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Abstract—Recently, the concept of locality-aware predicates
(LAP) has been proposed. A LAP models a predicate within
a local region of the whole network in a large-scale locality
driven system, such as WSNs and modular robotics. In such
systems, the cost of doing a global predicate detection is high,
besides which, a predicate over the state of a local region better
captures properties of local interactions. Thus, LAP detection
becomes a relevant and interesting problem. In this paper, we
explore the problem of detecting unstable conjunctive LAP, and
develop a scale-free algorithm by running an interval-based
detection algorithm using a vector clock built on-the-fly for
processes in the local region. More importantly, we develop the
encoded vector clock (EVC) technique. EVC makes detecting
unstable conjunctive LAP more practical in large-scale systems
by reducing the storage cost.

Keywords-distributed system; predicate detection; locality-
aware; encoding; large-scale network

I. INTRODUCTION

In recent years, distributed systems have found applica-

tions in new areas such as modular robotics [1], [2], [3]

and wireless sensor networks (WSNs) [4]. These emerging

areas share some common properties such as being large-

scale and locality-driven. These properties lead to the need

for robust and scalable algorithms to manage, monitor, and

reason about the distributed execution in these applications.

To better observe the distributed properties that occur

in the distributed execution of such large-scale systems,

we recently proposed the concept of locality-aware predi-

cates (LAP) [4]. Locality-aware predicates model predicates

within a local area rather than the entire network in a large-

scale system. In a large-scale locality-driven system, such as

WSNs and modular robotics, we have the following.

1) The interactions are local and driven by neighborhood

proximity.

2) The cost of doing a global predicate detection is high.

3) Properties of local interactions can only be captured

by predicates over local regions.

These factors make locality-aware predicate detection a

relevant and interesting problem. For example, to detect an

explosion event in a WSN deployed field, we need to detect

both the temperature and the sound level being above certain

threshold, such as “temperature > 150◦C” and “sound
> 60dB”. In order to correctly detect the explosion, this

predicate needs to be detected on processes that are close

to each other rather than far apart. Consider the predicate

“number of tokens less than 5”. When users are interested in

knowing the state of a local region for 5-mutual exclusion,

detecting this predicate within the local region provides more

insight towards this region than detecting it within the entire

network.

In our previous work [4], we reasoned that the key aspects

in detecting locality-aware predicates are to specify the local

detection region and to detect such predicates in a consistent

manner. Therein, we also studied the problem of detecting

stable LAPs, which are LAPs that remain true once they are

found true by a consistent observation within the region.

The problem of detecting distributed properties that keep

fluctuating with time is more challenging. Thus, the de-

tection of unstable LAP, where the predicate may hold

only intermittently, needs to be addressed. The problem of

detecting unstable predicates within the entire system has

been well studied in the literature [5], [6], [7]. Much of

the literature focuses on conjunctive predicates, where the

predicate can be expressed as the conjunction of predicates

that are defined on variables local to a single process.

This is because of the exponential complexity that may

occur otherwise [7]. In this paper, we study the problem

of detecting unstable conjunctive locality-aware predicates.

Contributions

1) We design the regional vector clock using virtual IDs

in the local region.

2) We develop a scale-free algorithm, i.e., an algorithm

whose complexity is independent of the size of the

system, for detecting unstable conjunctive LAP in a

large-scale system.

3) More importantly, we develop the encoded vector

clock (EVC) technique which optimizes the time and

space complexity of vector clocks. We show how

to detect unstable conjunctive LAP using EVC. This

makes detecting unstable conjunctive LAP more prac-

tical in a large-scale system.

Organization

Section II gives the system model and a background on

predicate detection. Section III presents the basic detection

algorithm which is scale-free. Section IV presents the en-

coded vector clock (EVC) technique and shows how we
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use it to optimize the detection algorithm. Conclusions and

future work are discussed in Section V.

II. SYSTEM MODEL AND BACKGROUND

In this section, we define the system model that will be

used in later sections. We also briefly survey the work on

predicate detection, especially for unstable predicates.

A. System Model

A distributed system is an undirected graph (P,L), where

P is the set of processes and L is the set of communication

links connecting them. Let N = |P | and l = |L|, and let d
denote the degree of the graph, defined as the max degree

of any node in the graph. The N processes asynchronously

communicate with each other via logical channels. A logical

channel from Pi to Pj is formed by paths over links in L.

