
A Simple, Memory-Efficient Bounded
Concurrent Timestamping Algorithm

Vivek Shikaripura and Ajay D. Kshemkalyani

Computer Science Department, Univ. of Illinois at Chicago,
Chicago, IL 60607, USA

Abstract. Several constructions have been proposed for implementing
a Bounded Concurrent Timestamp System (BCTS). Some constructions
are based on a recursively defined Precedence Graph. Such constructions
have been viewed as hard to understand and to prove correct. Other con-
structions that are based on the Traceable Use abstraction first proposed
by Dwork and Waarts have been regarded as simple and have there-
fore been preferred. The Dwork-Waarts (DW) algorithm, however, is
not space-efficient. Haldar and Vitanyi (HV) gave a more space-efficient
construction based on Traceable Use, starting with only safe and regular
registers as building blocks. In this paper, we present a new algorithm
by making simple modifications to DW. Our algorithm is simple and is
more memory-efficient than the DW and HV algorithms.

1 Introduction

We consider the problem of constructing a Bounded Concurrent Timestamp
System (BCTS), which can be described briefly as follows. There is a set of n
asynchronous processors which can perform two types of operations, Label() and
Scan(). The Label() operation corresponds to some event and generates a new
timestamp (label, hereafter) for the processor performing it. The Scan() opera-
tion enables a processor to obtain a list of the current labels and to determine the
order among them, consistent with the real-time order in which the labels were
selected. The Label()/ Scan() operations of a processor may be interleaved or
concurrent with a Label()/ Scan() operation of another processor. The problem
is to construct such a system by using shared variables as building blocks but with
the restriction that the size and number of all labels/shared variables/registers
so used be bounded. The system must also be wait-free [5].

Bounded Concurrent Timestamping is a well-studied problem. The reader is
referred to [2,5] for an introduction. Bounded Concurrent Timestamping ab-
stracts a large class of problems in concurrency control, notably Lamport’s
first-come first-served mutual exclusion [11], randomized consensus [1], MRMW
atomic register construction [16] and fifo-l-exclusion [6].

There are many BCTS algorithms [3,4,5,8,10]. The basic technique used is
to first construct an Unbounded Concurrent Timestamp System (UBCTS) in
which processors assume monotonically increasing label values (a potentially
unbounded number of them) and then convert the UBCTS into a Bounded

P. Bose and P. Morin (Eds.): ISAAC 2002, LNCS 2518, pp. 550–562, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Simple, Memory-Efficient Bounded Concurrent Timestamping Algorithm 551

Concurrent Timestamp System (BCTS) by employing a mechanism to recycle
the labels. So far, two recycle mechanisms (and their variants) have been used.

1. Precedence Graph: In this mechanism, processors choose labels from the
domain of a recursively defined, nested digraph called precedence graph.
The domain consists of the set of labels (node names) in the precedence
graph. To execute a label operation, a processor first collects all the node
labels which have been chosen by other processors and then chooses its new
label by selecting a free node such that it is the lowest node “dominating”
the collected nodes. A scanner determines the order among the labels by
following the edges of the nodes corresponding to the labels. Owing to some
special properties of the graph, successive labeling operations are able to
continuously choose new nodes without ever running out of nodes. This
mechanism, first used by Israeli and Li [9] for sequential timestamp systems,
was later extended and used in [4,3,7,10] for concurrent timestamp systems.

2. Traceable Use: In the precedence graph, there is a global pool of values
from which processors choose their labels. In the Traceable Use mechanism,
each processor maintains a separate, local pool of private values. To execute
the labeling operation, a processor first collects the private value of every
processor, chooses a new, unused private value for itself from its local pool
and finally obtains a vector clock from these private values. This vector clock
is the new label of the processor. So as to allow other processors to know
which one of their private values has been collected, the labeler records in
shared memory, every private value that it collects. This enables a processor
to trace out which of its private values are not in use at any time by checking
shared memory. With this arrangement, a labeler can safely recycle private
values. A scanner determines the order among the labels by comparing the
vector clocks. This mechanism, known as Traceable Use, is the basis of the
algorithms in [5,8].

