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Abstract—Cloud computing offers a variable-cost payment
scheme that allows cloud customers to specify the price they
are willing to pay for renting spot instances to run their
applications at much lower costs than fixed payment schemes,
and depending on the varying demand from cloud customers,
cloud platforms could revoke spot instances at any time. To
alleviate the effect of spot instance revocations, applications
often employ different fault-tolerance mechanisms to mini-
mize or even eliminate the lost work for each spot instance
revocation. However, these fault-tolerance mechanisms incur
additional overhead related to application completion time
and deployment cost. We propose a novel cloud market-based
approach that leverages cloud spot market features to provision
spot instances without employing fault-tolerance mechanisms
to reduce the deployment cost and completion time of ap-
plications. We evaluate our approach in simulations and use
Amazon spot instances that contain jobs in Docker containers
and realistic price traces from EC2 markets. Our simulation
results show that our approach reduces the deployment cost
and completion time compared to approaches based on fault-
tolerance mechanisms.

Keywords-cloud computing; spot instances; fault-tolerance
mechanisms; cloud spot market features; cloud-based applica-
tions; payment schemes; spot instance revocations

I. INTRODUCTION

Cloud computing offers a variable-cost payment scheme

that allows cloud customers to specify the price they are

willing to pay for renting spot instances to run their applica-

tions at much lower costs than fixed payment schemes, and

depending on the varying demand from cloud customers,

cloud platforms could revoke spot instances at any time.

The price of a spot instance can go up if the demand

increases and the number of available instances that can

be supported by a finite number of physical resources in

a data center of cloud providers decreases. Conversely, the

price of this spot instance can go down if the demand

decreases and the number of available instances increases.

Therefore, if the customer’s price is greater than the cloud

provider’s price that depends on the demand, a spot instance

will be provisioned to cloud customers’ applications at the

customer’s price. However, when spot instances are already

provisioned to cloud customer applications and the cloud

provider’s price goes above the customer’s price, the cloud

providers will terminate those spot instances within two

minutes by sending termination notification signals [1]. As a

result, even though cloud customers sometimes rent spot in-

stances at 90% lower prices than on-demand prices [2], their

applications that run on spot instances can be terminated

based on price fluctuations that happen frequently; thus,

those applications may incur additional overhead related to

application completion time and deployment cost from re-

executing lost work for each spot instance revocation.

Applications may benefit from different fault-tolerance

mechanisms to alleviate the work lost for each spot instance

revocation. However, these fault-tolerance mechanisms incur

additional overhead related to application completion time

and deployment cost. Fault-tolerance mechanisms are typi-

cally divided into three types: migration, checkpointing, and

replication. First, migration mechanisms are often employed

to reactively migrate the state of an application (i.e., memory

and local disk state) to another instance prior to a spot

instance revocation. The overhead of a migration mechanism

is determined based on the migration time of an application

and the number of spot instance revocations during the

application execution. The migration time of an application

mostly depends on the resource usage of the application,

whereas the number of spot instance revocations depends on

the volatility of cloud spot markets. A larger resource usage

of an application often results in a higher overhead of a

migration mechanism, and vice versa. A similar explanation

is applicable for the volatility of cloud spot markets; thus,

a higher overhead of a migration mechanism will lead to

a higher overhead of an application’s completion time and

deployment cost. Second, checkpointing mechanisms are

often employed to proactively checkpoint an application’s

state to remote storage (e.g., AWS S3). The overhead of

a checkpointing mechanism is specified based on the time

to checkpoint an application’s state and the number of

checkpoints, which represents how often an application’s

state is stored in remote storage during the application

execution, along with the time to re-execute the lost work

from the last checkpoint for each spot instance revoca-

tion. The checkpointing time of an application relies on

the resource usage of the application and the number of

checkpoints typically specified by engineers who maintain

applications deployed on spot instances. If engineers specify

a large number of checkpoints, the overhead time to re-

execute the lost work from the last checkpoint for each

spot instance revocation will likely decrease, whereas the

overhead time to checkpoint the state of an application will

likely increase. Conversely, if engineers specify a small

number of checkpoints, the overhead time to checkpoint

the state of an application will likely decrease, whereas

the overhead time to re-execute the lost work from the
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last checkpoint for each spot instance revocation will likely

increase. Hence, checkpointing mechanisms require analyz-

ing cloud spot markets and the resource usage of appli-

cations to optimize the tradeoff between the overhead of

actual checkpoints and the overhead of re-executing lost

work. Third, replication mechanisms are often employed to

replicate the computations of an application among different

instances. The overhead of a replication mechanism is based

on the degree of replication (i.e., the number of replicated

instances) and the number of revocations that depends on

the volatility of cloud spot markets, and is independent of

the resource usage of an application. As a result, a higher

overhead of these fault-tolerance mechanisms leads to a

higher overhead related to application completion time and

deployment cost.