We do not assume FIFO logical channels; thus the messages

may be delivered out of order.

The execution of process Pi produces a sequence of

events Ei = 〈e0i , e1i , e2i , · · · 〉, where eki is the kth event at

process Pi. An event at a process can be message reception,

message sending, or an internal event. Let E = ∪i∈P e ∈ Ei

denote the set of events executed in a distributed execution.

The causal precedence relation between events induces an

irreflexive partial order on E. This relation is defined as

Lamport’s “happens before” relation [8], and denoted as ≺.

An execution of a distributed system is thus denoted by the

tuple (E,≺).

B. Predicate Detection

There are several predicate types and algorithms studied

in the literature (see the survey chapter by Kshemkalyani

and Singhal [9]). We briefly summarize some of the more

important classes of predicates.

When categorizing predicates based on the function on

the variables/states involved in the predicate, there are these

classes [10]:

1) A relational predicate is a predicate that is expressed

as an arbitrary relation on the variables in the system.

Let xi and yj be local variables at process Pi and Pj ,

respectively. ψ = “sum(xi, yj) = 45” is a relational

predicate.

2) A conjunctive predicate is a predicate that can

be expressed as the conjunction of local variables.

χ = “xi > 35 ∧ yj < 32” is a conjunctive predicate.

In general, χ = ∧iχi.

When categorizing predicates based on their detectability,

there are these classes:

1) A stable predicate is a predicate that remains true once

it becomes true [11].

2) An unstable predicate is a predicate that is not stable

and hence may hold only intermittently [10].

A stable/unstable predicate can be either conjunctive or

relational. There is literature studying detection of unstable

conjunctive predicates [5], [6]. However, due to the expo-

nential complexity, few have studied the unstable relational

predicate detection problem.

Unstable Predicates

Detecting unstable predicates over a distributed execu-

tion is important for various purposes such as monitoring,

synchronization, coordination, and debugging. Due to the

asynchrony in message transmissions and in local execu-

tions, different executions of the same distributed program

can generate different sequences of global states. Therefore,

whether an unstable predicate is detected within all consis-

tent observations of an execution or within some consistent

observation of an execution, can be different. Thus, two

modalities have been defined under which a predicate Φ can

hold [7], [10].

1) Possibly(Φ): There exists a consistent observation of

the execution such that Φ holds in a global state of

the observation.

2) Definitely(Φ): For every consistent observation of the

execution, there exists a global state of it in which Φ
holds.

Cooper and Marzullo gave an algorithm to detect

Possibly(Φ) and Definitely(Φ) for a relational unstable pred-

icate [7]. However, this algorithm has exponential complex-

ity. This is expected because unstable predicate detection

essentially is an NP-complete problem. However, for con-

junctive unstable predicates, there exist detection algorithms

based on intervals that incur only a polynomial complexity

[5], [6]. For such predicates, an interval at a process Pi is

defined as the time duration in which the local predicate is

true. Due to the lack of synchronized physical clocks at each

process, the start and end events of an interval x, denoted as

min(x) and max(x), respectively, are identified by vector

clocks [12], [13]. The detection of either Possibly(Φ) or

Definitely(Φ) is to identify a set of intervals, containing one

interval per process in which the local predicate is true, such

that a certain condition is satisfied within the set under either

modality. The conditions for Possibly(Φ) or Definitely(Φ) to

hold within a set X of intervals have been shown as follows

[5], [6], [14]:

Possibly(Φ) : ∀xi, xj ∈ X,max(xi) 	≺ min(xj) (1)

Definitely(Φ) : ∀xi, xj ∈ X,min(xi) ≺ max(xj) (2)

Garg and Waldecker proposed a detection algorithm for

Possibly(Φ) [5]. However, that algorithm is not based on

intervals. They later proposed another detection algorithm

for Definitely(Φ) [6], based on the concept of intervals. An

interval-based algorithm that works for both Possibly(Φ)
and Definitely(Φ) was also presented [9]. For large-scale

systems, an efficient hierarchical algorithm to detect re-

gional/local predicates as well as global predicates in the

Definitely(Φ) modality was recently proposed [15].
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III. DETECTING UNSTABLE CONJUNCTIVE LAP

A. Modeling the Local Region

A key aspect in using locality-aware predicates is to

specify the region within which the predicate is to be

detected. We model this region as an area centered at process

Pr with which the user interacts, and that region contains

all processes within a distance of h hops from Pr. We call

h the radius of the region, which is a parameter specified

by the user. To represent this model in the network, we

construct a topology that forms a local breadth-first search

tree (BFST) at process Pr using links in L. To represent a h-

radius region, the height of the BFST is h. To construct such

a topology, we can adapt the distributed BFST algorithm

[16], which constructs a BFST within the whole network,

into one that imposes a height constraint. This topology

represents the region within which the predicate is to be

detected.

