
Performance Evaluation of Incremental Vector Clocks

Sangyoon Lee, Ajay D. Kshemkalyani and Min Shen

Dept. of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607-7053, USA

Email: {slee14, ajay, mshen6}@uic.edu

Abstract—The vector clock is an important mechanism to
track logical time and causality in distributed systems. Vector
clocks incur an overhead of n integers on each message, where
n is the number of processes in the system. The incremental
vector clock technique attaches only the changed components
of the vector clock to a message. This technique to reduce the
size of the message overhead is popularly used. We evaluate
the performance of the incremental vector clock technique via
extensive simulations under a wide range of network loads and
communication patterns. Our simulations confirm the intuition
that this technique shows marked gains when application
processes communicate with locality patterns. In addition, the
simulations revealed the following behaviour: (i) the message
overhead is not much dependent on the number of processes;
(ii) a higher multicast frequency, as opposed to unicasting,
lowers the message overhead; and (iii) a slower network speed
relative to the inter-message generation time lowers the message
overhead.

Keywords-vector clock; incremental vector clock; simulation;
performance evaluation; causality

I. INTRODUCTION

A distributed system (N,L) can be viewed as a network

consisting of N , a set of processes that communicate by

asynchronous message-passing over L, a set of links. An

execution of the system generates events at each process,

where an event may be a send event, a receive event, or

an internal event. The causality relation −→ on the set of

events H in a system execution was defined by Lamport [9]

as follows: event e −→ e′ if and only if (i) events e and e′

occur at the same process and e occurs before e′, (ii) event

e is the event at which a message is sent and event e′ is

the event at which that message is received by a different

process, or (iii) there exists some event e′′ such that e −→
e′′ and e′′ −→ e′. The set of events H in an execution forms

a partial order (H,−→).
Logical time and causality are important tools in the

design of distributed applications as elegantly expressed by

Schwarz and Mattern [17] and by Raynal and Singhal [15];

see also [8]. Each process i maintains a local clock Clki to

track logical time. Mattern [10] and Fidge [5] independently

formalized vector clocks which have the property that event

e −→ f if and only if Clk(e) < Clk(f). Some example

areas in distributed systems that use vector clocks are check-

pointing, garbage collection, causal memory, maintaining

consistency of replicated files, taking efficient snapshots of

a system, global time approximation, termination detection,

bounded multiwriter construction of shared variables, mutual

exclusion, debugging, and defining concurrency measures.

These are well documented in the literature. Emerging and

recent areas that use vector clocks include building reliable

massive-scale ecommerce systems [4], building software

transactional memory [16], studying information spread in

social communication networks [7], maintaining data con-

sistency in collaborative peer-to-peer editing [12], dynamic

race detection in multithreaded programs [6], and designing

massive multiplayer online games [21].

A vector clock consists of n = |N | integers, with the <
operator on vectors defined as follows: V1 ≤ V2 if and only

if, for all k ∈ N , V1[k] ≤ V2[k]; V1 < V2 if and only if V1

≤ V2 and V1 �= V2. The following rules are used by process

i to maintain its clock using the vector clock protocol.

VC1. Before process i executes an internal event, it does

the following.

Clki[i] = Clki[i] + d (d > 0)

VC2. Before process i executes a send event, it does the

following: Clki[i] = Clki[i] + d (d > 0).

Send message timestamped by Clki.
VC3. When process j receives a message with timestamp

T from process i, it does the following.

(k ∈ N) Clkj [k] = max(Clkj [k], T [k]);
Clkj [j] = Clkj [j] + d (d > 0);

deliver the message.

The importance of vector clocks resulted in several ap-

proaches to reduce the size of vector clocks and the times-

tamp information piggybacked on messages. Charron-Bost

showed that the minimum size of vector clocks to satisfy

the property e −→ f if and only if Clk(e) < Clk(f) is the

dimension of the partial order (H,−→), and in the worst-

case, the dimension of the partial order is n [2]. Despite this

bound, several techniques have been proposed to reduce the

size of vector clock overhead on messages [11], [13], [18],

[19], [20]. The incremental vector clock technique sends on

each message, only those components of the vector clock

that have changed since the last message was sent to this

destination [18]. Elegant local data structures of size 2n
integers were proposed to implement this technique.