Contributions: We address a challenging problem for

applications deployed on cloud spot instances that results

from the overhead of employing fault-tolerance mechanisms.

We propose a novel cloud market-based approach that lever-

ages features of cloud spot markets for Provisioning Spot
Instances WithOut employing Fault-Tolerance mechanisms
(P-SIWOFT) to reduce the deployment cost and completion

time of applications. We evaluate P-SIWOFT in simulations

and use Amazon spot instances that contain jobs in Docker

containers and realistic price traces from EC2 markets. Our

simulation results show that our approach reduces the de-

ployment cost and completion time compared to approaches

based on fault-tolerance mechanisms. P-SIWOFT code and

our simulation results are publicly available [3].

II. PROBLEM STATEMENT

In this section, we discuss sources of overhead of fault-

tolerance mechanisms and formulate the problem statement.

A. Sources of Overhead of Fault-Tolerance Mechanisms
There are three main sources of overhead of fault-

tolerance mechanisms. First, various resource usage of

an application imposes various overhead of fault-tolerance

mechanisms depending on the settings of each fault-

tolerance mechanism type. A larger resource usage of an

application (i.e., memory footprint) often results in a higher

overhead of a fault-tolerance mechanism, and vice versa.

The time to migrate/checkpoint the state of an application

depends on the sizes of the application’s memory and local

disk state. Additionally, the choice of the type of fault-

tolerance mechanism depends on the resource usage of

an application. For example, a live migration requires a

limited size of an application’s memory footprint and cannot

be employed when the application’s memory footprint is

greater than 4 GB [4]. As a result, the resource usage of an

application not only affects the overhead of a fault-tolerance

mechanism but also affects the choice of the type of fault-

tolerance mechanism.

Second, the volatility of cloud markets is represented by

the number of spot instance revocations over the application

runtime. A higher number of spot instance revocations often

results in higher overhead of fault-tolerance mechanisms,

and vice versa. Checkpointing mechanisms will re-execute

the lost work from the last checkpoint for each spot instance

revocation, whereas migration mechanisms will reactively

migrate an application to another instance prior to each spot

instance revocation. Unlike migration and checkpointing

mechanisms, a replication mechanism might re-execute the

lost work from the beginning of an application’s runtime for

each spot instance revocation when all replicated instances

are being revoked. As a result, the volatility of cloud markets

has an impact on the overhead of various types of fault-

tolerance mechanisms.

Third, the overhead of fault-tolerance mechanisms relies

on the settings of each type of fault-tolerance mechanism.

A main parameter of replication settings is the degree

of replication, which represents the number of replicated

servers needed to execute the same application’s job across

these replicated servers. When the degree of replication is

small, the overhead that results from re-executing the lost

work from the beginning of an application’s runtime for

each spot instance revocation will likely increase. In contrast,

when the degree of replication is large, the overhead that

results from a high number of servers will likely increase.

A main parameter of checkpointing settings is the number

of checkpoints, which represents how often an application’s

state is stored in remote storage over the application runtime.

When the number of checkpoints is small, the overhead

that results from re-executing the lost work from the last

checkpoint for each spot instance revocation will likely

increase. In contrast, when the number of checkpoints is

large, the overhead that results from the time to check-

point an application’s state will likely increase. A main

parameter of migration settings is the number of migrations,

which represents how often an application’s state migrates

to another server over the application runtime. When the

number of migrations is small, the overhead that results

from re-executing the lost work from the beginning of an

application’s runtime for each spot instance revocation will

likely increase. In contrast, when the number of migrations

is large, the overhead that results from the time to migrate

an application’s state will likely increase. As a result, the

fundamental problem for cloud customers is determining

how to find the optimal settings of various types of fault-

tolerance mechanisms to reduce the overhead resulting from

employing fault-tolerance mechanisms.