B. Establishing the Regional Vector Clock

Although the topology representing the detection region

is constructed, we cannot directly apply the detection al-

gorithms [6], [9] for detecting unstable conjunctive LAP.

These interval-based algorithms require the establishment

of vector clocks, which are used to identify the start and

end events of an interval. In a large-scale system, it is

impractical to assume a vector clock is initially maintained

for the entire system. Churn in the system makes such a

system-wide vector clock further impractical. Even if we

are to establish such vector clocks for the system, it will

incur an O(N) (N is the number of processes in the entire

system) storage cost at each process. This causes the solution

to be non-scale-free. Being scale-free is important for LAP

detection algorithms, because we do not want to incur time

and space complexities relevant to the size of the entire

network to observe only a part of the system. Thus, we

need to dynamically establish a vector clock only for the

processes in the detection region.

To establish the regional vector clock, each process in the

detection region needs to be assigned a unique virtual ID that

is within the range [1, n], where n is the number of processes

in the detection region. By constructing the local BFST in

Section III-A, we assume that Pr has already collected the

real IDs of all processes in the local BFST and each process

knows its parent and children in the BFST. Pr then assigns

the virtual ID 1 to itself and a unique virtual ID in the range

[2, n] for every other process in the local BFST. In this way,

each process gets mapped to a unique position in the size-

n vector. Process Pr then broadcasts this mapping between

the real IDs to the virtual IDs within the local BFST. Each

process that receives this map initializes a size-n vector V .

To capture all causal relations consistently during the initial

phase of establishing the regional vector clock, another

convergecast and broadcast [9] need to be performed within

Algorithm 1 Establishing Regional Vector Clock (Code for

Pi in the region)

integer: V ID

array of integer: V

HashMap of 〈integer, integer〉: map // Maps real IDs of

// processes in BFST to virtual IDs in the range [1, n]

Pr initiates the algorithm:

1. V ID = 1;

2. generate map, with the constraint that map(r) = 1;

3. broadcast ASSIGN(map, n) message in the local BFST;

Pi(i �= r) receives ASSIGN(map, n) message from parent:

4. V ID = map(i);

5. initialize size n vector V ;

6. if (Pi is not leaf node) then
7. send ASSIGN(map, n) message to all children;

8. else
9. convergecast FINISH message to Pr;

Pr receives FINISH message:

10. broadcast READY message within the local BFST;

Pi receives READY message:

11. start piggybacking messages with vector clock timestamps;

the local BFST. This ensures that no message piggybacked

with a vector clock timestamp is received until the recipient

process in the detection region has established the size-

n vector locally. This establishment of the regional vector

clock is shown in Algorithm 1.

Notice that, by broadcasting the mapping between the

real IDs to the virtual IDs within the local BFST, every

process in the detection region knows the identifications of

all processes within the region. In this way, each process in

the region can also determine whether it is sending/receiving

a message to/from a process outside the region.

The regional vector clocks are updated by the following

rules [12], [13].

1) Before an internal event happens at process with

virtual ID i, V [i] = V [i] + 1.

2) Before process with virtual ID i sends a message,

it first executes V [i] = V [i] + 1, then it sends the

message piggybacked with V .

3) When process with virtual ID i receives a message

piggybacked with timestamp U , it executes

∀k ∈ [1 . . . n], V [k] = max(V [k], U [k]);
V [i] = V [i] + 1;
before delivering the message.