The incremental vector clock technique can be used in

conjunction with vector clocks, and additionally, it can

2011 10th International Symposium on Parallel and Distributed Computing

978-0-7695-4540-0/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPDC.2011.26

117

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:35:44 UTC from IEEE Xplore. Restrictions apply.

be superimposed on the other techniques to reduce the

timestamp information piggybacked on messages. Incremen-

tal vector clocks will work best when group locality is

established. This means that when the entire system can be

partitioned into several groups and a large proportion of the

messages are intra-group messages, the message overhead

reduction will be maximized. Some application domains

have this group locality property. In mobile computing,

causal ordering using vector clock [1], [14] can benefit from

incremental vector clocks. In [1], the authors proposed a

centralized framework where group locality is established.

File synchronization using vector clocks [3] is another

application. Consider the situation for a global banking

system where synchronization within local branches can

be done frequently, while synchronization between distant

branches can only be done periodically. Group locality is

also established in this application setting.

However, there has been no performance study of this

incremental vector clock technique. This paper gives the

results of a comprehensive simulation-based empirical eval-

uation of the message overhead of the incremental vector

clock technique. We chose this approach because of its

wide applicability, rather than evaluating the clock over-

head for some “standard” applications, or for some popular

communication patterns such as those in “client-server”

configurations.

Section II outlines the Singhal-Kshemkalyani incremental

clock algorithm, henceforth referred to as SK. Section III

presents the model of the message passing distributed sys-

tem in which the SK algorithm is simulated. Section IV

shows the simulation results of the SK algorithm. Section V

concludes.

II. OVERVIEW OF THE SK ALGORITHM

In the incremental vector clock technique of Singhal-

Kshemkalyani (SK), on each message, only those compo-

nents of the vector clock that have changed since the last

message was sent to this destination are sent [18]. Rather

than keeping track of the last vector clock values sent to each

destination, resulting in O(n2) overhead, the SK technique

uses only two vectors of size n per process.

• LUi[1 . . . n]: This is vector “Last Upate” at process

Pi. LUi[j] indicates the value of Clki[i] when Pi last

updated Clki[j].
• LSi[1 . . . n]: This is vector “Last Sent” at process Pi.

LSi[j] indicates the value of Clki[i] when Pi last sent

a message to Pj .

Since the last communication from Pi to Pj , only those

elements Clki[k] have changed for which LSi[j] < LUi[k].
Hence when Pi sends a message to Pj , it only needs to

send those entries Clki[k] to Pj for which LSi[j] < LUi[k].
Thus, when Pi sends a message to Pj , it sends the set of

tuples:

{〈x,Clki[x]〉 |LSi[j] < LUi[x]}

instead of the vector clock of n elements. This optimization

is used whenever the size of the set of tuples is less than

n. This can substantially reduce the size of the message

overhead because only a fraction of the entries of Clki are

likely to be modified between two successive transfers to

Pj .

We define the following terms:

• c: the number of entries in Clki that qualify for

transmisison in a message using the SK technique.

c ≤ n.

• t: this is defined as the maximum value possible in any

component of the vector clock.

The traditional vector clocks require n log t bits of infor-

mation piggybacked whereas the SK technique requires

c(log t + log n) bits of information piggybacked. The mes-

sage overhead is formally defined as follows.

Msg Overhead =
c(log t+ log n)

n log t
· 100% (1)

It is advantageous to use the SK technique on each message

for which the message overhead is less than 100%. This is

the case whenever:

c <
n log t

log t+ log n
(2)

Although the SK technique has been used extensively,

there has been no quantitative study of the savings in

message overhead by using the SK technique. This paper

fills in this gap by performing a statistical analysis of the

message overhead of the SK technique. Some inferences are

attempted based on the range of messaging dynamics that

are exercised using a parameterized synthetic benchmark.

III. SIMULATION SYSTEM MODEL

A distributed system consists of asynchronous processes

running on processors which are typically distributed over

a wide area and are connected by a network. It can be

assumed without any loss of generality that each processor

runs a single process. Each process can access the commu-

nication network to communicate with any other process

in the system using asynchronous message passing. The

communication network is reliable and delivers messages

in FIFO order between any pair of processes.