While the precedence graph mechanism has allowed construction of efficient
algorithms, it has been regarded as hard to understand [8,7] and having high con-
ceptual complexity [4,12,14]. The Traceable Use mechanism has been regarded
as “simple”, but it has not enabled space-efficient constructions so far, since long
registers and large amount of shared memory space are required in its implemen-
tation. Despite this drawback, Traceable Use mechanism has enjoyed popularity
since it renders simple, elegant constructions that are easy to understand and
prove correct. We are thus motivated to seek improvements in algorithms [5,8],
while retaining the simplicity with which they model BCTS. The presented work
is such an attempt.

Several criteria have been used to compare BCTS algorithms.

– Label/Register size: The maximum size in bits of a register owned by any
processor.

– Label time complexity: The maximum number of shared variable accesses in
a single execution of the Label() operation.

– Scan time complexity: The maximum number of shared variable accesses in
a single execution of the Scan() operation.

552 V. Shikaripura and A.D. Kshemkalyani

– Memory overhead: Every processor accesses two types of memory – shared
memory and local memory. Shared memory includes all shared variables.
Local memory includes local variables and private pools of values used by a
processor, which are kept in local space.

Tables 1 and 2 compare the performance of the BCTS algorithms.

Table 1. Comparison of BCTS algorithms based on the precedence graph [8].

Algorithm Register Label time Scan time Total shared
size (bits) complexity complexity space (bits)

Dolev-Shavit [3] O(n) O(n) O(n2 logn) O(n3)
Gawlick et. al. [7] O(n2) O(n logn) O(n logn) O(n4)
Israeli-Pinhasov [10] O(n2) O(n) O(n) O(n4)
Time-lapse [4] O(n) O(n) O(n) O(n3)

Table 2. Comparison of BCTS algorithms based on the Traceable Use mechanism.

Algorithm Register Label time Scan time Total shared Local
size (bits) complexity complexity space (bits) space (bits)

Dwork-Waarts [5] O(n logn) O(n) O(n) O(n5 logn) O(n2 logn)
Haldar-Vitanyi [8] O(n logn) O(n) O(n) O(n3 logn) O(n2 logn)
This paper O(n logn) O(n) O(n) O(n3 logn) O(n logn)

The DW algorithm [5] has three main drawbacks: (i) each processor uses
O(n2) SWMR registers, so that the total overhead of shared memory is
O(n5 log n) SWSR safe bits, (ii) an extra, expensive garbage collection mech-
anism is required for tracking down private values not in use, and (iii) long
registers of size O(n log n) bits are used in the construction. Haldar and Vitanyi
(HV) [8] improved the first two drawbacks by giving an independent construction
using only regular and safe registers as building blocks.

In the present work, we improve the algorithm in [5] by proposing a new,
modified design for the Label() and Scan() operations. Unlike [5,8], while our
Label() operation uses the RWRWR handshake technique of [5,13] to collect
private values, our Scan() operation collects processor labels by capturing a
snapshot of the labels as they existed at a single point in time [4,7]. Every pro-
cessor in our construction uses two pools of integers, a private value pool and
a tag pool, each of size O(n) integers. The size of the private pool of values is
3n − 1 integers in our case, which is better than the 2n2 in [8] and the 22n2 in
[5]. Our algorithm is inspired by a detailed study of existing BCTS algorithms;
we integrate many of the ideas embedded in the algorithms of [4,5,7] into our
construction. As can be seen from the tables, although the Time-lapse algorithm

A Simple, Memory-Efficient Bounded Concurrent Timestamping Algorithm 553

[4] based on the precedence graph is more efficient, it does not enjoy the sim-
plicity of approach of our construction based on the Traceable Use abstraction.