For detecting unstable LAP, the regional vector clock only

tracks the causal relations among the processes in the local

129129

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:34:58 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 2 Detection Algorithm for Unstable Conjunctive

Predicates, adapted from [9]

queues for all n processes in the detection region:

Q1, Q2, . . . , Qn ←⊥
sets of integer: updatedQueues, newUpdatedQueues ← {}
integer: V ID

When interval x finishes at Pi:

1. send (min(x),max(x), V ID) to Pr;

On receiving an interval (min(I),max(I), V ID) at Pr:

2. Enqueue the interval onto queue QV ID;

3. if (number of intervals on QV ID is 1) then
4. updatedQueues = {VID};
5. while (updatedQueues is not empty)

6. newUpdatedQueues = {};
7. for each a ∈ updatedQueues do
8. if (Qa is not empty) then
9. x = head of Qa;

10. for b = 1 . . . n, b �= a do
11. if (Qb is not empty) then
12. y = head of Qb;

13. if (min(x) �≺ max(y)) then // Definitely

14. add b to newUpdatedQueues;

15. if (min(y) �≺ max(x)) then // Definitely

16. add a to newUpdatedQueues;

17. if (max(x) ≺ min(y)) then // Possibly

18. add a to newUpdatedQueues;

19. if (max(y) ≺ min(x)) then // Possibly

20. add b to newUpdatedQueues;

21. Delete heads of all Qh where h ∈ newUpdatedQueues;

22. updatedQueues = newUpdatedQueues;

23. if (all queues are non-empty) then
24. report predicate detected. Heads of queues form the

solution.

BFST. However, whenever there is a message going out

of or coming into the region, a potential transitive causal

relation is introduced if some process inside the region

sends a message to a process outside the region which later

sends another message back into the region. In order for

the detection algorithm to work correctly, those transitive

causal relations also need to be captured. This requires

all the processes outside the region to store the vector

clock timestamps they receive piggybacked on messages

and to piggyback those timestamps with every outgoing

message. However, processes outside the detection region

do not advance the vector clock timestamps stored locally,

since they do not contribute to the causal relations between

processes inside the detection region.

C. Detecting Unstable Conjunctive LAP

With the regional vector clock established, we can run

the detection algorithm given as Algorithm 2, based on [9],

within the detection region. Process Pr locally maintains

n queues, Q1, Q2, . . . , Qn numbered using virtual IDs.

Whenever a new interval x finishes at some process in

the detection region, this process sends the vector clock

timestamps of min(x) and max(x) and its virtual ID to Pr.

Pr then enqueues the interval x onto queue Qi. By tracking

the intervals from all n processes, Pr repeatedly checks the

heads of all n queues using the conditions in (1) or (2) in

Section II to check whether Possibly(Φ) or Definitely(Φ) is

detected within the region. This check is done with virtual

IDs. If any interval is found to violate those conditions, Pr

deletes this interval from the corresponding queue.

D. Ticking at Relevant Communication Events

In Algorithm 2, observe that the 4 causality tests in the

innermost loop essentially check if ei ≺ fj , where ei and fj
are either the start or end events of some intervals, which are

relevant events to the detection of LAP. This test using vector

timestamps is O(1) time, namely if V (ei)[i] ≤ V (fj)[i].
This test is equally valid even if the regional vector clock

does not tick at message send and message receive events,

as long as such events are not relevant to the local predicate,

i.e., do not alter the truth value of the local predicate. Most

predicates, such as χ introduced in Section II-B, may not

depend on the message send or receive events which only

serve to transmit and establish causal relationships among

the relevant events. Thus, it is not necessary to advance the

local clock component at send and receive events, unless the

events modify some variable and change the truth value of

the predicate. Thus, we have the rule:

Relevancy test: Tick the local component of the regional
vector clock only at a relevant event, which is defined to be
an event that alters the truth value of the predicate.
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a = 5 send(P2, c) rcv(P2, a) a = a - 6

��
0

1 ��
1

1 ��
1

2

��
1

0 ��
1

0 ��
1

1 ��
1

2

Figure 1. Illustration of the “relevant event” test. Each process has local
variables a, b, and c. The conjunctive predicate ψ = a1 > 3

∧
b2 = 8 is

to be detected. The operations performed at each event are shown. By not
ticking the vector clock for message send and receive events that are not
relevant, the causal relations between the two intervals x and y at processes
P1 and P2 are still correctly captured.
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Figure 1 illustrates a computation in which the truth values

of the local predicates are not changed by the send or receive

events. The syntax of a send is send(dest, var), which is

to send the value of local variable var to dest. The syntax

of a receive is rcv(source, var), which is to store the value

received from source into local variable var. The predicate

is ψ = a1 > 3
∧
b2 = 8. The send event at P1 is not relevant

to the local predicate. The send event at P2 does not alter

the truth value of the local predicate. The receive event at P1

modifies the variable a1 but does not alter the truth value of

the local predicate. The receive event at P2 does not modify

any variable on which the local predicate depends.