A. Process Model

A process is composed of two subsystems viz., the appli-
cation subsystem and the communication subsystem. The ap-

plication subsystem is responsible for the functionality of the

process and the communication subsystem is responsible for

providing it with a messaging service. The communication

subsystem implements the SK technique in the simulation.

The application subsystem generates message patterns that

exercise the SK technique. The communication subsystem

maintains a floating point clock, that is different from any

118

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:35:44 UTC from IEEE Xplore. Restrictions apply.

clock in the vector clock algorithm. This clock is initialized

to zero and tracks the elapsed run time of the process. Every

process has a priority queue called the in queue that holds

incoming messages. This queue is always kept sorted in

increasing order of the arrival times of messages in it.

B. Simulation Parameters

The system parameters that are likely to affect the perfor-

mance of the SK technique are discussed next.

Number of processes (n): It is necessary to simulate the

incremental vector clock technique over a wide range of the

number of processes to examine scalability. The number of

processes in the system is limited only by the memory size

and processor speed of the machine running the simulation.

On an Intel Dual Core 2 2.6 GHz CPU, 4GB memory, and

Linux SUSE 11.1 OS, we simulated up to 100 processes.

Mean inter-message time (MIMT): The mean inter-

message time is the average period of time between two

message send events at any process. It determines the

frequency at which processes generate messages. The inter-

message time is modeled as an exponential distribution about

this parameter.

Multicast frequency (M/T): The behavior of the SK

technique may be sensitive to the number of multicasts. The

multicast frequency M/T is the ratio of the number of desti-

nations of multicasts to n. This is the parameter on the basis

of which the multicast sensitivity of the SK algorithm can

be determined. Processes like distributed database updators

have M/T = 100% and a collection of FTP clients have

M/T = 0. We simulate the SK technique with M/T varying

from 0 to 100%. M/T = 0 means unicast and M/T = 1
means all messages are broadcast to n−1 destinations. The

destinations of a multicast are randomly chosen from N
using a uniform distribution when 0 < M/T < 1.

Mean transmission time (MTT): The transmission

time of a message here implicitly refers to the msg.
size/bandwidth + propagation delay. We model this time

as an exponential distribution about the mean, MTT. For

the purpose of enforcing this mean, multicasts are treated

as multiple unicasts and transmission time is independently

determined for each unicast. When a process needs to send

a message, it determines the transmission time according

to the formula Transmission time = −MTT ∗ ln(R),
where R is a perfect random number in the range [0,1].

This formulation of the transmission time can violate FIFO

order. As the incremental vector clock technique assumes

FIFO ordering, it is implemented explicitly in our system.

Every process maintains an array LM of size n to track the

arrival time of the last message sent to each other process.

LM [i] is the time at which the last message from the current

process to process Pi will reach Pi. Should the transmission

time determined be such that the arrival time for the next

message at Pi is less than LM [i], then the arrival time

is fixed at (LM [i] + 1)ms. LM [i] is updated after every

message send to Pi. MTT is a measure of the speed of the

network, with fast networks having small MTTs. We have

varied MTT from 50ms to 500ms in these simulations so

as to model a wide range of networks.

Locality factor for communication (L): In typical dis-

tributed applications, processes communicate in clusters over

a very significant portion of their execution. Occasionally,

they may need to communicate outside their cluster. This

behavior makes the incremental vector clock technique very

attractive. To study the performance under such locality

considerations, we define a (spatial) locality factor on the

communication. The processes are partitioned into zones,

and the locality factor L gives the fraction of message send

events at which messages are sent to in-zone destination

processes. Typical values of L are between 0.9 and 1.0 for

applications that demonstrate significant spatial locality of

communication.

An important parameter that is dependent on the above is

the ratio of MTT to MIMT. This parameter abstracts away

the absolute values of MTT and MIMT. A smaller value of

this ratio indicates less traffic; a larger value indicates more

traffic. As this parameter is derivable from MTT and MIMT,

we do not model it explicitly.

