
Weak Amnesiac Flooding

Zahra Bayramzadeh∗, Ajay D. Kshemkalyani†, Anisur Rahaman Molla‡, and Gokarna Sharma∗
∗Kent State University, Kent, OH 44242, USA. {zbayramz@,sharma@cs.}kent.edu

†University of Illinois at Chicago, Chicago, IL 60607, USA. ajay@uic.edu
‡Indian Statistical Institute, Kolkata 700108, India. molla@isical.ac.in

Abstract—Flooding is a fundamental concept in distributed
computing. In flooding, typically, a node forwards a message to
its neighbors for the first time when it receives a message. Later
if the node receives the same message again, it simply ignores
the message and does not forward it. The nodes store a “message
record” to ensure that the same message is not forwarded again.
Hussak and Trehan introduced amnesiac flooding where nodes
do not require to keep the message record. They established a
surprising result that the amnesic flooding of a single (k = 1)
message starting from some source node always terminates in
bipartite graphs in e rounds and in non-bipartite graphs in
[e + 1, e + D + 1] rounds, where e is the eccentricity of the
source node and D is the diameter of the graph. Recently, Hussak
and Trehan introduced dynamic amnesiac flooding initiated in
possibly multiple rounds with possibly multiple (k > 1) messages
from possibly multiple source nodes. They showed that the
partial-send case where a node only sends a message to neighbours
from which it did not receive any message in the previous round
and the ranked full-send case where a node sends some highest
ranked message to all neighbors from which it did not receive
that message in the previous round, both terminate. However, they
showed that the unranked full-send case, where a node sends some
random message (not necessarily the highest ranked message) to
all the neighbors from which it did not receive that message in
the previous round, does not terminate. In this paper, we show
that the unranked full-send case also terminates, provided that
diameter D is known to graph nodes. We further show that the
termination time is D · (2k − 1) rounds in bipartite graphs and
(2D + 1) · (2k − 1) rounds in non-bipartite graphs.

Index Terms—Distributed Algorithms, Classic Flooding, Am-
nesiac Flooding, Termination, Time Complexity, Memory

I. INTRODUCTION

Flooding is one of the fundamental and most useful prim-
itives in distributed computing. In flooding, the task is to
disseminate message(s) from source nodes to all the nodes
of the network. Suppose a distinguished source node has
a message θ initially. The goal is to disseminate θ to all
the nodes of the network. In a synchronous, round-based
distributed network, flooding is typically performed as follows:
In the first round, the distinguished source node sends θ to
all its neighbors. From the next round onwards, when a node
receives θ for the first time, it sends a copy of θ to its neighbors
(except the neighbors from which it receives θ). If it receives
θ again, it doesn’t do anything. This essentially requires each
node in the network to maintain a “message record” of θ
to indicate whether that node has seen θ in some previous
round. If a node receives θ and it has a record that it has seen

θ before, then it does not forward θ. This ensures that the
node never floods θ twice. It is well-known that this classic
flooding process always terminates and the number of rounds
until termination is D + 1, the diameter of the network. The
message record is of size at least 1 bit for a message.

Moving from single message flooding to multiple message
flooding, the flooding approach for a single message has to be
applied to each of the messages separately. Therefore, each
node has to have the message record of at least 1 bit per
message, i.e., Ω(k) bits for k > 1 messages, which may be a
problem for resource-constrained devices [16], [17].

Hussak and Trehan [9] asked an interesting question for the
single message flooding starting from a distinguished source
node: What will happen if nodes do not keep the record
of the message θ? Will the flooding process still terminate?
Not keeping a record means that message travels on its own
without depending on a message record. Not having a message
record simplifies client-server application design as well as
makes it scalable due to the fact that servers do not need to
keep track of session information [18]. It will also provide
fault tolerance even when network nodes crash.

Intuitively, if the nodes do not keep any record, they
may forward the message again and again when received in
subsequent rounds. Thus, the absence of a message record
raises the possibility that θ may be circulated infinitely. Hussak
and Trehan [9] formally studied flooding without the message
record, calling it amnesiac flooding, and showed that the single
message (k = 1) flooding that starts from a distinguished
source node terminates in bipartite graphs in e rounds and
in non-bipartite graphs in [e + 1, e + D + 1] rounds, where
e is the eccentricity of the source node. Using two rounds to
initiate flooding with the second round dependant on the first,
Turau [17] proved termination time of e + 1 rounds in any
(non-bipartite) network, reducing the e+D+ 1 rounds of [9]
by D rounds. However, the dependency on the first two rounds
makes the result from Turau [17] not truly amnesiac compared
to Hussak and Trehan [9]. In the recent followup work, Hussak
and Trehan [10] showed that the same termination time of e
rounds in bipartite graphs and [e + 1, e + D + 1] rounds in
non-bipartite graphs can be achieved for a single message θ
starting from multiple source nodes concurrently. Turau [18]
gave an alternative detailed proof.

Additionally in [10], Hussak and Trehan considered dy-
namic amnesiac flooding of multiple k > 1 messages, where
the messages may be initiated in possibly different rounds
(i.e., not necessarily in the same first round) by different978-1-6654-3281-8/21/$31.00 ©2021 IEEE

source nodes in the graph. Dynamic flooding arises in different
real-world applications. One prominent example is disaster
monitoring [18] where a distributed system of sensors is
deployed to monitor a disaster event. As soon as sensors detect
an event which may happen at different times for different
sensors, they start flooding this information in the network.
Furthermore, one source node may initiate multiple (different)
messages (the source nodes may not be all different, i.e.,
1 ≤ k′ < k source nodes for k messages). They considered
the following three cases (problems) of dynamic amnesiac
flooding in the synchronous message passing setting.
• partial-send: a node only sends a message to its neighbors

from which it did not receive any message in the previous
round.

• ranked full-send: a node sends some highest ranked
message to all neighbors from which it did not receive
that message in the previous round.

• unranked full-send: a node sends some random message
(not necessarily the higest ranked message) to all neigh-
bors from which it did not receive that message in the
previous round.

Hussak and Trehan [10] showed that both the partial-send
and ranked full-send problems terminate, but the unranked
full-send problem does not terminate. In this paper, we show
that the unranked full-send problem also terminates, provided
that diameter D is known to network nodes. We further prove
the termination time for the unranked full-send problem in
both bipartite and non-bipartite graphs.