By applying this relevancy test, multiple events may have

the same vector timestamp, such as the two receive events

in Figure 1. However, the lattice of relevant events, which

now excludes send events and receive events that are not

relevant to the predicate (i.e., do not alter the truth value

of the predicate), still remains isomorphic to the lattice of

timestamps assigned to them. This property is sufficient for

the correctness of our algorithm. It is particularly useful in

conjunction with the encoded vector clocks optimization that

we develop in Section IV.

IV. ENCODED VECTOR CLOCK (EVC) OPTIMIZATION

Although the solution proposed in Section III detects the

unstable conjunctive LAP in a scale-free manner without

incurring a complexity relevant to N , due to message

diffusion and the need to capture transitive causal relations,

it will eventually incur an O(n) storage cost in every process

in the entire system. This is a cost that we cannot afford,

especially in a large-scale system.

To solve this problem, we develop the encoded vector

clock (EVC) technique. Charron-Bost has shown that to

capture the partial order on E, the size of the vector clock

can be as large as the dimension of the partial order [17],

which is the size of the system N . Instead of using a

vector of size O(N), it was suggested that the vector can

be encoded into a single number using N distinct prime

numbers [17]. In the case of detecting unstable LAP, the

dimension of the partial order that is relevant can be captured

by the size of the detection region, as shown in Section III.

Thus, a regional vector clock containing n elements

V = 〈v1, v2, · · · , vn〉
can be encoded by n distinct prime numbers p1, p2, · · · , pn
as:

Enc(V ) = pv1
1 ∗ pv2

2 ∗ · · · ∗ pvn
n

However, only being able to encode a vector clock into

a single number is insufficient to track causal relations. To

build on that work, we develop EVC technique to show how

to implement the basic operations of a vector clock.

A. Encoded Vector Clock Operations

Local Tick: Whenever the logical time advances locally,

the local component of the vector clock needs to tick. This

happens as increasing the local component in the vector by

1:

V [i] = V [i] + 1

While using EVC, this operation is equivalent to multi-

plying the EVC timestamp by the local prime number pi,

Enc(V ) = Enc(V ) ∗ pi
Merge: Whenever one process sends a message to another

process, with vector clock timestamps piggybacked, the

recipient of the message needs to merge the piggybacked

vector clock with its own local vector clock. For two vector

clock timestamps

V1 = 〈v1, v2, · · · , vn〉 and V2 = 〈v′1, v′2, · · · , v′n〉
merging them yields:

U = 〈u1, u2, · · · , un〉, where ui = max(vi, v
′
i)

The encodings of V1, V2, and U are:

Enc(V1) = pv1
1 ∗ pv2

2 ∗ · · · ∗ pvn
n

Enc(V2) = p
v′
1

1 ∗ pv′
2

2 ∗ · · · ∗ pv′
n

n

Enc(U) =
n∏

i=1

p
max(v1,v

′
1)

i

It would be better to merge Enc(V1) and Enc(V2) into

Enc(U) without knowing the n prime numbers. This can be

Table I
CORRESPONDENCE BETWEEN VECTOR CLOCKS AND EVC

Operation Vector Clock Encoded Vector Clock

Representing clock V = 〈v1, v2, · · · , vn〉 Enc(V ) = pv1
1 ∗ pv2

2 ∗ · · · ∗ pvn
n

Local Tick V [i] = V [i] + 1 Enc(V ) = Enc(V ) ∗ pi
(at process Pi)

Merge Merge V1 and V2 yields V Merge Enc(V1) and Enc(V2) yields

where V [j] = max(V1[j], V2[j]) Enc(V ) = LCM(Enc(V1), Enc(V2))
Compare V1 ≺ V2: ∀j ∈ [1, n], V1[j] ≤ V2[j], Enc(V1) ≺ Enc(V2): Enc(V1) < Enc(V2),

and ∃j, V1[j] < V2[j] and Enc(V2) mod Enc(V1) = 0
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Figure 2. Illustration of using EVC for capturing causal relations. The local prime number for each process is shown beside its ID. The vectors shown
in the diagram are only explaining the EVC timestamps. In real scenarios, only the number shown beside each vector is stored and transmitted.

achieved by observing that Enc(U) is the LCM of Enc(V1)
and Enc(V2). So, by computing the LCM of two EVC

timestamps, these two timestamps can be merged without

knowing the n prime numbers.