The performance of the SK technique is measured by the

message overhead metric, defined in Equation (1). In our

simulation, we assumed that t was represented by an integer,

as the process id was also represented as an integer. Thus,

we assumed log t = log n, and thus the message overhead

simplified to: 2c
n · 100%. It is advantageous to use the SK

technique on each message whenever: c < n
2 .

C. Process Execution

All the processes in the system are symmetric and gen-

erate messages according to the same MIMT and M/T. The

processes in a distributed system execute concurrently. But

simulating each process as an independent process/thread in-

volves inter-process/thread communication and the involved

delays are not easy to control. Instead, a global linearization

scheme was used to simulate the concurrent processes.

The notion of global linearization in the simulation model

relies on a logical global time stamp. It maintains the order

of execution of all the processes to simulate concurrent

execution in a serial fashion. This time stamp is also used

to sort received messages in the in queue of a process to

simulate FIFO order.

The simulation populates all the send events for every

process at the beginning of the execution according to the

MIMT and sorts them by their global time stamp. Each

send event is identified by 〈 sender id, a set of destination

processes, transmission time for each destination 〉. As the

simulation extracts a send event from the system message

queue, the corresponding event owner process gains control.

When a process gets control, it first invokes the com-

munication subsystem. The communication subsystem looks

119

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:35:44 UTC from IEEE Xplore. Restrictions apply.

at the head of its in queue to determine if there are

any messages whose time stamp is less than or equal

to the current value of the process clock. Such messages

are the ones that must have already arrived and hence

should have been processed before. All such messages are

extracted from the queue and are delivered immediately to

the application subsystem. Then, the process handles the

send event pulled from the system message queue. The

sender updates time stamp of a message by adding the

current global time stamp with transmission time of this

message, and inserts the message into the in queue of the

destination process. Messages in the in queue stay sorted

by time stamp. The system pops the next send message to

progress. The simulation stops when all system-wide send

events are processed.

IV. SIMULATION RESULTS

The framework and the algorithm were implemented in

C++ with boost library for random number generation. The

performance metrics used are the following.

• The average number of integers sent per message under

various combinations of the system parameters, viz.,

n, MTT, MIMT, M/T and locality L. This metric is

expressed as a fraction of n, the size of the vector clock.

For each simulation run, data was collected for 10,000,000

messages and the first 10% and the last 10% system-wide

messages were discarded to eliminate the effects of startup

and shut-down. Every process Pi in the system accumulates

the sum of the number of integers Ii that it sends out

on outgoing messages. It also tracks ms
i , the number of

messages sent during its lifetime. Once Pi has sent out

ms
i = 10, 000, 000/n number of messages, it flags its

status as complete and computes its mean message overhead

MMVi = Ii/m
s
i . These results are then sent to process P0

which computes the systemwide average message overhead∑
MMVi/n. All the overheads are reported as a percentage

of their corresponding deterministic overhead n of the naive

vector clock algorithm without the SK technique.

A. Impact of Locality of Communication

In the first experiment, we try to confirm the intuition that

when application processes demonstrate significant spatial

locality with communication confined to small groups most

of the time, the message overhead of the incremental vector

clock technique drops. The intuition is guided by the logic

that most of the updates will be coming from processes only

within the group, and hence only those updates need to be

communicated as the message overhead.

The locality model of simulation is based on the logical

partition, zone, among processes. The number of processes is

fixed, n = 100 for all configurations. Two sets of zoning are

tested, one for 10 zones and another for 20 zones. We vary

spatial locality L from 0.9 to 1.0 with three configurations

of the other parameters, (MTT, MIMT, M/T). The results are

shown in Figure 1. As locality L increases, all configurations

exhibit rapid decrease of message overhead. When we use

10 zones, result graph illustrates a drastic decrease rate

after L = 0.96. For 20 zones, the result graph shows close

to linear decrease over L. As we expected, 100% in-zone

communication pattern (L =1.0) shows very low overhead.

For the 10 zone case, it is 10% overhead, and for 20 zones,

it is 5% overhead.

B. Scalability with Increasing n

The second experiment on the optimized vector clock is

to vary the number of processes in the system (n = 10 to

100). A total 10 configurations of the parameters (MTT,

MIMT, M/T) were run in this experiment. We assumed a

default L = 0.0 and a single zone. The simulation results

are presented in Figure 2. In most of the configurations,

the message overhead is stable with slight increase as n
increases.