Overview of the Model and Results. Let the communication
network be modeled as an undirected and unweighted but
connected graph G = (V,E), where V is the set of network
nodes and E ⊆ V ×V is the set of edges of G. The nodes are
allowed to communicate through the edges of the graph G.
We consider a synchronous message passing1 network, where
computation proceeds in synchronous rounds with a node
performing the following three tasks in each round: (i) receive
messages from its neighbors, (ii) perform local computation,
and (iii) send messages to its neighbors. No message is lost in
transit. The messages are assumed to have unique IDs (which
may not necessarily be consecutive and the smallest message
ID may not be 1). The message IDs are provided as an input.
The unique may be assigned through a message generator
based on a counter so that no two messages receive the same
counter. A message θ is called globally i-th ranked if and only
if the ID of θ is i-th largest among the IDs of all the messages
in the set. The (global) rank of the messages is not known to
graph nodes (i.e., the unranked problem), otherwise it becomes
the ranked problem which terminates. We prove the following
theorem for the unranked full-send problem.

Theorem 1 (unranked full-send). Given a set {θ1, . . . , θk} of
k > 1 messages positioned on 1 ≤ k′ ≤ k nodes of a network
G initiated at possibly different rounds, the unranked full-send

1In the asynchronous message passing framework, it was shown by Hussak
and Trehan [9] that amnesiac flooding does not terminate.

problem terminates in bipartite graphs in D · (2k− 1) rounds
and in non-bipartite graphs in (2D+1) ·(2k−1) rounds2 with
each node storing O(log(max{k,D})) bits, provided that the
diameter D is known to the graph nodes.

Comparison to Amnesiac and Classic Flooding. Nodes do
not need to store any information in ‘truly’ amnesiac flooding
[9]. However, the assumption of graph nodes knowing D
demands each graph node to keep dlogDe bits record in
memory. Therefore, the storage requirement for any algo-
rithm knowing D is at least Ω(logD) bits. The total storage
O(log(max{k,D})) bits at each node in our algorithm is due
to the fact that it also uses a wait variable which needs
O(log k) bits. Therefore, our algorithm provides a trade-
off between two parameters k and D regarding memory;
O(logD) bits when k = O(D) and O(log k) bits otherwise.
In classic (non-amnesiac) flooding, nodes need to store at
least Ω(k) bits to flood k different messages. Therefore, the
memory requirement in our algorithm is a significant reduction
compared to classic flooding when k > Ω(logD).

The above comparison shows that our algorithm provides
a ‘weak’ variant of ‘truly’ amnesiac flooding [9], [17]. An
interesting direction for future research is whether a weaker
assumption than D is enough to make the unranked full-send
problem terminate. Finally, we prove the termination time of
our algorithm using the single message termination time of
[9]. One interesting property of our algorithm is that if a better
termination time is available for the single message flooding,
then the termination time improves proportionally.

Techniques. Suppose all messages are initiated in the begin-
ning of round 1. Knowing D, the proposed algorithm asks
messages to start their flooding process in the interval of
(2D + 1) rounds, i.e., at rounds 1, (2D + 1) + 1, 2 · (2D +
1) + 1, . . . , (k − 1) · (2D + 1) + 1. Suppose the source nodes
of k > 1 messages θ1, . . . , θk know the rank (ID) of all the
messages, say, 1, . . . , k, with message θi having rank i. Let us
call this rank order as global rank. Knowing the global rank,
θi can immediately decide how long to wait before starting
the flooding process. Since it is known that a single message
θi finishes flooding in (2D + 1) rounds [9] (e ≤ D), all k
messages finish flooding by k · (2D + 1) rounds. That is, the
ranked full-send problem terminates in k · (2D + 1) rounds.

The challenge to overcome is when the source nodes do not
know the global rank of the messages (the unranked problem).
We devise an algorithm that takes into account local ranks of
the messages (i.e., the positions in the ranks of the messages
at a node) in deciding the wait time for the messages. Except
the globally lowest ranked message, the wait time assigned at
round 1 may not be equal to its wait time knowing its global
rank. The algorithm asks locally lowest ranked messages to
start amnesiac flooding at round (κ− 1) · (2D+ 1) + 1, κ ≥ 1
following the single message algorithm of Hussak and Trehan

2If eccentricity e1, e2, . . . , ek′ of the k′ source nodes is known in-
stead of D, then the bounds translate to emax · (2k − 1) in bipartite
graphs and (2emax + 1) · (2k − 1) in non-bipartite graphs with memory
O(log(max{k, emax})) bits, where emax := max1≤l≤k′ el.

[9]. If the message that starts flooding at round (κ−1) ·(2D+
1)+1, κ ≥ 1, is globally κ ranked, we show that it terminates
by round κ · (2D + 1); otherwise during the round between
(κ − 1) · (2D + 1) + 2 and κ · (2D + 1) + 1 (inclusive), it
finds that its global rank is higher than κ and starts waiting
increasing its wait time proportional to its local rank at that
time. We will also show that the wait time update stops at
round (κ′− 1) · (2D) + 1 for the globally κ′ ranked message.
This altogether guarantees that the algorithm terminates in k ·
(2D + 1) rounds for k > 1 messages.

Finally, we show that this approach extends for messages
initiated at different rounds with termination time (2k − 1) ·
(2D + 1). For bipartite graphs, the only change is replacing
(2D + 1) with D so that the bound becomes (2k − 1) ·D.

Other Related Works. Amnesiac flooding was first intro-
duced and studied by Hussak and Trehan [9]. Recently,
improved results and extensions were given in [10], [16], [17],
[18], [19]. Turau [17] proved that the problem of selecting
κ source nodes with minimal termination time for amensiac
flooding is NP-hard. Particularly, Turau showed that unless
NP = P there is no approximation algorithm for amnesiac
flooding with approximation ratio 3/2− ε. For asynchronous
systems, Turau proved that deterministic amnesiac flooding
is only possible if a large enough part of the message can
be updated by each node. Very recently, Turau [18] provided
an alternative detailed proof for the single message flooding
starting from multiple source nodes in the beginning of round
1. Specifically, Turau showed that, for every non-bipartite
graph G and every set V ′ of source nodes that start flooding
simultaneously, there exists a bipartite graph G(V ′) such that
the execution of amnesiac flooding on both graphs G and
G(V ′) is strongly correlated and termination times coincide.
This led to bounds that are independent of the diameter as well
as it allowed to determine source nodes for which amnesiac
flooding terminates in minimal time. Turau also gave tight
lower and upper bounds for the time complexity in special
cases of |V ′| = 1 and |V ′| > 1. In fact, the case of |V ′| > 1
was reduced to the case of |V ′| = 1. Very recently, Turau [19]
extended this line of work for amnesiac flooding in intermittent
channels with bounded capacities.

