process 2, only T5[3] and T,[5] have changed. This
can be deduced from the current data structure
because only LU,[3] which has now been incre-
mented to 11 and LU,[5]) which is 9 are greater
than LS,[2] which is 6. Thus, the message to
process 2 contains the timestamp {(3, 11), (5, 20)}.
Process 3 now updates LS,[2] to 11, yielding
State 2 shown in Fig. 2. Process 3 then receives a
message with timestamp {(2, 7), (4, 6)} from pro-
cess 4. By following the method for handling
vector clocks (discussed in Section 1), process 3
updates entries T5[3] and T5[4] in T; to 12 and 6
respectively. Process 3 also updates entries LU, 3]
and LU,[4] to 12, the current value of T4[3]. This
yields State 3 which is shown in Fig. 2. Process 3
now sends messages to processes 1 and 2 with
timestamps as shown in Fig. 1 and the resulting
data structures are shown as States 4 and 5,
respectively, in Fig. 2.

3. Discussion
Impact on applications

Many distributed applications require observa-
tion of the latest global state of the system. Ex-
amples are implementing causal distributed
shared memory [1], detection of inconsistent
copies in a system with replicated data [13], dis-
tributed deadlock detection [6], and enforcement
of mutual exclusion [15]. Algorithms for such
applications can advantageously use the proposed
technique because the “incremental” changes in
the timestamp at a process are sufficient to con-
struct the latest global state (assuming FIFO mes-
sage delivery). Algorithms for termination detec-
tion [9] need to observe a consistent global state
of the system and algorithms for recovery [16]
need to construct a consistent global state of the
system. Such algorithms can use the proposed
technique for the same reason.

Several distributed applications require en-
forcement of “causal consistency” for point-to-
point communications [14]. The ISIS distributed
system environment [2] enforces causal consis-
tency for multicast and other broadcast communi-
cations. Algorithms for such applications can use

50

INFORMATION PROCESSING LETTERS

10 August 1992

the proposed technique because the “incremen-
tal” changes in the timestamp at a process are
sufficient to enforce causal consistency (assuming
FIFO message delivery).

Some applications, such as prototyping lan-
guage design, require that causal relationships be
determined between two messages m; and m,
arriving at a process from processes j and k,
respectively [12]. Since only differential vectors
are sent in the proposed technique, neither mes-
sage timestamp may contain a tuple for the other
sender even though the two send events may be
causally related. To determine causality, the re-
ceiver process must be able to reconstruct the
timestamps at processes j and k when m ; and
m, were, respectively, sent by them. This can be
achieved in the proposed scheme using the fol-
lowing simple method which requires O(n?) space
at each process: A process i maintains array
LR[1..N, 1..N] called “Last Received”. Entry
LR/[j, k] indicates the latest value Tj[k] received
by process i along a logical channel from process
J. Vector LR[j] indicates the last timestamp vec-
tor received from process j. When process i
receives a set of tuples along a logical channel
from process j, the corresponding entries in row
LR][] are updated.

Locality of communications

In typical distributed systems, processes com-
municate in clusters over a very significant por-
tion of the execution of a distributed application.
In fact, application tasks are partitioned to mini-
mize or localize communication. An example of
the importance of locality is the vast literature on
partitioning tasks onto sub-cubes of a hypercube.
Decomposing a task hierarchically into a tree
structure and mapping sub-tasks onto siblings in
the tree also tends to localize communications
among the children and sibling processes. Nested
transactions exemplify this behavior, too. In all
such cases, only incremental changes to the
timestamp vector need to be transferred by pro-
cesses, thus, making the proposed technique even
more effective in such environments.

An optimization on storage requirements at a
process can be performed. If the system topology

Volume 43, Num

is such that p
cess j throug:
no event on

fected by any
process ¢ will :
process j s tir
Tlj] and LU
fined, respecti
an entry for
structure 7,/
there is no |
process J, the:
process I nevc
such cases, pr
process j in it
saving on spac

4. Efficiency oi

We now cc
posed compact
ciency of a cor
percentage re«
related inform
sage as comp:
vector timestal
terms:

n: The av
qualify
ing the

b: The m
ber.

log,N: The m
proces:

The Matterr
timestamp infc
technique requ
efficiency of th«
ing expression:

{ (log, N +
b.N

It is easy to «
beneficial only -

Volume 43, Number]

is such that process i is not reachable from pro-
cess J through a series of logical channels, then
O event on process { can ever be causally af-
fected by any event on process J [12]. Therefore,
process ¢ will never receive any information about
process j's timestamp in any message and thus,
TI(j] and LU[;] will always be zero and unde.-
fined, respectively. Thus, process i need not keep
an entry for all such processes J in its data
structure 7; /LU, thus, saving on space. Also, if
there is no logical channel from process i to
process J, then LS[;] will be undefined because
process i never sends a message to process J. In
such cases, process i need not keep an entry for
process j in its data structure LS,, thus, further
saving on space.

4. Efficiency of the technique

We now compute the efficiency of the pro-
posed compaction technique. We define the effi-
ciency of a compaction technique as the average
percentage reduction in the size of timestamp
related information to be transferred in a mes-
Sage as compared to when sending the entire
vector timestamp. We also define the following
terms;

n: The average number of entries in 7, that
qualify for transmission in a message us-
ing the proposed technique.

b: The number of bits in a sequence num-
ber.

log,N: The number of bits needed to code N
process ids.