2 The Dwork-Waarts Construction

We first review the structure of shared memory in the DW algorithm. Figure 1
(top) sketches the shared variables associated with any processor b. Xb, known
as the principal shared variable, is the label (timestamp) of processor b. It is a
vector of length n whose components are the private values collected from every
processor. The A1−Xb∗, A2−Xb∗, A3−Xb∗, and B−Xb∗ registers are auxiliary
shared variables needed for the construction. The pb∗, qb∗ and togb registers
implement the RWRWR handshake mechanism of [5,13] which can detect con-
current writes while the processor b is reading. The Ordb∗ registers maintain the
ordering information among the pool of private values of b. As the shared vari-
ables Xb, togb and handshake bits pb∗ are fields of one SWMR atomic register
rb, all of them can be read/written in one atomic operation. Similarly, A1−Xb∗,
A2−Xb∗, A3−Xb∗ and B−Xb∗ can be read/written atomically from rb∗.

The central idea of the DW algorithm is as follows: Each processor b main-
tains an integer pool of private values – vb(1), , vb(11n2) from which it
draws values for its label. The relative order between vb(i), vb(j) (i.e., which of
the two was taken up before the other), for all i, j, is stored in Order registers
(Ordb∗ in Figure 1) by b. Whenever b executes a labeling operation, it assumes a
new label, a vector clock consisting of n components – the current private value
collected from each processor plus a new private value v drawn from its own
local pool (assuming it is not empty). The value v so drawn is now written in
the Order registers Ordb∗ as the largest of b’s values. The key to the algorithm
is to ensure that when b takes up v, v is indeed “new” in the sense that it does
not currently appear and will not appear later in the label of any processor in
the system. To see why this is critical, consider the following scenario. A scanner
c collects labels from all processors but goes to sleep temporarily before deter-
mining their relative ordering. Meanwhile an updater b wishing to assume a new
label, cannot take up any of its private values vk which c may have obtained
from b (or indirectly from another processor d). If b, before c woke up, were
indeed to take up vk and update register Ordb∗ with vk as the largest value,
any of c’s subsequent computations making reference to newly updated Ordb∗
would be erroneous. Hence, b would have to make sure that it does not take up
a value which is already in use. The problem of determining which values are in
use in the system at any time is not trivial. The DW algorithm solves this prob-
lem by requiring that every private value read in an operation, either Label()
or Scan(), be recorded in shared memory somewhere, hence, all private values
consumed in read operations are recorded in shared variables. A processor can
trace out which of its values are in use at any time, by scanning all the shared
variables (this is known as garbage collection). Only values not found in shared
memory (and hence not in use) are valid new values. It turns out that in order

554 V. Shikaripura and A.D. Kshemkalyani

rb - SWMR atomic rb1 - SWSR regular

.

.

.
rbn - SWSR regular

Local pool of tags
Copy registers - SWSR regular

Tag
b1

Tag
bn

.

.

.

.

.

.

Copy
b1

Copy
bn

(Size = 3)

(Size = 3)

(1-vect)

(1-vect)

Written by processor 1

Written by processor n

qb1
qbn

PTAGb

(1-vect)

(1-vect)

(n-vect)

(n-vect)

((3n-1) - vect)

((3n-1) - vect)

Set aside for labeler

Set aside for labeler

Set aside for scanner

Set aside for scanner

Set aside for scanner

Set aside for scanner

Asideb1

Ordb1

Scan - Asideb1

Asidebn

Ordbn

Scan - Asidebn

.....................

...................

Xb (n - vect)

pbnpb1

togb

QTAGb

Ordbb

(SWSR atomic)

(SWSR atomic)

Shared variables and registers at Processor b in proposed algorithm

Shared variables and registers at Processor b in the DW algorithm [1]

r
b
- SWMR atomic

r
b1

- SWMR atomic

r
bn

- SWMR atomic

.

.

.

Xb (n-vect)

pb1
pbn

togb

..........................

(SWMR atomic)

..........................qb1
qbn

Order registers - SWMR atomic (n - vectors) Update index (SWMR)

Ordb11 Ordb(22n)1

Ordb(22n)O(n)Ordb1O(n)

Ub1

UbO(n)

...

...

.

.

.

.

.

.

.

.

.