Flooding is a fundamental concept used in solving a diverse
set of fundamental problems in distributed computing, e.g.,
leader election [11], [12], spanning tree construction [2], [13],
shortest paths computation [7], [8], [15], aggregation [4],
routing [14], etc. Flooding of multiple messages is a must in,
e.g., k-information dissemination or gossiping [1], [3], [13].

Amnesiac flooding uses the most recent edges from which
the message is received to a node to decide which neighboring
edges of that node are used to flood the message from
that node. This concept finds applications and uses in social
networks [5], broadcasting [6], and client-server application
design [18]. More details in [9], [10], [16], [17], [18].

Roadmap. We discuss some preliminaries and formal problem
definition in Section II. We prove our main result Theorem 1
in Section III. Finally, we conclude in Section IV with a short

discussion on possible future work.

II. PRELIMINARIES

Communication Network. We model the communication
network as an undirected and unweighted but connected graph
G = (V,E). Each graph node v ∈ V has a distinct ID. We
assume that the graph nodes send/receive messages through
the neighboring edges, i.e., when a node u sends a message
through an edge e = (u, v), then node v receives that message.
We assume CONGEST model such that at any time only one
message can be sent through edge e. The graph nodes know
D, the diameter of G. The graph nodes have memory to store
some limited information, such as D.
G is said to be bipartite if its vertices V can be divided into

two disjoint and independent sets U and W such that every
edge in G connects a vertex in U to one in W . If G does not
satisfy this criteria, it is non-bipartite (a.k.a. arbitrary).

Messages. There are k > 1 messages {θ1, . . . , θk} positioned
at graph nodes. We denote the initial position of message θi

in G by a pair (vi, ri), where vi ∈ V denotes the node on
which θi is positioned initially and ri ≥ 1 the round at which
θi is initiated at vi. No message can reside on the edges of G,
but one or more messages can occupy the same node of G.

Communication Model. We consider a synchronous model
where communication and computation proceeds in syn-
chronous rounds or steps and a graph node v ∈ V may perform
the following three tasks in the order in each round ri ≥ 1.
• Receive messages: sent by its neighbor nodes through the

adjacent edges connecting v to those neighbors. Only at
most one message per edge is received.

• Local computation: v may perform an arbitrary local
computation to decide which message (among the ones
positioned on it) to send to neighbors and, if there is a
message to send, which edges to use to send that message.

• Send messages: At the end of the round, v sends the
message it decided to send (if any) using the computed
edges (to reach to the neighbors of v).

We assume that the nodes are fault-free and no message is
lost in transit. Given the communication model above, time to
termination is measured in rounds or steps. Another important
parameter is memory which comes from a single source – the
number bits stored at each graph node.

Dynamic Amnesiac Flooding. Let the message θi be initially
positioned on node vi in the beginning of round ri ≥ 1. Node
vi sends θi to all its neighbors at round ri. At round ri+1 and
after, it is done as follows. Let N(v) be the set of all neighbors
of a node v ∈ V . Let Nl,j(v) be the set of neighbors of v from
which v receives message θj in the beginning of round rl.

Definition 1 (partial-send). Suppose a node v receives mes-
sages from its neighbors in the beginning of round rl ≥ 2. Let
the message θj be such that Nl,j(v) 6= ∅. Then, at the end of
round rl, v sends θj to all its neighbors N(v)\∪h≥1Nl,h(v).
In case of multiple messages satisfy that Nl,j(v) 6= ∅, pick
arbitrarily one among them.

Definition 2 (ranked full-send). Suppose a node v receives
messages from its neighbors in the beginning of round rl ≥ 2.
Let the rank of each message θi be rank(θi). Let the message
θj be the largest ranked message such that Nl,j(v) 6= ∅.
Then, at the end of round rl, v sends θj to all its neighbors
N(v)\Nl,j(v).

Definition 3 (unranked full-send). Suppose a node v receives
messages from its neighbors in round rl ≥ 2. Let the message
θj be such that Nl,j(v) 6= ∅. Then, in round rl, v sends θj to
all its neighbors N(v)\Nl,j(v). In case of multiple messages
satisfy that Nl,j(v) 6= ∅, pick arbitrarily one among them.

III. UNRANKED FULL-SEND ALGORITHM

We describe an algorithm that solves unranked full-send
problem provided that the diameter D of graph G is known to
the nodes. Note that the algorithm works even if a finite upper
bound on D or number of nodes n is known, but for simplicity
we assume that D is known. Consider a set Θ = {θ1, . . . , θk}
of k messages positioned initially arbitrarily on the nodes of
graph G in the beginning of round 1; we discuss later how to
deal with the case of messages initiating at different rounds
r ≥ 1. Suppose, w.l.o.g. the messages have unique integer IDs,
which may not be consecutive and the smallest ID need not
be 1. The message with largest ID is called the k-th ranked or
the largest message and denoted by θk. Similarly, the message
with smallest ID is called the 1st ranked or the smallest
message and denoted by θ1. Message θi ∈ Θ, 1 ≤ i ≤ k, is
called the i-th ranked message, meaning that there are exactly
i − 1 other messages in Θ ranked smaller than θi. If we say
θ then it can be any message in Θ.

The pseudocode is given in Algorithm 1. Consider a (global)
i-th ranked message θi ∈ Θ. θi ∈ Θ does not know that it has
(unique) global rank i among the messages in Θ. Therefore,
a major challenge in Algorithm 1 is how θi correctly finds its
(global) rank i, so that it can finish flooding applying single-
message algorithm of Hussak and Trehan [9].

Algorithm 1 uses the concept of local rank for each message
θi ∈ Θ to be able to eventually find its global rank i. The local
rank for θi at any round r ≥ 1 is computed as follows. Suppose
θi is positioned at node w at round r. Let Θr(w) ⊆ Θ denote
the messages in Θ that are on node w at round r. If θi is j-th
largest (w.r.t. ID) among the messages in Θr(w), then its local
rank at w at round r is j.

We start the discussion of the algorithm with what happens
in the first round r = 1. At round r = 1, θi computes its
local rank and sets its wait time wait(θi) = (j − 1) · (2D +
1) + 1, proportional to its local rank j. Since rank j is local
for θi at node w, j may be smaller than i (i.e., j may not
represent the (global) rank i for θi). The implication is that
wait(θi) at round 1 may get updated later depending on the
other messages of Θ that θi gets aware during the execution
of Algorithm 1. It is interesting to note also that each update
on wait(θi) increases its value by an additive factor κ · (2D+
1), κ ≥ 1, which will be more clear as we proceed with the
algorithm discussion in the following.