B. The Problem Statement
Cloud computing offers a variable-cost payment scheme

that allows cloud customers to specify the price they are

willing to pay for renting spot instances to run their appli-

cations at much lower costs than fixed payment schemes.
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In exchange, applications deployed on spot instances are

often exposed to revocations by cloud providers, and as

a result, these applications often employ different fault-

tolerance mechanisms to minimize or even eliminate the

lost work for each spot instance revocation. However, these

fault-tolerance mechanisms incur additional overhead related

to application completion time and deployment cost. In this

paper, we address a challenging problem for applications de-

ployed on cloud spot instances that results from the overhead

of employing fault-tolerance mechanisms—determining how

to effectively deploy applications on spot instances without

employing fault-tolerance mechanisms to reduce the deploy-

ment cost and completion time of applications. The root of

this problem is that applications often employ fault-tolerance

mechanisms to minimize the lost work for each spot instance

revocation without taking into consideration the overhead of

fault-tolerance mechanisms, leading to significantly larger

deployment costs and completion times of applications, and

as a result, the advantages of cloud spot instances could be

significantly minimized or even completely eliminated.

III. OUR APPROACH

In this section, we state our key ideas for our ap-

proach for Provisioning Spot Instances WithOut employing
Fault-Tolerance mechanisms (P-SIWOFT) and explain the

P-SIWOFT algorithm.

A. Key Ideas
A goal of our approach is to automatically provision spot

instances without employing fault-tolerance mechanisms to

reduce the deployment cost and completion time of applica-

tions. Our approach leverages features of cloud spot markets

such as the spot instance lifetime, revocation probability,

and revocation correlation between cloud spot markets to

provision spot instances for applications. The spot instance

lifetime represents the average time until a spot instance’s

price rises above the corresponding on-demand instance

price (i.e., mean time to revocation (MTTR)) because cloud

customers are often not willing to pay more than the on-

demand price to rent spot instances. The revocation proba-

bility of each spot instance represents the estimated lifetime

of a spot instance during a job execution and is calculated

by dividing the job’s execution length by the MTTR of

the provisioned spot instance. The revocation correlation

between cloud spot instances represents how often these spot

instances were revoked at the same time (i.e., the same hour

representing a single billing cycle in cloud platforms [2])

over the past three months.

In general, cloud spot markets show a broad range of

characteristics. These important characteristics are at the

core of our approach. First, revocations rarely happen in

some cloud spot markets, so the MTTR of these markets

is very high (i.e., > 600 h) [5]. Second, employing fault-

tolerance mechanisms often results in additional overhead

Algorithm 1 P-SIWOFT’s algorithm for provisioning spot

instances without employing fault-tolerance mechanisms.

1: Inputs: Jobs J , Cloud Markets M , Resources R
2: U ← FindSuitableServers(J , R)

3: L← ComputeLifeTime(M , U )

4: for each j in J do
5: Sj ← ServerBasedLifeTime(j, M , L)

6: while j ¬ Completed do
7: sj ← Highest(Sj)

8: if length(sj) >> length(j) then
9: vsj ← RevocationProbability(j, sj)

10: ProvisionHighestLifeTime(j, sj)

11: if sj encounters vsj then
12: Cj , Tj ← Cj ∪ {csj}, Tj ∪ {tsj}
13: Wsj ← FindLowCorrelation(j, sj))

14: Sj ← (Sj \ {sj}) ∩ Wsj

15: end if
16: end if
17: end while
18: Cj , Tj ← Cj ∪ {csj}, Tj ∪ {tsj}
19: C, T ← ComputeCostExeTime(Cj , Tj)