A1 - Xb1

A2 - Xb1

A3 - Xb1

B - Xb1

A1 - Xbn

A2 - Xbn

A3 - Xbn

B - Xbn

(n - vect)

(n - vect)

(n - vect)

(n - vect)

(n - vect)

(n - vect)

(n - vect)

(n - vect)

Set aside registers

Set aside registers

Other processors'
info on processor 1
as seen by b

Other processors'
info on processor n
as seen by b

Fig. 1. Data structures for the DW algorithm [5] and the proposed algorithm.

A Simple, Memory-Efficient Bounded Concurrent Timestamping Algorithm 555

Label() procedure, code for processor b
1. For all c, val[]c = traceable-collect(Xc[c])

// collect private values from all other processors except b in val[]c
2. Choose vb = smallest element in b’s pool of available private values in Ordbb

3. new−l = (val1, val2, . . . , vb, . . . , valn)
4. traceable-write(Xb, new−l) // write new−l into Xb

Scan() procedure, code for processor b
1. The set of labels is S = traceable-collect(X)
2. To decide the order between two labels labi and labj :

Read the Order register Ordkb where k is the most significant index in
which labi differs from labj .

Do the same for all labels
traceable-collect(X) of RWRWR, code for processor b
Perform handshake
1. For each c, Collect pcb

2. For each c, Write qbc = pcb

Remainder of the first Read-Write-Read
3. For each c, Collect Xc[c], togc

4. For each c, Write B−Xbc = X1[c], X2[c], . . . , Xn[c]
5. For each c, Collect Xc[c], pcb, togc

6. For each c, if qbc = pcb and togc is unchanged since line 3
then Yc = Xc

else Yc = null

Remainder of the second Read-Write-Read
7. For each c for which Yc = null

Write B−Xbc = X1[c], X2[c], . . . , Xn[c]
8. For each c, Collect Xc[c], pcb, togc

9. For each c for which Yc = null
if qbc = pcb and togc is unchanged since line 5

then Yc = Xc

10. For each c such that Yc = null
Read Yc = A1−Xcb

11. Return (Y1, Y2, . . . , Yn)

Fig. 2. Scan(), Label() and traceable-collect procedures, DW algorithm [5].

to implement this mechanism, known as Traceable Use, every processor must
maintain a separate, private pool of size 22n2 integers.

Though simple, the DW algorithm has the following drawbacks identified in
[8]. (1) If b takes up a new private value every time it executes a Label(), its local
pool will soon become empty unless it stops once in a while to perform garbage
collection, allowing it to return those private values which are not in use, back
into its private pool. To avoid this situation, garbage collection is performed
as an ongoing, background operation, a constant number of steps during every
Label() operation on one half of the pool, while exhausting the other half. That
is, garbage collection which is of O(n2) complexity, is amortized over Label()

556 V. Shikaripura and A.D. Kshemkalyani

operation, which is of O(n) complexity. This implies that Label() is not truly
linear. (2) To avoid having to use a long register of size O(n2 log n) bits for
maintaining the ordering information among its 22n2 integers, b uses 22n SWMR
Order registers Ordb(1) to Ordb(22n), each having n values. But distributing the
ordering information over 22n separate SWMR Order registers does not allow
b to update its Order registers atomically, which can be a problem if there is
a concurrent read of Order registers by a scanner c. Hence, b maintains O(n)
sets of the Order registers and update indices Ub1UbO(n) to maintain the
status (i.e., whether being read currently) of the corresponding Order register.
Such an arrangement requires every processor b to use O(n2) SWMR registers.
Implementing this system using fundamental level SWSR safe bits is not space-
efficient. An analysis in [8] reveals that since it takes O(n2 log n) SWSR safe bits
to construct a single SWMR atomic register of size O(n log n), each processor
b would need O(n4 log n) SWSR safe bits and hence the whole system would
need O(n5 log n) SWSR safe bits. (3) Each processor needs to maintain a pool
of values of size 22n2 integers in local memory, which means that there is an
overhead of O(n2 log n) bits of local memory on every processor.