Algorithm 1: Unranked full-send (for message θi ∈ Θ
at some node w ∈ G)

1 if r = 1 then
2 j ← rank of θi among the messages on the node w;
3 wait(θi)← (j − 1) · (2D + 1) + 1;

4 for 2 ≤ r < wait(θi) do
5 j ← rank of θi at w at r;
6 if j > 1 then
7 θ ← 1-st ranked message at w at r;
8 if (r mod (2D + 1)) = 0 then
9 if wait(θ) > r then

10 wait(θi)← r + (j − 1) · (2D + 1) + 1;

11 if wait(θ) < r then
12 wait(θi)← r + (j − 2) · (2D + 1) + 1;

13 if (r mod (2D + 1)) 6= 0 then
14 if wait(θ) > r then
15 wait(θi)← r − (r

mod (2D + 1)) + j · (2D + 1) + 1;

16 if wait(θ) < r then
17 wait(θi)← r − (r

mod (2D + 1)) + (j − 1) · (2D + 1) + 1;

18 if r = wait(θi) and the edge set Ein
i,wait(θi)

= ∅ then
19 j ← rank of θi at w at r;
20 if j > 1 then
21 wait(θi)← r − 1 + (j − 1) · (2D + 1) + 1;

22 else
23 run the algorithm of Hussak and Trehan [9];
24 if θi meets some other message θ at some node w in any

round wait(θi) + 1 ≤ r < wait(θi) + (2D + 1) then
25 j ← rank of θi at w;
26 if j > 1 then
27 if (r mod (2D + 1)) = 0 then
28 wait(θi)← r + (j − 2) · (2D + 1) + 1;

29 if (r mod (2D + 1)) 6= 0 then
30 wait(θi)← r − (r

mod (2D + 1)) + (j − 1) · (2D + 1) + 1;

31 stop the algorithm of Hussak and Trehan [9] and
set the edge set Eini,r ← ∅;

32 if θi meets a copy of itself, say θi,c, at some node w in any
round wait(θi) + 2 ≤ r ≤ wait(θi) + (2D + 1) then

33 if wait(θi,c) > wait(θi) then
34 stop the algorithm of Hussak and Trehan [9] and

set the edge set Eini,r ← ∅;
35 merge with θi,c and act as the same message θi;

36 if r = wait(θi) + (2D + 1) + 1 and θi has ther edge set
Ein
i,wait(θi)+(2D+1)+1

(w) 6= ∅ then
37 Set ther edge set Ein

i,wait(θi)+(2D+1)+1
(w)← ∅;

38 j ← rank of θi at w at r;
39 wait(θi)← r − 1 + (j − 1) · (2D + 1) + 1;
40 if r − wait(θi) = 0 then execute Lines 18-35;

Let Θγ
r denotes the γ number of messages that are on the

nodes of G at some round r. In the initial configuration, the
messages in Θγ

1 were on γ ≤ k different nodes of G. Denote
the γ message set, 1 message per node, by Θγ

1 . In round r = 1,
only the messages in the set Θγ

1 will have their local rank
j = 1. Each message θi ∈ Θγ

1 sets its wait time wait(θi) =
(j−1)·(2D+1)+1, which is 1, in round r = 1. Each message

θi ∈ Θγ
1 starts flooding using the algorithm of Hussak and

Trehan [9] in round r = 1 as wait(θi) = r = 1.
It is immediate that only the messages in Θγ

1 run the
flooding algorithm from round r = 1 until r = (2D + 1)
because any message θ ∈ Θ \Θγ

1 has its wait time wait(θ) ≥
(2D+1)+1. Therefore, we now discuss all possible situations
for the messages in Θγ

1 from round r = 2 until round
r = (2D + 1). We need a notion of meeting.

Definition 4 (meeting). We say that a meeting happens
between two messages θi, θj in a round r ≥ 2 when either

i. both θi, θj enter the empty node w ∈ G at the end of
round r − 1 or

ii. θi (or θj) enters a node w ∈ G where θj (or θi) is
positioned at the end of round r − 1.

It is immediate from the algorithm of [9] that if a meeting
does not happen for a message θi ∈ Θγ

r in all the rounds from
r = 2 until r = (2D+1) (inclusive), θi finishes flooding. Note
that meeting cannot happen in round r = 1 as the flooding
starts at that round. However, there may be the case that at
least a meeting happens at some round 2 ≤ r ≤ (2D + 1)
for message θi ∈ Θγ

1 . We now discuss the execution scenario
in all the rounds 2 ≤ r ≤ (2D + 1) for a message θi. We
consider four cases:

Case (a): θi ∈ Θγ
1 and it meets (at least) one other message

in Θγ
1 but no message in Θ \ Θγ

1 at some node w ∈ G in
round 2 ≤ r ≤ (2D + 1): All the messages at w that θi

meets (including θi) at round r have the same waiting time of
1. θi computes its local rank at w at round r. If θi has rank
j = 1, it continues with the algorithm of Hussak and Trehan
[9]. Otherwise, θi starts to wait at w starting from round r
setting its wait time wait(θi) as follows. Suppose θi has rank
j > 1 among the messages at w. If r = (2D + 1), θi sets
wait(θl) = r+ (j−2) · (2D+ 1) + 1, otherwise (r < 2D+ 1)
θi sets wait(θl) = r−(r mod (2D+1))+(j−1)·(2D+1)+1.
Lines 24-31 of Algorithm 1 illustrates this case.

Case (b): θi ∈ Θγ
1 and it meets (at least) one other message

in Θ \Θγ
1 but no message in Θγ

1 at some node w in round
2 ≤ r ≤ 2D + 1: message θi ∈ Θγ

1 that met message θl

can easily figure out that whether θl is in Θ \ Θγ
1 or in Θγ

1 .
The main reason is that if θl ∈ Θ \ Θγ

1 then wait(θl) ≥
wait(θi)+(2D+1) but if θl ∈ Θγ

1 then wait(θl) = wait(θi).
If θi is ranked j = 1, it continues with the algorithm of Hussak
and Trehan [9]. Otherwise, θi starts to wait at w starting from
round r setting its wait time wait(θi) as follows. Suppose θi

has rank j > 1 among the messages in w. If r = (2D+ 1), θi

sets wait(θi) = r+(j−2)·(2D+1)+1, otherwise (r < 2D+1)
θi sets wait(θl) = r−(r mod (2D+1))+(j−1)·(2D+1)+1.
Lines 24-31 of Algorithm 1 illustrates this case.