First consider the unicast cases, where M/T = 0. Let

us focus on a specific process Pi. As n increases by a

factor of δ, the time duration between two sends by Pi to

a fixed other process Pj increases by a factor of δ. Thus,

LSi[j] is that much older, and this potentially allows more

clock components k with LUi[k] > LSi[j] to be sent as

message overhead by Pi to Pj . Note however, that within

this increased time duration, the probability of Pi receiving

a message from a fixed other process Pk remains the same

because Pk is also now unicasting to a larger number of

processes. Hence, Pi is likely to receive the same proportion

of updated clock components in the increased time duration

δ.

In the multicast case, M/T > 0. As n increases by a factor

of δ, the time duration between two sends by Pi to a fixed

other process Pj remains the same. Thus, LSi[j] is not likely

to change. In this unchanged time duration, the probability

of Pi receiving a message from a fixed other process Pk

remains the same because Pk is also now multicasting to a

larger number of processes. Hence, Pi is likely to receive the

same proportion of updated clock components in the same

time duration.

This explains why the message overhead does not change

much as a function of n.

C. Impact of Increasing Multicast Frequency

As we discussed in Section III-B, M/T is used to de-

termine the number of destinations at each send event.

It applies to every send event evenly in our simulation

model. A total of 6 configurations of the parameters (MTT,

MIMT, n) were tested. We assumed a default L = 0.0 and a

single zone. Figure 3 shows the results of the experiments.

In general, all configurations show a decrease of message

overhead over increasing M/T from 0.0 to 1.0. Note that

M/T = 0.0 means that all send events send a message to one

120

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:35:44 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Average message overhead as a function of L

Figure 2: Average message overhead as a function of n

destination and 1.0 means all send events send a message

to n− 1 destinations.

When the multicast ratio M/T > 0 increases by a factor

of δ, the time duration between two sends by Pi to a fixed

other process Pj decreases by a factor of δ. Thus, LSi[j]
is that much newer, and this potentially allows fewer clock

121

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:35:44 UTC from IEEE Xplore. Restrictions apply.

components k with LUi[k] > LSi[j] to be sent as message

overhead by Pi to Pj . Note now, that within this decreased

time duration, the probability of Pi receiving a message

from a fixed other process Pk increases by a factor of δ
because Pk is also now multicasting to a larger number

of processes. Despite this increased probability, if multiple

messages are received from Pk, they will result in a single

tuple (corresponding to Pk’s local clock value in the causally

latest such message) for which LUi[k] > LSi[j]. Thus,

this increased probability of receiving messages from Pk

has a relatively smaller impact in increasing the message

overhead. Whereas, the decreased value of the time interval

since the last message sent to Pj has a relatively larger

impact in reducing the message overhead.

Observe also from Figure 3 that the rate of decrease in

the message overhead over M/T is affected by the ratio

of MTT over MIMT. The configurations in the left graph

have smaller ratio. The ratio MTT/MIMT for these three

configurations is 0.5, 1.5, and 2.5. The overhead percentage

is decreased from 96.9% to 73.9% in the (100ms, 200ms,

60) case. In the higher ratio case, (500ms, 50ms, 60), the

overhead percentage drops from 94.9% to 52.8%. In the right

side graph, we also notice that the (500ms, 25ms, 60) case

reports more rapid decrease than the other configurations.

The ratio MTT/MIMT for these three configurations is 20.0,

10.0, and 6.67. We explore this behavior more in the next

experiment.

D. Impact of the Ratio of Mean Transmission Time to Mean
Inter-Message Time

During our preliminary simulation runs, we found that

MTT and MIMT had a close correlation to the efficiency

of the SK algorithm. In this section, we further nail down

this factor by varying the ratio of MTT to MIMT instead

of examining each factor separately. For the simulation

parameters, we fixed n at 80 processes and varied the ratio

from 0.1 to 50 for M/T = (0.0, 0.5, 1.0). We assumed a

default L = 0.0 and a single zone. Results are shown in

Figure 4. Curves are shown for (n, M/T). In the left graph,

we fix MIMT=10ms and MTT ranges from 1ms to 500ms

to obtain the variation of ratio. In the right graph, we use

MTT=250ms and vary MIMT from 5ms to 800ms. This

configuration is designed to test if there is any isolated effect

from MTT or MIMT itself. The result illustrates that there

is no significant difference between those two graphs (left

vs. right). The overhead decreases in both cases as the ratio

increases, especially for the higher M/T parameters (0.5 and

1.0).