3 A Memory-Efficient Algorithm

3.1 Intuition and Basic Idea

As discussed in the previous section, a processor b can reuse a private value
vk only if it determines that vk is not in use by any processor in the system.
The Traceable Use Abstraction used in DW enables b to track down any of its
private values vk which are in use by another processor d, even if vk propagated
through many levels of indirection via other processors to d. Hence DW allows
arbitrary levels of indirection of propagation for vk and if vk is detected to be
in use, it will not be recycled. But as noted in [8], the propagation of private
values is restricted to only one level of indirection in BCTS and not to arbitrary
levels. Hence, the complete power of Traceable Use is redundant for BCTS. For
example, in the scenario described in Section 2, for b to recycle vk, it is enough
to check for the following – vk does not appear currently in any existing label, vk

will not appear in a label that some processor might write in the future, vk does
not appear in a label that is returned by any concurrent or future scan of b’s
label. It is not necessary for b to keep track of more than one level of indirection
of propagation of its private values.

We now make an observation. In Figure 2, both the Label() and Scan()
procedures collect labels from other processors. While Scan() collects whole
labels, Label() collects only the private value of the processors. However, both
operations employ a common traceable-collect routine for collecting values.
Intuitively, from the point of view of a processor b, while it is necessary for b
to keep track of its private values that other labelers consumed from it (which
would go towards making up new labels), it is not necessary for b to keep track
of private values that scanners consumed from it (as long as the scanners are
able to determine, in some other way, the same order imposed on the labels by

A Simple, Memory-Efficient Bounded Concurrent Timestamping Algorithm 557

Label() procedure, code for processor b
1. For each c �= b, valc = traceable-collect(Xc) // collect private values
2. Read localOrder = Ordbb. // copy b’s order into local variable localOrder
y[] = Scan−Asideb∗[b]

⋃
Asideb∗

⋃
Copyb∗

⋃
Xb[b]

//garbage collect private values
Choose vb = smallest element in localOrder not in y[]
Reorder elements in localOrder with vb as the largest element

3. new−l = (val1, val2, . . . , vb, . . . , valn) // this is new label of b
4. traceable-write(Xb, new−l) // write new label into Xb

Fig. 3. Label() procedure.

traceable-collect(X) of RWRWR, code for processor b // similar to that of [5]
Perform handshake
1. For each c, Collect pcb

2. For each c, Write qbc = pcb

Remainder of the first Read-Write-Read
3. For each c, Collect Xc[c], togc

4. For each c
Write Copycb = Xc[c]

5. For each c, Collect Xc[c], pcb, togc

6. For each c, if qbc = pcb and togc is unchanged since line 3
then Yc = Xc[c]
else Yc = null

Remainder of the second Read-Write-Read
7. For each c for which Yc = null

Write Copycb = Xc[c]
8. For each c, Collect Xc[c], pcb, togc

9. For each c for which Yc = null
if qbc = pcb and togc is unchanged since line 5

then Yc = Xc[c]

10. For each c such that Yc = null
Read Yc = Asidecb

11. Return (Y1, Y2, . . . , Yn)

Fig. 4. traceable-collect RWRWR procedure.

the labelers). This is because in the Label() operation, the collected values go
back into the system as the new label of a processor but in Scan(), the collected
labels do not go back. While the Label() operation introduces a new label into
the system and hence changes the system, the Scan() operation only makes
an inference about the order of labeling events and hence does not change the
system. Therefore, the approach taken in [5,8], of using the same traceable-
collect routine for tracking down private values in both Label() and Scan()
operations, does not seem natural.