Case (c): θi ∈ Θγ
r and it meets at least one message in

Θγ
1 and at least one message in Θ \ Θγ

1 at some node w
in some round 2 ≤ r ≤ (2D + 1): This is the combination
scenario of the cases (a) and (b) where we dealt with these
scenarios separately. If θi is ranked j = 1, then θi continues

with the algorithm of Hussak and Trehan [9]. If θi is ranked
j > 1, θi waits at w as follows. If r = (2D + 1), θi sets
wait(θi) = r+ (j−2) · (2D+ 1) + 1, otherwise (r < 2D+ 1)
θi sets wait(θl) = r−(r mod (2D+1))+(j−1)·(2D+1)+1.
Lines 24-31 of Algorithm 1 illustrates this case.

Case (d): θi ∈ Θ \ Θγ
r (waiting at some node w) and it

meets at least one message in Θγ
1 in some round 2 ≤

r ≤ (2D + 1): Suppose θi meets exactly one message θ ∈
Θγ

1 at round 2 ≤ r ≤ (2D + 1). Since θi is waiting at w,
wait(θi) ≥ wait(θ) + (2D + 1). Furthermore, θ is running
the algorithm of Hussak and Trehan [9]. Therefore, θi does
nothing. Now suppose θi meets two or more messages in Θγ

1 .
All the messages in Θγ

1 that θi met at w (except the lowest
ranked one in Θγ

1) start to wait at w (Case (c) handles what
a message in Θγ

1 does at w). Therefore, suppose θi is ranked
j > 1 among the messages at w. Note that θi cannot be ranked
j = 1 at w since it is waiting at w. Let θ 6= θi be the message
at w with rank j = 1. θi sets its wait time depending on
whether θ belong to Θγ

1 or Θ \Θγ
1 .

Consider the case where θ belongs to Θγ
1 (i.e., wait(θ) < r).

If r = (2D+1), θi sets wait(θi) = r+(j−2)·(2D+1)+1, but
if r 6= (2D+ 1), then θi sets wait(θi) = r− (r mod (2D+
1)) + (j − 1) · (2D + 1) + 1.

Consider the case where θ belongs to Θ\Θγ
1 (i.e., wait(θ) >

r). If r = (2D + 1), θi sets wait(θi) = r + (j − 1) · (2D +
1) + 1, but if r 6= (2D + 1), then θi sets wait(θi) = r − (r
mod (2D + 1)) + j · (2D + 1) + 1. Lines 4–17 of Algorithm
1 illustrate this case. There are two additional situations θi

may need to deal with in some round 2 ≤ r ≤ (2D + 1) if it
belongs to Θγ

1 , which we discuss below.
If θi ∈ Θγ

1 and starts waiting at node w at round 2 ≤ r ≤
2D + 1: θi clears at that round r the information about the
edges in the set Eini,r(w); Eini,r(w) denotes the set of adjacent
edges of w from which θi entered w in the beginning of round
r.
If θi ∈ Θγ

1 and finds (at least) a copy of itself, say θi,c at
node w at some round 2 ≤ r ≤ 2D + 1: If a copy θi,c of
θi has wait(θi,c) > wait(θi), then that copy θi,c must have
reached w prior to θi in some round 2 ≤ t ≤ r−1 and it is now
waiting at w since one of the cases (a), (b) or (c) applied to θi,c

at round t. θi stops the algorithm of Hussak and Trehan [9],
clears the information about Eini,r(w), and merges with θi,c so
that the both copies act as a single message θi. However, if all
the copies of θi have same wait(θi), they must have reached
w in the beginning of round r. They act as a single copy and
proceed with cases (a), (b), or (c) for the rank calculation and
decision on whether to wait at w or to continue flooding.

The discussion so far captures all possible situations for θi

in any round 1 ≤ r ≤ (2D+ 1). We will show in our analysis
that if θi is globally ranked 1st then it will finish flooding
by round 2D + 1. Furthermore, we will show in the analysis
that no message in the set Θ \Θγ

r=1 (messages that were not
ranked j = 1 at round r = 1) runs the flooding algorithm of
[9] in any round r ≤ (2D + 1).

Let Θγ′

1 be the messages in the set Θγ
1 that started flooding

at round r = 1 but could not finish flooding by round 2D+ 1
(they either started waiting at some round 1 < r ≤ (2D + 1)

or still running the algorithm). We have that |Θγ′

1 | ≤ |Θ
γ
1 |−1.

Furthermore, Θγ′

1 can be divided into two sets Θγ′

1,w and Θγ′

1,nt,
where Θγ′

1,w ⊂ Θγ
1 are the messages that started flooding at

round r = 1 but switched to waiting at some round 2 ≤
r ≤ (2D + 1), and Θγ′

1,nt ⊂ Θγ
1 are the messages that started

flooding at round r = 1 but their flooding did not finish by
round r = (2D + 1). Let

Θ2D+1+1 := Θγ′

1 ∪ {Θ \Θγ
1} = Θ \ {Θγ

1 \Θγ′

1 } ⊂ Θ.

Note that Θ2D+1+1 has all the messages in Θ except the
ones finished flooding by round 2D + 1. In the worst-case,
Θ2D+1+1 = Θ\{θ1}. The goal is to go back to configuration
similar to round r = 1 in round r = (2D + 1) + 1 for the
messages in Θ2D+1+1. We would like to guarantee that a fresh
new flooding can be started for the messages in Θ2D+1+1 in
round r = (2D + 1) + 1. However, the messages in the set
Θγ′

1,nt ⊂ Θγ
1 have not finished flooding yet. To deal with this

issue, before starting the flooding at round (2D + 1) + 1, for
each message θi ∈ Θγ′

1,nt, it is asked to perform the following
two steps one after another (Lines 36–40 of Algorithm 1
handle this case).
(i) θi stops its flooding process, and clears the information

about Eini,2D+1+1(w), the adjacent edges of w from which
it entered w in the beginning of round 2D + 1 + 1. θi

can easily figure out at round r = (2D + 1) + 1 that it
belongs to Θγ′

1,nt, since it must have wait time wait(θi) =
r − (2D + 1) and Eini,2D+1+1(w) 6= ∅.

(ii) θi calculates its local rank j among the messages in w. θi

sets its wait time wait(θi)← r−1+(j−1)·(2D+1)+1;
note that r = (2D + 1) + 1.