20: end for
21: return C, T

related to application completion time and deployment cost

[4]. Third, cloud spot markets exhibit variations in price

characteristics for a similar type of spot instance across

various cloud spot markets. Thus, a spot instance in a

cloud market is often independent of a spot instance in

another cloud market, which suggests that a spot instance’s

revocation in a cloud market is often uncorrelated with a

spot instance in another cloud market [5]. Based on these

characteristics, our key idea is that we could eliminate the

additional overhead resulting from employing fault-tolerance

mechanisms by provisioning the spot instance with the

highest MTTR as long as the spot instance’s MTTR is at

least twice the application’s execution length. Another idea

is that we could reduce consequent revocations when a spot

instance is revoked by provisioning a new spot instance with

the next highest MTTR and a low revocation correlation with

the revoked spot instance. When we provision a spot instance

that is uncorrelated with the revoked spot instance, it is more

unlikely that the new spot instance will be revoked again

than another spot instance that is highly correlated with the

revoked spot instance. As a result, these key ideas enable

cloud customers to avoid unnecessary overhead resulting

from employing fault-tolerance mechanisms; hence, cloud

customers can execute jobs with a completion time near that

of on-demand instances but at a cost of only spot instances.

B. P-SIWOFT Algorithm

P-SIWOFT is illustrated in Algorithm 1 that takes in

the batch job set J ; the resource requirement set R; and

the entire set of cloud markets M , containing on-demand
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instance types, prices of on-demand instances, spot instance

types, their availability zones, their regions, and spot in-

stance prices over the past three months. Starting from Step

2, the algorithm finds a suitable set of spot instances U
that meet the resource requirements. In P-SIWOFT, we

use the memory size to determine suitable types of spot

instances that are supported by EC2 markets [2]. In Step 3,

for each suitable spot instance, the spot instance’s lifetime

(i.e., the spot instance’s MTTR) is computed based on the

corresponding on-demand instance price, as discussed in

Section III-A. L is the set of such lifetimes. In Steps 4-20,

for each job, the algorithm is executed until the jobs in the

job set are completed. In Step 5, the cloud spot markets are

first filtered to include only a set of suitable spot instances

Sj for the job j according to their lifetimes L, as discussed

in Section III-A, and then these spot instances are sorted

in descending order based on their lifetimes. In Steps 6–17,

the job j is executed until the job’s execution is completed.

In Step 7, the algorithm selects a spot instance sj with

the highest lifetime. In Step 8, we ensure that the highest

lifetime for the spot instance sj is at least twice the job

j′s execution length to reduce the revocation probability of

the provisioned instance during the job execution. In Step

9, the algorithm computes the revocation probability of the

provisioned instance vsj by dividing the job j′s execution

length by the lifetime of the provisioned instance sj . In

Step 10, the spot instance sj with the highest lifetime is

provisioned to (re)start executing the job j. In Steps 11–15,

the algorithm checks if the provisioned spot instance sj is

revoked based on its revocation probability vsj during the

job execution j. When a spot instance sj is revoked, the

deployment time tsj and cost csj are added to the total

deployment time set Tj and cost set Cj , respectively, in

Step 12. In P-SIWOFT, the deployment time represents the

job’s execution time until the spot instance is revoked, the

deployment cost of a spot instance represents the price of

the provisioned spot instance at a certain execution point,

and the cost is computed at a per hour rate [2]. In Step

13, the low revocation correlation set Wsj with the revoked

spot instance is computed using the revocation correlation

between cloud spot instances, as discussed in Section III-A.

In Step 14, the revoked spot instance is removed from the

set of suitable spot instances Sj , and the set of suitable spot

instances Sj is filtered based on a low revocation correlation

set Wsj . The cycle of Steps 6–17 repeats until the job

j′s execution is completed. When the job j′s execution

is completed, the deployment time tsj and cost csj are

added to the total deployment time set Tj and cost set Cj ,

respectively, in Step 18. In Step 19, the total deployment

time set Tj and cost set Cj are computed and then added to

the overall deployment time T and cost C, respectively. The

cycle of Steps 4–20 repeats until the jobs in the job set are

completed. Finally, the total deployment time T and cost C
are returned in Step 21 as the algorithm ends.

IV. EVALUATION

In this section, we describe the design of the study to

evaluate P-SIWOFT and state threats to its validity. We pose

the following Research Questions (RQs):

RQ1: How efficient is P-SIWOFT compared to a fault-

tolerance approach in executing applications?

RQ2: How effective is P-SIWOFT compared to a fault-

tolerance approach in reducing the deployment cost

of applications?

RQ3: Do different settings of a fault-tolerance approach

contribute to different types of overhead?