We propose a new, modified design. In our algorithm, a processor does not
keep track of labels that scanners consumed from it. Rather, the scanner notes

558 V. Shikaripura and A.D. Kshemkalyani

traceable-write(Xb, new-X) of RWRWR, code for processor b
1. For all c, Read qcb

// read each processor’s b-th q to check for overlapping Label operation
2. For all c �= b, Read qtagb[c] = PTAGc[b]

// read each processor’s b-th component of PTAG to check for overlapping Scan
3. For all c, if pbc = qcb // if labeling operation of processor c overlaps, do as follows

Write Asidebc = Xb[b] // set aside private value for overlapping labeler c
4. For all c �= b, if qtagb[c] �= QTAGb[c]

// if Scan() operation of processor c overlaps, do as follows
Write Scan−Asidebc = Xb //set aside label for overlapping scanner c
Write Ordbc = Ordbb // set aside order for overlapping scanner c

5. Atomically write to rb: // update all fields of rb atomically
Xb = new-X
togb = not(togb)
for all c, pbc = not(qcb)
Ordbb = localOrder
QTAGb = qtagb

Fig. 5. traceable-write procedure.

Scan() procedure, code for processor b // steps 1-3 collect Time-Lapse snapshot [4]
1. Produce-tag()
2. For all c, atomically Read from rc: // copy Xc, QTAGc[b], Ordcc into local var

valueb[c] = Xc

qtagb[c] = QTAGc[b]
orderb[c] = Ordcc

3. For all c
If qtagb[c] = ptagb[c]

// if some processors c have updated Xc, read values set aside during traceable-write
Read valueb[c] = Scan−Asidecb

Read orderb[c] = Ordcb

4. The labels and respective orders are valueb, orderb. // determine real-time order
To decide the order between the labels valueb[i][1 n] and valueb[j][1 n]:
For i = 1 to n

For j = 1 to n
Let k be the most significant index in which
valueb[i][1 . . . k . . . n] differs from valueb[j][1 . . . k . . . n]
Determine the relative order using orderb[k]

Fig. 6. Scan() procedure.

down from each processor, at the same time as it collects the labels, the order-
ing information necessary for it to determine the order. Each processor uses two
pools – a private value pool and a tag pool. Private values are used by labelers
for making up labels. Tags are used by scanners to collect a snapshot of labels
in the system. As in DW, Label() invokes traceable-collect, but in Scan(),
a different approach is used. The scanner collects two things from each proces-
sor – its label and the ordering information of its private value pool. To get a

A Simple, Memory-Efficient Bounded Concurrent Timestamping Algorithm 559

Produce-tag() procedure, code for processor b // produces new tag for every proc
1. Read ptagb = PTAGb

2. For all c �= b, x[c] = garbage collect(PTAGb[c], QTAGc[b]) //garbage collect tags
3. For all c �= b, choose from Tagbc, the local pool of tags for c, a tag ptagb[c] �∈ x[c]
4. Write PTAGb = ptagb // this is new set of tags produced for other processor

Fig. 7. Produce-tag() procedure.

consistent view of the system, the scanner captures a snapshot, i.e., it collects
labels and orders as they existed at a single point in time during the interval
of the Scan()’s execution. The ordering information collected in the snapshot
is used to determine the relative order among the labels. Consider the scenario
described in Section 2. In the DW algorithm, all the labels collected by c during
Scan() – totally O(n2) private values, O(n) values for each of the n processors
– are recorded in shared variables. Labeler b cannot recycle any of these pri-
vate values since c may refer to those values again when it wakes up. In fact,
b can reuse these values only after c performs a subsequent Scan(), writing
new values in shared memory, in place of the earlier values. Hence, every pro-
cessor needs to have a minimum pool size of O(n2) private values for the O(n)
scanners. In our algorithm, the scanner collects the labels and corresponding
ordering information as they existed at a single point in time, without record-
ing the private values in shared memory. Only the labeler, when it updates,
sets aside values in shared memory, for those processors from which it noticed
a concurrent Scan(). Hence, every processor needs to maintain a pool of only
O(n) private values. The scanner can determine the order among the labels by
referring to the ordering information it has already noted down from each proces-
sor. Conceptually, the algorithm invokes traceable-collect from Label() and
the Time-Lapse snapshot [4] from Scan(). This approach is comparable to [7,4]
where atomic snapshot and Time-Lapse snapshot respectively are invoked from
Scan(). While the precedence graph forms the backbone recycling mechanism
in [7,4], our algorithm uses the Traceable Use mechanism for recycling private
values at the back-end and is hence simpler.