Suppose θi /∈ Θγ′

1,nt and wait(θi) = (2D+1)+1. θi should
be able to run the algorithm of [9] at round r = (2D+1)+1.
However, some other message θj ∈ Θγ′

1,nt may happen to be
on the same node w where θi is positioned on round r =
(2D + 1) + 1. If θj is ranked j = 1 on w, θi must not start
flooding and wait further. Therefore, if wait(θi) = (2D +
1)+1, then θi checks its local rank at w. If it is ranked j > 1
on w at round (2D + 1) + 1 then it updates its wait time
wait(θi) = r − 1 + (j − 1) · (2D + 1) + 1 and waits further
on w (Lines 18–21 of Algorithm 1 handle this case). After all
this, if θi ∈ Θ2D+1+1, wait(θ) ≥ κ · (2D + 1), with k ≥ 1.

Let Θφ
2D+1+1 be the messages in the set Θ2D+1+1 that

are locally 1-th ranked in the nodes of G, i.e., Θφ
2D+1+1 ⊆

Θ2D+1+1. Θφ
2D+1+1 are the messages with wait time ex-

actly 2D + 1 (exactly one per non-empty node of G). If
θi ∈ Θ2D+1+1 \ Θφ

2D+1+1, then it does not start flooding
from r = (2D + 1) + 1 until r = 2 · (2D + 1). Therefore,
we now discuss what happens from r = (2D + 1) + 1 until
r = 2 · (2D + 1) for θi when θi ∈ Θφ

2D+1+1. θi starts
the flooding algorithm of Hussak and Trehan [9] in round
r = (2D + 1) + 1. We can again consider four cases for θi

from round (2D+1)+2 ≤ r ≤ 2 ·(2D+1). Note that θi does

not meet any other message at r = (2D+ 1) + 1 since all the
messages in Θφ

2D+1+1 start flooding at r = (2D+1)+1. The
techniques discussed for cases (a), (b), (c), or (d) for 2 ≤ r ≤
(2D + 1) apply to θi for (2D + 1) + 2 ≤ r ≤ 2 · (2D + 1).
Therefore, if θi is the globally 2-nd ranked message in Θ, it
will finish flooding by r = 2 · (2D + 1).

At round r = 2 ·(2D+1)+1, we have configuration similar
to r = (2D + 1) + 1. Let Θ2·(2D+1)+1 be the messages in Θ
except ones finished flooding by round r = 2 · (2D + 1). In
the worst-case, Θ2·(2D+1)+1 = Θ \ {θ1, θ2}, as the globally
2-nd ranked message θ2 finishes flooding by r = 2 · (2D+1).
If θi ∈ Θ2·(2D+1)+1, it performs the steps similar to r =
(2D + 1) + 1 and either start flooding using the algorithm of
[9] or start waiting further updating wait(θi).

Thus, at any round r = κ · (2D + 1), κ ≥ 0, κ messages
from the set Θ of k messages globally ranked 1 to κ finish
flooding. The globally ranked κ+1 to k messages in Θ either
start flooding at round r = κ · (2D + 1) + 1 or wait until
r = κ′ · (2D + 1) + 1, where κ < κ′ < k − 1 and finish
flooding by r = (κ′ + 1) · (2D + 1).

A. Analysis of the Algorithm

We now analyze Algorithm 1 for its correctness, termination
time (number of rounds), and memory requirement (number
of bits). We start with the following lemma.

Lemma 1. At any round r ≥ 1, the wait time for message
θi ∈ Θ is wait(θi) = κ · (2D + 1) + 1 with κ ≥ 0.

Proof. At round 1, each message θi ∈ Θ positioned on some
node w ∈ G is assigned wait(θi) = (j − 1) · (2D + 1) + 1,
where j is the rank of θi among the messages Θ(w) on w.
This wait(θi) is equal to κ · (2D+1)+1 for κ = (j−1) ≥ 0.

Now consider wait(θi) at any round r > 1. The wait time
for θi at round r > 1 is again wait(θi) = r− (r mod (2D+
1)) + (j−1) · (2D+ 1) + 1. We have that r− (r mod (2D+
1)) = κ′ · (2D+ 1), with an integer κ′ ≥ 1. Thus, wait(θi) =
r−r mod (2D+1)+(j−1)·(2D+1)+1 = κ′·(2D+1)+(j−
1)·(2D+1)+1 = (κ′+j−1)·(2D+1)+1 = κ·(2D+1)+1,
where κ = κ′ + (j − 1).

Lemma 2. If message θi ∈ Θ starts flooding then that round
is κ · (2D + 1) + 1 with κ ≥ 0.

Proof. Consider any message θi ∈ Θ. Suppose θi is positioned
on node w ∈ G. Let Θ(w) be the messages positioned on w;
since θi ∈ Θ(w), |Θ(w)| ≥ 1. At round r = 1, θi starts
flooding from node w if it is the ‘locally’ 1-ranked message
in the set Θ(w). In this case wait(θi) = κ · (2D + 1) + 1
with κ = 0, otherwise, wait(θi) = κ · (2D + 1) + 1 with
κ ≥ 1. Suppose θi reaches to some node x in round r = 2.
If θi is ‘locally’ 1-ranked among all the messages Θ(x) on
x, then it continues flooding from node x. However, if θi is
not the ‘locally’ 1-st ranked message at node x, θi updates its
wait time such that the updated wait time wait(θi) = r − r
mod (2D+1)+(j−1)·(2D+1)+1 = κ′′ ·(2D+1)+(j−1)·
(2D+1)+1 = (κ′′+ j−1) · (2D+1) = κ′ · (2D+1)+1 for
κ′ = κ′′+ j−1, since r− (r mod (2D+1)) = κ′′ · (2D+1)

for any r ≥ 1. Therefore, message θi always starts its flooding
process at round κ · (2D + 1) + 1 with κ ≥ 0.

Lemma 3. For any κ ≥ 0, consider a subset Θκ·(2D+1)+1 ⊆
Θ of messages that start flooding at round r = κ · (2D+ 1) +
1. At least a message in Θκ·(2D+1)+1 finishes flooding and
terminates by round r = (κ+ 1) · (2D + 1).

Proof. Let θ1 be the 1-st ranked message in Θ. We first show
that, in round 1, θ1 ∈ Θ1 (for κ = 0, κ·(2D+1)+1 = 1). The
argument is as follows: Let w ∈ G be the node where message
θ1 is positioned in the initial configuration and hence in round
1. θ1 will be ‘locally’ ranked 1-st among the messages on node
w in round 1 because its global rank in Θ and its local rank
on node w match. Therefore, θ1 ∈ Θ1.