Comparison: Furthermore, the vector clock needs a mech-

anism to compare two timestamps. To compare two vector

clock timestamps, a component-wise comparison between

the corresponding elements of two vectors is needed. The

comparison has two results:

i) V1 ≺ V2 if ∀j ∈ [1, n], V1[j] ≤ V2[j] and

∃j, V1[j] < V2[j]

ii) V1‖V2 if V1 	≺ V2 and V2 	≺ V1

To compare two EVC timestamps, it is only necessary to

test if Enc(Vj) mod Enc(Vi) = 0. Thus,

i) Enc(V1) ≺ Enc(V2) if Enc(V1) < Enc(V2) and

Enc(V2) mod Enc(V1) = 0

ii) Enc(V1)‖Enc(V2) if Enc(V1) 	≺ Enc(V2) and

Enc(V2) 	≺ Enc(V1)

The correspondence between the three basic operations

of the vector clock and EVC is shown in Table I. These

operations using EVC are illustrated in Figure 2. If send

events and receive events are not relevant to the local

predicates, the local clocks do not need to tick at such

events, as explained in Section III-D. In that case, the EVC

timestamp 27000 in Figure 2 now is only 60.

With EVC, we can reduce the computing and storage

cost for processes within the detection region. Instead of

each maintaining a vector of size O(n), processes within the

detection region now only need to maintain a single integer.

More importantly, for processes outside the detection

region, we can also cut down the storage cost and make the

solution more practical for large-scale systems. For a process

Pj outside the region, when it first receives a message

piggybacked with an EVC timestamp, it simply stores this

single number. Although Pj will not tick the vector clock

locally since there is no corresponding component in the

vector clock for Pj , it may still receive multiple messages

from within the detection region and needs to be able

to merge the vector clock timestamps it receives. When

this happens, Pj simply executes the merge operation by

calculating the LCM of two numbers.

Figure 3 illustrates how the encoded vector clock works

when the detection region is established and the vector

clock is maintained only for processes with the region. If

send events and receive events are not relevant to the local

predicates, the local clocks do not need to tick at such

events, as explained in Section III-D. In that case, the EVC

timestamp 72 in Figure 3 now is only 6.

After using EVC, when Pr compares two vector clock

timestamps at line 13, 15, 17, and 19 in Algorithm 2,

Pr will compare two EVC timestamps using the operation

described in Table I. Whenever a new interval x finishes at

some process in the detection region, the EVC timestamps

of events min(x) and max(x) are sent to Pr, where LAP

detection is performed.

B. Complexity

Comparing with vector clocks, EVC has advantages in

time, space, and message size complexity. Each process

only needs to store a single number. If we assume that the

local space for storing this number is bounded, then the

storage cost is only O(1). When reporting intervals using

EVC timestamps, the message size complexity also becomes

O(1). For time complexity, all operations except computing

LCM take O(1) time. For computing LCM(a, b), we have:

LCM(a, b) =
a ∗ b

GCD(a, b)

132132

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:34:58 UTC from IEEE Xplore.  Restrictions apply. 



��
����

����

��

1

0

2

0

2

0

4

4

����2

0

1
3

2

2
36

2

2
36

2

0
4

3

2
72

��
2

0
4

��
2

2 36
��

2

2 36

4 LCM(4, 36) = 36 36

P1
          

P2
         

2

P3
         

3

prime 

number

Figure 3. Illustration of using EVC for capturing causal relations within a local region of the network. Here, EVC is built for only P2 and P3. The local
prime numbers for those two process are shown beside its ID. Again, the vectors in the diagram are only to help understand the EVC timestamps.

By applying the Euclidean algorithm, we can compute

GCD(a, b) without factoring the two numbers. It is also

well known that the time complexity of Euclidean algorithm

is O(h2), where h is number of digits of the smaller number

in base 10. If we assume the numbers are bounded, O(h2)
becomes O(1) and we can compute LCM in O(1) time.

The only drawback for assuming a bounded space for

storing the numbers is that eventually it will overflow. When

overflow happens, we can adapt the vector clock reset-

ting technique [18] which enables us to reuse the smaller

numbers. The clock resetting algorithm will incur an O(n)
message count complexity and an O(d) storage cost at each

process in the region, where d is the maximum degree of

processes in the region. The details of adapting the resetting

technique are discussed in the next subsection. In Table II,

we compare the time complexity and the storage cost of

the three basic operations, which are local tick, merge, and

compare, for vector clock and EVC.