Figure 1 illustrates the main differences between our construction and the
Dwork-Waarts construction [5] at the implementation level. Xb is the label of
processor b. The boolean pb∗, qb∗ and togb registers implement the RWRWR
handshake mechanism to coordinate between the traceable-collect of one la-
beler and the traceable-write of another labeler. Asidebi is written by b in
traceable-write if b notices a concurrent traceable-collect operation by pro-
cessor i. The boolean PTAGb and QTAGb registers enable b to detect scans from
other processors, concurrent with its Label’s traceable-write. Scan−Asidebj

and Ordbj are written by b in traceable-write if b notices a concurrent scan
from processor j. The Copybi registers, written by the corresponding processor
i, enable i to make it known to b which of b’s private values it read from label
Xb in traceable-collect. Ordbb, which is a field of rb, is updated atomically
with Xb by b. The local pool of tags used by b (tags Tagb1, . . ., Tagbn) is a
collection of (n − 1) pools, one pool of three tags for every processor. Since a

560 V. Shikaripura and A.D. Kshemkalyani

scanner b needs to produce a new tag for every processor i, it needs to choose a
tag other than the ones which i and b are currently holding and therefore three
tags suffice for every processor. Hence the size of the pool of tags is bounded by
3n− 3. From Figure 1, it should be clear that private values of processor b that
may be in use at any time are recorded in registers Scan−Asideb∗[b], Asideb∗,
Copyb∗ and Xb[b]. Hence the private pool size is bounded by 3(n− 1) + 1+ 1 =
3n − 1. It is also clear from the figure that since there is only one long SWMR
atomic register of length O(n log n) bits and the remaining long registers rb∗ are
all SWSR regular, the total shared space associated with b is O(n2 log n) SWSR
safe bits. Hence the total shared space of the system is bound by O(n3 log n)
SWSR safe bits. The size of the two pools being O(n) integers, the local memory
is bounded by O(n log n) bits.

3.2 Algorithm Description

The pseudo-code of the proposed algorithm is given in Figure 3 to Figure 7.
Local variables such as localorder, y[], vb, new−l, valueb, qtagb, ptagb, orderb[],
Yc, etc. used in the routines are assumed to be persistent.

In Label(), line 1 invokes the traceable-collect routine and collects private
values of other processors. Line 2 corresponds to the garbage collect routine of
[5]. In our algorithm, garbage collection is embedded in Label(). Private values
of b which could be in use in the system, are collected in y[] by scanning the
Scan−Aside, Aside, Copy & Xb registers. After choosing a new private value
vb ∈ y[] from localOrder, b writes the new order in localOrder. The new label
is written in Xb during traceable-write in line 4.

The Scan() operation collects a snapshot of labelc and orderc from all c, as
they existed at a single point in time. In line 1, b invokes Produce-tag() to
choose a new tag for each processor from its local pool of tags. Tags are used by
a scanner i to determine if a processor d updated itself after i began its Scan().
If so, i discards the label and order collected from d in favor of the Scan−Aside
& Orddb values, which d set aside for it. Line 2 does an atomic collect of the
label and order from every processor. Updates that may have occurred during
the interval of Scan() by some processors are determined by checking qtag in
line 3; for each such updater, the values set aside for it by the updater are taken.
The total order on the collected labels consistent with the real-time order of
their corresponding labeling operations is determined in line 4.

The traceable-collect routine invoked by Label() is identical to the one
in [5]. Over lines (1,3,5), the traceable-write sets aside in Aside its own com-
ponent of label if traceable-collect of another labeler is detected to overlap
using the RWRWR mechanism. Over lines (2,4,5), the traceable-write sets
aside the label with the associated order in Scan−Aside and Ord registers if
Scan() of a scanner is detected to overlap using the PTAG and QTAG regis-
ters. The Produce-tag() routine used by Scan() produces a new set of tags for
every other processor. Line 2 performs garbage collection to determine a new,
unused tag that the scanner can produce again. The pools of tags used in our
construction correspond to the pools of colors used in [4].