A. Subject applications

We evaluate P-SIWOFT in simulations and use Amazon

spot instances that contain jobs in Docker containers and

realistic price traces from EC2 markets. P-SIWOFT pack-

ages jobs in Docker containers to simplify restoring and

checkpointing. We use Amazon spot instances since their

MTTR often exceed hundreds of hours, unlike MTTR for

Google preemptible instances that are less than 24 hours

[6]. Also, we use Docker containers since they support

checkpointing and restoring container images. We use a load

generator called Lookbusy [7] to create synthetic jobs with

different amounts of resource usage. In addition, P-SIWOFT
uses EC2’s REST API to collect realistic price traces for all

spot instances across all markets (i.e., availability zones and

regions) for the past three months.

B. Methodology

Some objectives of the experiments are to demonstrate

that P-SIWOFT can efficiently execute applications and

can effectively decrease the deployment cost of applica-

tions compared to a fault-tolerance approach. For these

objectives, we use different combinations of job execution

length and job memory footprint to show the impact on

the completion time and the deployment cost when a spot

instance is provisioned for the job using P-SIWOFT and

the fault-tolerance approach. We define two revocation rules

with different ranges for P-SIWOFT and the fault-tolerance

approach to show the impact on the completion time and the

deployment cost for different numbers of revocations during

a job’s execution. When a spot instance is provisioned for a

job using the fault-tolerance approach, we randomly send a

fixed number of revocations per day of the job’s execution

length, as suggested by prior work [4]. Conversely, when

a spot instance is provisioned for a job using P-SIWOFT,

we use the revocation probability of a spot instance that

relies on realistic price traces from the Amazon cloud to

revoke the provisioned spot instance. Since another goal

is to understand how different settings of jobs and dif-

ferent settings of the fault-tolerance approach contribute

to different types of overhead (e.g., checkpoint overhead),

we investigate how different job execution lengths, job

memory footprints, numbers of revocations, and numbers of
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checkpoints contribute to different overhead types that are

related to a job’s completion time and deployment cost.

P-SIWOFT is implemented using a load generator API

(Lookbusy), EC2’s REST API, Docker containers, AWS S3,

and EC2 spot instances. The experiments for the subject

applications were carried out using spot instances from

Amazon EC2 called m5ad.12xlarge with a 48 GHz CPU and

192 GB of memory. We package jobs in Docker containers

that run on Ubuntu 18.04 LTS with a limited CPU and

memory capacity for the provisioned spot instances to assess

the effectiveness of P-SIWOFT for different job memory

footprints and job execution lengths.

C. Threads to validity

One potential threat to our empirical evaluation is that our

experiments were conducted only on batch job applications,

which may make it difficult to generalize the results of the

experiments to other types of applications (e.g., interactive

job applications) that may have various workflows and

behaviors. However, cloud spot instances are often used to

run batch job applications. As a result, we expect the results

of the experiments to be generalizable.

We experimented with a certain price ratio between spot

instances and on-demand instances that is based on realistic

price traces from EC2 markets, whereas other ratios between

spot instances and on-demand instances could result in dif-

ferent effects on the deployment cost and completion time of

jobs when spot instances are provisioned using P-SIWOFT
and the fault-tolerance approach. However, understanding

the effect of various price ratios between spot instances and

on-demand instances is beyond the scope of this empirical

study and shall be considered in future studies.

V. RESULTS

In this section, we describe and analyze the results of the

experiments to answer the RQs listed in Section IV.

A. Completion Time

The experimental results that summarize the completion

time for the subject applications using P-SIWOFT, the fault-

tolerance approach, and on-demand instances for different

job execution lengths are shown in the stacked bar plots

in Fig. 1a. We observe that the completion time using

P-SIWOFT is consistently shorter than the completion time

using the fault-tolerance approach, and the completion time

using P-SIWOFT is consistently near that of on-demand

instances, which do not incur any additional overhead [2].

This result shows that a higher job length leads to a steadily

higher overhead of completion time resulting from the job’s

checkpointing, recovery, and re-execution times, as well as

the startup time of a spot instance when using the fault-

tolerance approach. However, a higher job length leads to a

slightly higher overhead of the completion time, as a result

of the job’s re-execution time and the startup time of a spot

instance when using P-SIWOFT. Our explanation is that

P-SIWOFT does not incur frequent job re-execution time

and the startup time of a spot instance since the startup time

of a spot instance using P-SIWOFT does not increase with

the increase in job execution length. This is expected based

on the way P-SIWOFT provisions a spot instance with the

highest MTTR.