We would like to show that θ1 finishes flooding by round
r = (κ + 1) · (2D + 1) = (2D + 1). The proof is immediate
if θ1 does not meet any other message in Θ in all the rounds
2 ≤ r ≤ (2D+1) from the termination proof of the algorithm
of Hussak and Trehan [9]. However, even if θ1 meets other
messages at some node x at some round r, the local rank of θ1

at node x remains 1 among the messages in Θ(x). Therefore,
θ1 will run the flooding process uninterruptedly. The flooding
of the messages in Θ1 that were interrupted in 2 ≤ r ≤ (2D+
1) cannot start their new flooding process in any round r <
(2D + 1) + 1 since their updated wait time becomes at least
(2D + 1) + 1.

Let Θ(2D+1)+1 ⊂ Θ (for κ = 1) be the messages in Θ
that start flooding at r = (2D + 1) + 1. Let θ2 be the 2-
ranked message in Θ. It is easy to prove similar to θ1 that
θ2 ∈ Θ(2D+1)+1 and θ2 is the lowest ranked message among
the messages in Θ that have not finished their flooding by
r ≤ (2D+ 1). Therefore, θ2 floods uninterruptedly starting at
r = (2D + 1) + 1 and finishes by r = 2 · (2D + 1).

Furthermore, at round r = (2D + 1) + 1, if θ2 is at
only a single node of G, then the proof of the algorithm of
Hussak and Trehan [9] provides correctness of flooding and
termination by r = 2 ·(2D+1). However, at r = (2D+1)+1,
if θ2 is at two or more nodes of G, then it must locally 1st
ranked at all the nodes it is positioned. θ2 starts flooding from
round r = (2D + 1) + 1 concurrently from all the nodes it is
positioned. Hussak and Trehan [10] recently showed that θ2

finishes flooding and terminates in time ≤ (2D + 1) rounds,
even when starting from multiple nodes. Therefore, θ2 finishes
flooding and terminates by r = 2 · (2D+ 1) in our algorithm.

Arguing similarly, Θ(i−1)·(2D+1)+1 ⊂ Θ be the messages in
Θ that start flooding at round r = (i−1)·(2D+1)+1. The i-th
ranked message θi ∈ Θ becomes the 1-st ranked message in
Θ(i−1)·(2D+1)+1 (with κ = (i− 1)) to start flooding at round
r = (i− 1) · (2D+ 1) + 1 and finishes its flooding process by
round r = i · (2D + 1).

Lemma 4. Let message θi ∈ Θ sets (or updates) its wait time
wait(θi) at round r ≥ 1. If θi is positioned on node w ∈ G
at round r, it will be on w until round r = wait(θi).

Proof. Suppose θi starts waiting at node w at round t ≥ 1. It
is immediate from Algorithm 1 that θi does not start flooding

in any round from r = t to r = wait(θi). Furthermore, except
in flooding, θi does not leave the node it is positioned.

Lemma 5. Consider message θi ∈ Θ with (global) rank i ≥ 1.
If θi sets wait(θi) = (i− 1) · (2D + 1) + 1 in round 1, then
wait(θi) never gets updated.

Proof is omitted due to space constraints.

Lemma 6. Consider message θi ∈ Θ with (global) rank is
i ≥ 1, wait(θi) never grows more than (i− 1) · (2D+ 1) + 1.

Proof is omitted due to space constraints.

Lemma 7. If message θ ∈ Θ starts flooding at round t =
(κ− 1) · (2D + 1) + 1 for some κ ≥ 0 but does not finish its
flooding process by round t+ (2D + 1) then

• θ has global rank > κ in Θ.
• At least one copy of θ, say θc, must be positioned on some

node w ∈ G with wait(θc) ≥ t+ ` · (2D+ 1) + 1, ` ≥ 1.

Proof. If message θ starts flooding at round t = (κ − 1) ·
(2D+ 1) + 1 and θ is κ-ranked among the messages in Θ, it
will finish flooding by t+ (2D+ 1). Therefore, if θ does not
finish flooding by t+ (2D + 1), then it must be the case that
θ is the κ′-ranked among the messages in Θ with κ′ > κ.

Note also that if θ starts flooding at round t = (κ − 1) ·
(2D+1)+1 and θ is κ-ranked among the messages in Θ, then
its flooding never gets interrupted by the meeting of any other
message in Θ in all the rounds t+1 upto t+(2D+1). Since θ
is κ′ > κ ranked, when it is interrupted at some node w with
< κ′-ranked message, it will stay at w. Due to this interruption,
the other copies, even if run uninterrupted the flooding for
t + (2D + 1), some of them may not enter a particular node
at the same round and they may not terminate.

Lemma 8. Suppose message θ that is globally κ-ranked starts
flooding at round t = (` − 1) · (2D + 1) + 1, with ` < κ
and becomes unsuccessful in finishing its flooding by round
t+ (2D+ 1). The unsuccessful flooding process of θ does not
interrupt the flooding process of other messages ranked δ < κ.
Furthermore, there can be at most (κ−`) unsuccessful flooding
attempts by θ before it eventually becomes successful when it
starts it flooding at round t = (κ− 1) · (2D + 1) + 1.

Proof. If θ is globally κ-ranked and starts its flooding at round
t = (κ − 1) · (2D + 1) + 1, then from Lemmas 5 and 6, θ
finishes flooding by round t+ (2D+ 1). Therefore, if θ starts
flooding at round t = (`− 1) · (2D+ 1), then there are κ− `
messages ranked between ` and κ and they may interrupt the
flooding of κ every time κ performs flooding.

Theorem 2. Given any initial configuration of a set Θ =
{θ1, . . . , θk} of k messages positioned on the nodes of an
arbitrary graph G in the beginning of round 1, Algorithm 1
solves flooding in k · (2D+ 1) rounds, given that nodes know
D with messages being oblivious to their global ranks.

Proof. The proof follows combining Lemmas 1–8.

B. The Case of Messages Initiated at Different Rounds

Note that Algorithm 1 considers all k > 1 messages initiated
in the beginning of round 1. We describe here how Algorithm
1 applies to the case of messages initiated at any round r ≥ 1.
We assume that at least a message is initiated at round 1. If
this is not the case, we can start Algorithm 1 starting from
the round the first message in Θ is initiated. We also assume
that at least a new message is initiated within the interval of
(2D + 1) rounds, otherwise Algorithm 1 will be idle with no
message to flood after (2D+1) rounds of the current message
until a new message is initiated.