A Simple, Memory-Efficient Bounded Concurrent Timestamping Algorithm 561

4 Remarks

We presented a simple, linear-time algorithm for constructing a Bounded Con-
current Timestamp System (BCTS) by giving new, modified designs for the
Label() and Scan() operations. The time complexity of our algorithm matches
the best know BCTS algorithms [4,5,8] while the total shared memory required
in terms of the fundamental building blocks (SRSW safe registers) is less than
that of [5] by two orders of magnitude. No expensive garbage collection is nec-
essary. The pool of private values used by each processor is smaller than [5,8] so
that the local memory overhead on each processor is correspondingly smaller.
A full and formal version of the paper, including the proof of correctness of the
construction, is given in [15]. The main drawback of our construction, and also
of [5,8], is that we use long registers of size O(n log n) bits.

References

1. K. Abrahamson, On achieving consensus using a shared memory, Proc. 7th ACM
Symposium on Principles of Distributed Computing, 291–302, 1988.

2. H. Attiya and J. Welch, Distributed computing: Fundamentals, simulations and
advanced topics, McGraw-Hill Publishing Company, London, UK, 1998.

3. D. Dolev and N. Shavit, Bounded concurrent time-stamping, SIAM Journal of
Computing, 26(2): 418–455, 1997.

4. C. Dwork, M. Herlihy, S. Plotkin and O. Waarts, Time-lapse snapshots, SIAM
Journal of Computing, 28(5): 1848–1874, 1999.

5. C. Dwork and O. Waarts, Simple and efficient bounded concurrent timestamping
and the traceable use abstraction, Journal of the ACM, Vol. 46, pp. 633–666, 1999.

6. M. Fischer, N. Lynch, J. Burns and A. Borodin, Distributed Fifo allocation of
identical resources using small shared space, ACM Transactions on Programming
Language Systems, 11(1): 90–114, 1989.

7. R. Gawlick, N. Lynch, N. Shavit, Concurrent timestamping made simple, Proc.
Israeli Symp. on Computing and Systems, 171–183, LNCS 601, Springer, 1992.

8. S. Haldar and P. Vitanyi, Bounded concurrent timestamp systems using vector
clocks, Journal of the ACM, Vol. 49, pp. 101–126, 2002.

9. A. Israeli and M. Li, Bounded timestamps, Proc. 28th IEEE Symposium on Foun-
dations of Computer Science, pp. 371–382, 1987.

10. A. Israeli and M. Pinhasov, A concurrent timestamp scheme which is linear in
time and space, Proc. Workshop on Distributed Algorithms, 95–109, LNCS 647,
Springer-Verlag, 1992.

11. L. Lamport, A new solution to Dijkstra’s concurrent programming problem, Com-
munications of the ACM, 17, 1974.

12. M. Li, J. Tromp and P. Vitanyi, How to share concurrent wait-free variables,
Journal of the ACM, 43(4): 723–746, 1996.

13. G. Peterson, Concurrent reading while writing, ACM Transactions on Program-
ming Language Systems, 5(1): 46–55, 1983.

14. T. Petrov, A. Pogosyants, S. Garland, V. Luchangco and N. Lynch, Computer-
assisted verification of an algorithm for concurrent timestamps, Formal Description
Techniques and Protocol Specification, Testing and Verification, FORTE/PSTV’96,
IFIP Procs., pp. 29–44, 1996.

562 V. Shikaripura and A.D. Kshemkalyani

15. V. Shikaripura, A. Kshemkalyani A simple memory-efficient bounded concurrent
timestamping algorithm, Technical Report UIC-CS-02-04, June 2002.

16. P. Vitanyi and B. Awerbuch, Shared register access by asynchronous hardware,
Proc. 27th IEEE Symp. on Foundations of Computer Science, pp. 233–243, 1986.

	Introduction
	The Dwork-Waarts Construction
	A Memory-Efficient Algorithm
	Intuition and Basic Idea
	Algorithm Description

	Remarks
	References