The higher ratio of mean transmission time (MTT) to

mean inter-message time (MIMT) achieves lower message

overhead. This higher ratio implies a slower network speed

relative to the inter-message generation time. There are

two implications of this: (i) at any given time, there are

more messages in transit to the destinations, and (ii) as the

inter-message generation time is the same, the number of

messages that arrive at Pi in a fixed time duration is the

same at different ratios of MTT to MIMT. Together, (i) and

(ii) further imply that the messages that arrive at Pi in a

fixed time duration are “older” messages at higher values

of the MTT/MIMT ratio. From the above observations, we

could not explain why the message overhead decreases as

the MTT/MIMT ratio increases. One precaution we took in

this experiment is to determine that the simulation is stable

enough to measure the overhead with such a large amount of

messages in transit. We verified this with a system stability

test with various numbers of system-wide messages and all

configurations showed a stabilized result after 10,000,000

messages. Therefore, we do not expect the side-effect from

these extreme configurations.

V. CONCLUSIONS

In this study, we carried out a number of experiments

to examine the efficiency of the Singhal-Kshemkalyani

incremental vector clock [18] with various configurations

including spatial locality (L) of communication, number of

processes (n), multi-cast frequency (M/T), transmission time

(MTT), and inter-message time (MIMT). We summarize our

simulation results as follows.

1) Spatial locality (L) greatly affects the overall message

overhead. Higher locality shows better efficiency. This

confirms the intuition that the incremental technique

shows marked gains when application processes com-

municate with locality patterns.

Some application domains communicate with this

locality property, e.g., imposing causal ordering in

mobile computing [1], [14]. Another example is in file

synchronization, as used in banking and enterprise or-

ganizations [3]. Such applications can directly benefit

by using incremental vector clocks.

2) The message overhead of the SK algorithm is not

much dependent on the number of processes (n) in

the system.

3) A higher multicast frequency (M/T), as opposed to

unicasting messages, incurs lower message overhead

compared to the naive algorithm.

4) The higher ratio of mean transmission time (MTT)

to mean inter-message time (MIMT) achieves lower

message overhead. Thus, a slower network speed

relative to the inter-message generation time lowers

the message overhead.

Result 1 of the simulations confirms for the first time what

was intuitively believed to be true. The other results reveal

new, interesting properties of the incremental vector clock

technique.

We note that in several applications such as social

communication networks, transactional memory, or shared

memory race detection where vector clocks are used, it

is reasonable to think about stencil applications in which

122

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:35:44 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Average message overhead as a function of M/T

Figure 4: Average message overhead as a function of MTT/MIMT

processes communicate with or share data with only a

small number of other processes. However, it may not be

possible to partition the processes nicely into disjoint zones.

Here, any partitioning into zones may not give a high

locality because the communication partners of a process

may also be communicating with other processes, such as

123

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:35:44 UTC from IEEE Xplore. Restrictions apply.

their neighbors. If the overall communication graph has a

regular structure like a mesh or torus, we have a logical

time wave front moving across all the process space. Thus,

having a small number of communication partners does not

imply high locality. Without high locality, the incremental

vector clock technique has low benefits.

ACKNOWLEDGMENT

This publication is based on work supported in part by

grants to the Electronic Visualization Laboratory (EVL) at

the University of Illinois at Chicago form the National

Science Foundation (NSF), awards CNS-0703916 (Lifelike),

CNS-0821121 (OmegaDesk), CNS-0959053 (NG-CAVE)

and OCI-0943559 (SAGE). EVL also receives funding from

Adler Planetarium, Argonne National Laboratory, Air Force,

National Institute for Nursing Research, the NASA ASTEP

Program, Science Museum of Minnesota, State of Illinois,

and Pacific Interface on behalf of NTT Network Innovation

Laboratories in Japan. Any opinions, findings, and conclu-

sions or recommendations expressed in this publication are

those of the authors and do not necessarily reflect the views

of the funding agencies and companies.