The experimental results that summarize the comple-

tion time for the subject applications using P-SIWOFT,

the fault-tolerance approach, and on-demand instances for

different job memory footprints are shown in the stacked

bar plots in Fig. 1b. We observe that the completion time

for P-SIWOFT is consistently shorter than the completion

time for the fault-tolerance approach, and the completion

time for P-SIWOFT is consistently near that of on-demand

instances, which do not incur any additional overhead [2].

This result shows that a higher job memory footprint leads

to a higher overhead of the completion time resulting from

the job’s checkpointing time and recovery time when using

the fault-tolerance approach. In contrast, the overhead of

the completion time resulting from the job’s re-execution

time and the startup time of a spot instance when using

the fault-tolerance approach stays approximately the same

across various job memory footprints, which suggests that

the overhead resulting from the job’s re-execution time and

the startup time of a spot instance for the fault-tolerance

approach is independent of the job resource usage. Also, the

overhead of an application’s completion time resulting from

the job’s re-execution time and the startup time of a spot

instance when using P-SIWOFT stays approximately the

same across various job memory footprints, which suggests

that the completion time for the subject applications when

using P-SIWOFT is also independent of the resource usage.

The experimental results that summarize the completion

time for the subject applications using P-SIWOFT, the

fault-tolerance approach, and on-demand instances for dif-

ferent numbers of revocations are shown in the stacked bar

plots in Fig. 1c. We observe that the completion time for

P-SIWOFT—except for when the number of revocations

equals one—is consistently shorter than the completion time

for the fault-tolerance approach, and the completion time for

P-SIWOFT is consistently near that of on-demand instances,

which do not incur any additional overhead [2]. When the

number of revocations equals one, the job’s checkpointing

time for the fault-tolerance approach balances the job’s re-

execution for P-SIWOFT. This result suggests that the fault-

tolerance approach incurs additional overhead due not only

to the number of revocations, but also the number of check-

points. It also suggests that the effectiveness of P-SIWOFT
may decrease when the number of revocations decreases, and

it is very difficult to guarantee that the number of revocations

is small [8]. The job’s recovery time, the job’s re-execution

time, and the startup time of a spot instance—except for

the job’s checkpointing time—all increase steadily when
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(a) Job Length (Time) (b) Memory Footprint (Time) (c) Revocation Number (Time)

(d) Job Length (Cost) (e) Memory Footprint (Cost) (f) Revocation Number (Cost)

Figure 1: Comparing the completion time (top row) and the deployment costs (bottom row) for the subject applications

using P-SIWOFT (P), the fault-tolerance approach (F), and on-demand instances (O) for different job execution lengths (a

and d), memory footprints (b and e), and revocation numbers (c and f), while keeping other job features constant.

using the fault-tolerance approach, whereas in P-SIWOFT,

the job’s re-execution time and the startup time of a spot

instance stay approximately the same. This observation

suggests that the job’s checkpointing time for the fault-

tolerance approach as well as the job’s re-execution time

and the startup time of a spot instance for P-SIWOFT, are

independent of the number of revocations. In summary, these

experimental results allow us to conclude that P-SIWOFT
is more efficient in executing applications for different job

execution lengths, job memory footprints, and numbers of

revocations than the fault-tolerance approach, thus positively
addressing RQ1.