Suppose θi ∈ Θ be the message that is initiated at round 1
and θj ∈ Θ be the another message initiated at some round
1 ≤ r ≤ (2D + 1) + 1. If θi has rank lower than θj , then the
flooding of θi will not be interrupted by θj and θi finishes
flooding by round r = (2D + 1). However, if θi has rank
higher than θj then the flooding of θi may be interrupted by
θj . Since there are k messages, the flooding of a message that
is initiated at round r = 1 may be interrupted k−1 times due
to the arrival of a new message within at most r + (2D + 1)
rounds each after the arrival of that message at round r. The
flooding of a message that arrives from round r = 2 until
round r = (2D + 1) + 1 will be interrupted by at most k − 2
other messages, the flooding of a message that arrives from
round r = (2D + 1) + 2 up to r = 2 · (2D + 1) + 1 will
be interrupted by k− 3 other messages, and so on. Therefore,
in the worst-case, no message terminates flooding by round
(k− 1) · (2D+ 1) + 1. Interestingly, by round (k− 1) · (2D+
1) + 1, all k messages are initiated in the system. Therefore,
the configuration at round (k − 1) · (2D + 1) + 1 resembles
configuration of Algorithm 1 with all messages initiated at
round r = 1. Therefore, Algorithm 1 applies starting from
round (k − 1) · (2D + 1) + 1 onwards and all k messages
terminate flooding in next k ·(2D+1) rounds. This gives total
k− 1 · (2D+ 1) + k · (2D+ 1) = (2k− 1) · (2D+ 1) rounds.
All other cases are subsumed by the above worse-case. We
summarize the results in the following theorem.

Theorem 3. Given any initial configuration of a set Θ =
{θ1, . . . , θk} of k messages initiated on the nodes of an
arbitrary graph G in possibly different rounds, Algorithm 1
solves flooding in (2k−1) · (2D+1) rounds, given that nodes
know D with messages being oblivious to their global ranks.

Remark: The above approach can handle the continuous
case of newly generated stream of messages, removing our
assumption of all k messages be generated within round
(k − 1) · (2D + 1) + 1 as long as the messages generated
later in the stream have higher IDs then the previously gen-
erated messages. In other words, message IDs increase with
increasing initiation time. Theorem 3 considers worst-case of
message IDs decrease with increasing initiation time.

Proof of Theorem 1: For arbitrary (non-bipartite) graphs, we
have Theorem 1 combining the results of Theorems 2 and 3.
If G is bipartite, Hussak and Trehan [10] proved that a single
message starting concurrently from possibly multiple source

nodes finishes flooding in D rounds. Therefore, we can modify
Algorithm 1 replacing all occurrences of (2D + 1) with D,
which immediately proofs (2k − 1) · D rounds for bipartite
graphs. Regarding memory requirement, knowing D requires
to store dlogDe bits and knowing wait time requires at most
dlog((2k−1) · (2D+1))e = O(log k+logD) bits. Therefore,
each node needs to store in total O(log(max{k,D})) bits,
combining the bits for D and wait time.

IV. CONCLUDING REMARKS

In this paper, we have considered dynamic amnesiac flood-
ing of k > 1 messages initiated at possibly different rounds
from possibly multiple source nodes. Hussak and Trehan [10]
showed that the partial-send and ranked full-send variations
terminate and the unranked full-send variation does not ter-
minate. We have shown that the unranked full-send variation
also terminates, provided that the graph nodes know diameter
D. Our algorithm uses a non-trivial distributed technique of
computing global rank for each message based on its local
rank, so that the message with global rank i finishes flooding
in time proportional to i · (2D + 1) in arbitrary graphs (i ·D
in bipartite graphs). For future work, it will be interesting to
improve termination time to O(D + k) rounds.

REFERENCES

[1] M. Ahmadi, F. Kuhn, S. Kutten, A. R. Molla, and G. Pandurangan. The
communication cost of information spreading in dynamic networks. In
ICDCS, pages 368–378, 2019.

[2] H. Attiya and J. L. Welch. Distributed computing - fundamentals,
simulations, and advanced topics (2. ed.). Wiley, 2004.

[3] M. Borokhovich, C. Avin, and Z. Lotker. Tight bounds for algebraic
gossip on graphs. In IEEE ISIT, pages 1758–1762, 2010.

[4] J. Chen and G. Pandurangan. Almost-optimal gossip-based aggregate
computation. SIAM J. Comput., 41(3):455–483, 2012.

[5] B. Doerr, M. Fouz, and T. Friedrich. Social networks spread rumors in
sublogarithmic time. In STOC, page 21–30, 2011.

[6] R. Elsässer and T. Sauerwald. The power of memory in randomized
broadcasting. In SODA, pages 218–227, 2008.

[7] M. Ghaffari and J. Li. Improved distributed algorithms for exact shortest
paths. In STOC, pages 431–444, 2018.

[8] S. Holzer and R. Wattenhofer. Optimal distributed all pairs shortest
paths and applications. In PODC, pages 355–364, 2012.

[9] W. Hussak and A. Trehan. On the termination of flooding. In STACS,
pages 17:1–17:13, 2020.

[10] W. Hussak and A. Trehan. Terminating cases of flooding. CoRR,
abs/2009.05776, 2020.

[11] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan. On
the complexity of universal leader election. J. ACM, 62(1):7:1–7:27,
2015.

[12] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan.
Sublinear bounds for randomized leader election. Theor. Comput. Sci.,
561:134–143, 2015.

[13] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1996.

[14] A. Rahman, W. Olesinski, and P. Gburzynski. Controlled flooding in
wireless ad-hoc networks. In International Workshop on Wireless Ad-
Hoc Networks, 2004., pages 73–78, 2004.

[15] A. S. Tanenbaum and D. J. Wetherall. Computer Networks. Prentice
Hall Press, USA, 5th edition, 2010.

[16] V. Turau. Analysis of amnesiac flooding. CoRR, abs/2002.10752, 2020.
[17] V. Turau. Stateless information dissemination algorithms. In SIROCCO,

pages 183–199, 2020.
[18] V. Turau. Amnesiac flooding: Synchronous stateless information dis-

semination. In SOFSEM, pages 59–73, 2021.
[19] V. Turau. Synchronous concurrent broadcasts for intermittent channels

with bounded capacities. In SIROCCO, pages 296–312, 2021.