REFERENCES

[1] S. Alagar, S. Venkatesan, Causal ordering in distributed mobile
systems, IEEE Transaction on Computers, pp 353-361, March
1997.

[2] B. Charron-Bost, Concerning the size of clocks in distributed
systems, Information Processing Letters, 39: 11-16, 1991.

[3] R. Cox, W. Josephson, File Synchronization with Vector Time
Pairs, Tech. Rep. MIT-CSAIL-TR-2005-014, 2005.

[4] G. DeCandia, D. Hastorun, M. Jampani, et al. Dynamo:
Amazon’s highly available key-value store, ACM SIGOPS
Operating Systems, Volume 41, Issue 6 (December 2007),
SOSP ’07, 205-220.

[5] C. Fidge, Timestamps in message-passing systems that pre-
serve partial ordering, Australian Computer Science Commu-
nications, 10(1): 56-66, February 1988.

[6] C. Flanagan, S. Freund, FastTrack: Efficient and precise dy-
namic race detection, PLDI 2009, ACM SIGPLAN Notices,
Volume 44 , Issue 6, 121-133, (June 2009).

[7] G. Kossinets, J. Kleinberg, D. Watts, The structure of infor-
mation pathways in a social communication network, Proc.
14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2008.

[8] A.D. Kshemkalyani, M. Singhal, Distributed Computing: Prin-
ciples, Algorithms, and Systems, Cambridge University Press,
2008.

[9] L. Lamport, Time, clocks, and the ordering of events in a
distributed system, Communications of the ACM, 21(7): 558-
565, July 1978.

[10] F. Mattern, Virtual time and global states of distributed
systems, Parallel and Distributed Algorithms, North-Holland,
pp 215-226, 1989.

[11] S. Meldal, S. Sankar, J. Vera, Exploiting locality in maintain-
ing potential causality, Proc. ACM Symposium on Principles
of Distributed Computing, 1991.

[12] G. Oster, P. Urso, P. Molli, A. Imine, Data consistency for
P2P collaborative editing, Proc. 20th Anniversary Conference
on Computer Supported Cooperative Work, 259-268, 2006.

[13] R. Prakash, M. Singhal, Dependency sequences and hierar-
chical clocks: Efficient alternatives to vector clocks for mobile
computing systems, Wireless Networks, No. 3 (1997), pps 349-
360.

[14] R. Prakash, M. Raynal, M. Singhal, An adaptive causal
ordering algorithm suited to mobile computing environments,
Journal of Parallel and Distributed Computing, pp 190-204,
March 1997.

[15] M. Raynal, M. Singhal, Logical time: Capturing causality in
distributed systems, IEEE Computer, 49-56, February 1996.

[16] T. Riegel, C. Fetzer, H. Sturzrehm, P. Felber, From causal to
z-linearizable transactional memory, Proc. 26th Annual ACM
Symposium on Principles of Distributed Computing, 340-341,
2007.

[17] R. Schwarz, F. Mattern, Detecting causal relationships in dis-
tributed computations: In search of the holy grail, Distributed
Computing, 7:149-174, 1994.

[18] M. Singhal, A. Kshemkalyani, Efficient implementation of
vector clocks, Information Processing Letters, 43, 47-52, Au-
gust 1992.

[19] F. J. Torres-Rojas, M. Ahamad, Plausible clocks: Constant
size logical clocks for distributed systems, Distributed Com-
puting, 12(4): 179-195, 1999.

[20] P. A. S. Ward, An online algorithm for dimension-bound anal-
ysis, Proc. 5th International Euro-Par Conference on Parallel
Processing, p.144-153, 1999.

[21] T. Weis, A. Wacker, S. Schuster, S. Holzapfel, Towards logical
clocks in P2P-based MMVEs, Proc. 1st International Work-
shop on Concepts of Massively Multiuser Virtual Environments,
CoMMVE09, 2009.

124

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:35:44 UTC from IEEE Xplore. Restrictions apply.