B. Deployment Costs

The experimental results that summarize the deployment

costs for the subject applications using P-SIWOFT, the

fault-tolerance approach, and on-demand instances for dif-

ferent job execution lengths are shown in the stacked bar

plots in Fig. 1d. We observe that the deployment costs using

P-SIWOFT are consistently lower than the deployment

costs using the fault-tolerance approach or those of on-

demand instances. This result identifies the steady rise in

overhead related to deployment costs that result from the

job’s checkpointing costs, its recovery costs, its re-execution

costs, the startup costs of spot instances, and the buffer costs

of billing cycles when using the fault-tolerance approach

with the increased job length. However, this result also

identifies a slight rise in the overhead of deployment costs

that result from the job’s re-execution cost, the startup costs

of spot instances, and the buffer costs of billing cycles when

using P-SIWOFT with the increased length. Our explanation

is that P-SIWOFT does not frequently incur the job’s re-

execution costs and the startup costs of spot instances since

the startup costs of spot instances using P-SIWOFT do not

increase with the increase of the job execution length, which

is expected based on the way that P-SIWOFT provisions

a spot instance with the highest MTTR. Interestingly, we

observe that unlike P-SIWOFT, the buffer costs of billing

cycles significantly increase compared to the other types

of overhead costs when using the fault-tolerance approach

with the increase of the job length, which suggests that the

fault-tolerance approach incurs not only overhead related to

the settings of the fault-tolerance approach (e.g., the job’s

checkpointing cost) but also additional overhead related to

the cloud billing policies (i.e., the buffer costs of billing

cycles). Also, we observe that the deployment costs of the

fault-tolerance approach across all job lengths are equal to

or higher than the deployment costs of on-demand instances

[2], which suggests using on-demand for larger job lengths

may reduce deployment costs and the completion time when

compared to the fault-tolerance approach.

The experimental results that summarize the deployment

costs for the subject applications using P-SIWOFT, the

fault-tolerance approach, and on-demand instances for dif-

ferent job memory footprints are shown in the stacked bar

plots in Fig. 1e. We observe that the deployment costs using

P-SIWOFT are consistently lower than the deployment costs

using the fault-tolerance approach and on-demand instances.

This result demonstrates the steady rise of the overhead

related to deployment costs resulting from the job’s check-

pointing, recovery, re-execution, and startup costs of spot

instances, as well as the buffer costs of billing cycles when

using the fault-tolerance approach with the increase of job

memory footprint. However, this result demonstrates a slight

rise of the overhead of deployment costs resulting from the

job’s re-execution and startup costs of spot instances, and
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the buffer costs of billing cycles when using P-SIWOFT
with the increase of job memory footprint. Our explanation

is that P-SIWOFT does not incur the job’s re-execution and

startup costs of spot instances, since the startup costs of spot

instances using P-SIWOFT do not increase with the increase

of the job memory footprint, which is expected based on

the way that P-SIWOFT provisions a spot instance with

the highest MTTR. We observe that, unlike the buffer costs

of billing cycles for P-SIWOFT, the buffer costs of billing

cycles for the fault-tolerance approach significantly increase

with the higher job memory footprints (i.e., 32 and 64 GB),

suggesting that the buffer costs increase when there is a

significant change in deployment time between consecutive

job memory footprints (i.e., exceeds the period for a billing

cycle). Additionally, we observe that the deployment costs of

the fault-tolerance approach across all job memory footprints

are equal or higher than the deployment costs of on-demand

instances [2], which suggests provisioning on-demand for

large job memory footprints may result in lower deployment

costs and completion time than the fault-tolerance approach.

The experimental results that summarize the deployment

costs for the subject applications using P-SIWOFT, the

fault-tolerance approach, on-demand instances for different

numbers of revocations are shown in the stacked bar plots

in Fig. 1f. We observe that the deployment costs using

P-SIWOFT and that of on-demand instances are consistently

lower than the deployment costs using the fault-tolerance

approach. The job’s recovery and re-execution costs, the

startup costs of spot instances, and the buffer costs of billing

cycles, except for the job’s checkpointing costs, increase

steadily when using the fault-tolerance approach whereas,

for P-SIWOFT, the job’s re-execution costs, the startup

costs of spot instances, and the buffer costs of billing cycles

stay approximately the same. This observation suggests that

the job’s recovery time and re-execution costs, the startup

costs of spot instances, and the buffer costs of billing cycles

depend on the number of revocations when using the fault-

tolerance approach. However, the job’s checkpointing costs

for the fault-tolerance approach and the job’s re-execution

costs, the startup costs of spot instances, and the buffer

costs of billing cycles for P-SIWOFT, are independent of

the number of revocations, respectively. Our explanation is

that P-SIWOFT does not incur the job’s re-execution costs

and the startup costs of spot instances. We observe that

unlike the buffer costs of billing cycles for P-SIWOFT, the

buffer costs of billing cycles for the fault-tolerance approach

significantly increase with the higher numbers of revocations

(i.e., 8 and 16), which suggests that the buffer costs increase

when there is a significant change in deployment time

between consecutive numbers of revocations (i.e., exceeds

the period for a billing cycle). Interestingly, we observe

that the deployment costs for the fault-tolerance approach

when the number of revocations is high (i.e., 8 and 16)