For a system with N processes and assuming the local

predicate becomes true at most m times at each process,

Algorithm 2 has a time and space complexity of O(N2m)
at the sink. It also has an O(mN) message count complexity

and an O(mN2) message size complexity. When detecting

unstable conjunctive LAP, the factor N is reduced to n,

thus resulting in a time and space complexity of O(n2m)
at the sink plus an O(mn) message count complexity and

an O(mn2) message size complexity. After using EVC, the

time and space complexity at the sink is further reduced to

O(nm), since the intervals are now identified by two inte-

gers rather than two vectors. The message size complexity

also gets reduced to O(mn).
For non-sink nodes in Algorithm 2, the only complexity

comes from maintaining the vector clock. In a system with

N processes, that will be an O(N) space complexity. When

detecting unstable conjunctive LAP, the space complexity at

those non-sink nodes within the detection region becomes

O(n), and also for processes outside the detection region.

By using EVC, the space complexity for all processes gets

further reduced to O(1). Even with the clock resetting, the

space complexity for non-sink processes within the detection

region is O(d), still less than O(n). This makes Algorithm 2

a better scale-free solution for detecting unstable conjunctive

LAP.

C. Resetting EVC

For n processes in the detection region and fi relevant

events at each process Pi, the maximum EVC timestamp

across all processes is O(
∏n

i=1 p
fi
i ). From this observation,

we can see that EVC timestamps grow very fast and overflow

is unavoidable. Fortunately, we can adapt the clock resetting

technique [18] to solve this problem.

The clock resetting technique divides the execution of a

distributed system into multiple phases. Each time the clock

overflows at one process inside the detection region, the

resetting algorithm terminates the current phase by sending

control messages within the region to make sure there is no

Table II
COMPARISON OF THE TIME AND SPACE COMPLEXITY OF THE THREE BASIC OPERATIONS

Vector Encoded Vector Clock Encoded Vector Clock

Clock (unbounded storage) (bounded storage)

Local Tick O(1) O(1) O(1)
Merge O(n) O(h2) O(1)
Compare O(n) O(1) O(1)
Storage O(n) unbounded O(1) +O(d) (with resetting)
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computation message sending from the previous phase to

the next phase. It also introduces artificial causal relations

to ensure every event happening in the next phase happens

after the events in the previous phase.

For EVC, this clock resetting technique can be used to

reset the EVCs of the processes in the detection region. For

processes outside the detection region, we can utilize the

phase ID to reset their locally stored EVC timestamp. Each

process Pi in the detection region maintains the ID of the

current phase it is in. Each time the resetting algorithm is

executed, the phase ID is increased by 1. Whenever a process

in the detection region sends a message to processes outside

the region, the phase ID is also piggybacked. Processes

outside the detection region also need to store the phase

ID, in addition to the EVC timestamp. Whenever a process

outside the detection region receives a message with a phase

ID larger than the locally stored value, it deduces that a

reset has taken place in the detection region and it can

safely replace the locally stored EVC timestamp with the

one piggybacked on the message.

Furthermore, it is possible that the overflow could happen

at a process outside the detection region. If this happens, the

outside process starts piggybacking its outgoing messages

with a resetting flag. Processes inside the detection region

do not reset their EVCs until a message chain is established

between the overflowing process and a process inside the de-

tection region. Thus, the resetting technique can be adapted

and used as described above to ensure the correctness of the

operation even when clock overflow is unavoidable.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we further explored the problem of LAP

detection. Focusing on detecting unstable conjunctive LAP,

we developed a scale-free solution in which a regional vector

clock in the detection region is built on-the-fly and the

predicate is detected by an interval-based algorithm [9].

More importantly, we developed the encoded vector clock

(EVC) technique that optimizes the detection algorithm by

reducing the storage cost from O(n) at every process in the

whole network to O(1) for processes outside the detection

region and O(d) (with clock resetting) for processes within

the region. EVC makes detecting unstable conjunctive LAP

more practical in large-scale systems.

There are several potential extensions of locality-aware

predicates, such as their adaptation to predicates of different

detectability. We also plan to explore locality-aware predi-

cate detection in a weighted graph, and to specify more types

of detection region. Additionally, we plan to explore locality-

aware predicate in the context of the immediate detection

problem [19]. All these will broaden the application of

locality-aware predicates.
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