The Mattern / Fidge clocks require N.b bits of
timestamp information, whereas the proposed
technique requires (log, N + b).n bits. Thus, the
efficiency of the technique is given by the follow-
ing expression:

(log,N+b).n
- "
b.N

1 100%.

Itis easy to see that the proposed technique is
beneficial only if n < N.b/(log,N + b).

SRR M

INFORMATION PROCESSING LETTERS 10 August 1992

5. Conclusions

In this paper, we have presented an efficient
technique to maintain Mattern/ Fidge vector
clocks, which cuts down the communication over-
head due to propagation of vector timestamps by
sending only incremental changes in the time-
stamp. The technique can cut down the commu-
nication overhead substantially if the interaction
between processes is localized. The technique
works in a system whose topology need not be
known unlike the optimization presented in [12].
The technique has a small memory overhead (to
store arrays LS, and LU,). However, this is not
serious because main memory is cheap and is
available in large quantities, and it is more desir-
able to reduce traffic on a communication net-
work whose capacity is limited and is often the
bottleneck.

Acknowledgment

The authors have- greatly benefitted from the
comments of anonymous referees and F. Mattern
and C. Fidge.

References

(11 M. Ahamad, P. Hutto and R. John, Implementing and
programming causal distributed memory, in: Proc. [lth
Internat. Conf. on Distributed Computing Systems (1991)
274-281.

[2] K. Birman, A. Schiper and P. Stephenson, Fast causal
multicast, Computer Science Tech. Rept. TR-1105, Cor-
nell University, April 1990,

[3] B. Charron-Bost, Concerning the size of clocks, Inform.
Process. Letr. 39 (1) (1991) 11-16.

[4] C.A. Fidge, Partial order for parallel debugging, in: Proc.
ACM SIGPLAN /SIGOPS Workshop on Parallel and Dis-
tributed Debugging (1988) 183-194, v

[5] C.A. Fidge, Timestamps in message-passing systems that
preserve partial ordering, Austral Comput. Sci. Comm.
10 (1988) 56-66.

[6] A.D. Kshemkalyani and M. Singhal, On characterization
and correctness of distributed deadlock detection, OSU-
CISRC-10/90-TR15 (under review for publication).

(7] L. Lamport, Time, clocks, and the ordering of events in a
distributed system, Comm. ACM 21 (1978) 558-565.

(8] SK. Lloyd and P. Kearns, Using tracing to direct our

51

A 3 M vt o RS 0

Pt

.

i
1y
It

¥

"
<1

Volume 43, Number 1

reasoning about distributed programs, in: Proc. 11th In-
ternat. Conf. on Distributed Computing Systems (1991)
552-559.

[9] F. Mattern, Algorithms for distributed termination detec-
tion, Distributed Comput. 2 (1987) 161-175.

[10] F. Mattern, Virtual time and global states of distributed

systems, in: M. Cosnard et al., eds., Parallel and Dis-
tributed Algorithms (North-Holland, Amsterdam, 1989)
215-226.

[11] F. Mattern, Verteilte Basisalgorithmen (Springer, Berlin,
1989), in German; ISBN 0-387-51835-5.

[12] S. Meldal, S. Sankar and J. Vera, Exploiting locality in
maintaining potential causality, Tech. Rept. CSL-TR-91-
466, Stanford University; also in: Proc. ACM Symp. on
Principles of Distributed Computing, 1991.

52

INFORMATION PROCESSING LETTERS

10 August 1992

[13] D.S. Parker, G.J. Popek, G. Rudisin, A. Stoughton, B.J.
Walker, E. Walton, J.M. Chow, D. Edwards, S. Kiser and
C. Kline, Detection of mutual inconsistency in dis-
tributed systems, IEEE Trans. Software Engineering 9
(1983) 240-247.

[14] A. Schiper, J. Eggli and A. Sandoz, A new algorithm to
implement causal ordering, in: Proc. 3rd Internat. Work-
shop on Distributed Algorithms, Lecture Notes in Com-
puter Science 392 (Springer, Berlin, 1989) 219-232.

[15] M. Singhal, A heuristically-aided algorithm for mutual
exclusion in distributed systems, IEEE Trans. Comput. 38
(5) (1989).

[16] R. Strom and S. Yemini, Optimistic recovery in dis-
tributed systems, ACM Trans. Comput. Systems 3 (1985)
204-226.

Information Proces
North-Holland

On t

Elias Kc

Department

Communica
Received 3.
Revised 16 .

Abstract
Koutsoupias
53-55.

We show th
assignment :
in discoverir

Keywords: A

Recently the
in simple randc
(see [5], and
results). Consid
ple heuristic:

start with a ran

while there is @

from T in o

clauses than

choose the

and set T
return 7.

Naturally, wher
heuristic will nc
ment, and so it
We therefore a
satisfiable, how
satisfying truth
answer is almos

Correspondence
Computer Science :
fornia, San Diego,

0020-0190 /92 /305.