is significantly higher than the deployment costs for on-

demand instances [2], which confirms that provisioning on-

demand for a large number of revocations may result in

lower deployment costs and completion time than the fault-

tolerance approach. In summary, these experimental results

allow us to conclude that P-SIWOFT is more effective in

reducing the deployment costs of applications for different

job execution lengths, job memory footprints, and numbers

of revocations than the fault-tolerance approach, thus posi-
tively addressing RQ2.

C. Impact on Different Types of Overhead

An interesting question is how different job execution

lengths, job memory footprints, and numbers of revocations,

contribute to different overhead types that are related to

a job’s completion time and deployment cost when using

the fault-tolerance approach. Consider the stacked bar plots

that are shown in Fig. 1a, Fig. 1b, and Fig. 1c — the

visual inspection identifies the highest overhead related to

the completion time results from the job’s re-execution time,

then the job’s checkpointing time and the job’s recovery

time, followed by the startup time of a spot instance, with

the increase of the job execution length. Also, with the

rise of the job memory footprint, the highest overhead

related to the completion time when using the fault-tolerance

approach results from the job’s checkpointing time and the

job’s recovery time. With the increase of the number of

revocations, the highest overhead related to the completion

time when using the fault-tolerance approach results from

the job’s re-execution time, then the job’s recovery time,

followed by the startup time of a spot instance.

Similarly, it is shown in the stacked bar plots in Fig. 1d,

Fig. 1e, and Fig. 1f that the highest overhead related to the

deployment costs when using the fault-tolerance approach

results from the buffer costs of billing cycles, the job’s

re-execution costs, then the job’s checkpointing cost, the

job’s recovery cost, followed by the startup costs of spot

instances, with the increase of the job execution length.

With the rise of the job memory footprint, the highest

overhead related to the deployment costs when using the

fault-tolerance approach results from the buffer costs of

billing cycles, the job’s re-execution costs, then the job’s

checkpointing and recovery costs, followed by the startup

costs of spot instances. With the increase of the number of

revocations, the highest overhead related to the deployment

costs when using the fault-tolerance approach results from

the buffer costs of billing cycles, the job’s re-execution costs,

then its recovery costs, followed by the startup costs of spot

instances. The results confirm that different job execution

lengths, job memory footprints, and numbers of revocations

contribute to different overhead types related to a job’s

completion time and deployment cost when using the fault-

tolerance approach, thus positively addressing RQ3.
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VI. RELATED WORK

While many of the prior works focused on reducing the

effect of spot instance revocations by modeling spot markets

[9]–[12] and using fault-tolerance methods [4], [5], [8], [13],

[14], these works are subject to altering pricing algorithms

and are exposed to incurring overhead related to appli-

cation completion time and deployment cost, respectively.

In contrast, P-SIWOFT leverages features of cloud spot

markets to mitigate the effect of spot instance revocations.

Also, other works [1], [15] focused on testing the effect

of spot instance revocations on cloud-based applications.

However, P-SIWOFT focused on reducing the deployment

cost and completion time of applications by provisioning

spot instances using features of cloud markets. Other re-

searchers worked on transient resource reclamations [6],

[16], resource elasticity [17], [18], containerised clouds [19],

[20], workflow scheduling in clouds [21], [22] to decrease

deployment costs for users while improving the performance

of cloud-based applications.

VII. CONCLUSION

We addressed a challenging problem for applications de-

ployed on cloud spot instances that results from the overhead

of employing fault-tolerance mechanisms. We proposed a

novel cloud market-based approach that leverages features

of cloud spot markets for Provisioning Spot Instances With-
Out employing Fault-Tolerance mechanisms (P-SIWOFT)
to reduce the deployment cost and completion time of

applications. We evaluated P-SIWOFT in simulations and

used Amazon spot instances that contain jobs in Docker

containers and realistic price traces from EC2 markets. Our

simulation results show that our approach reduces the de-

ployment cost and completion time compared to approaches

based on fault-tolerance mechanisms.
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