

Efficient Taxi and Passenger Searching in Smart City using Distributed

Coordination

Anmol Agrawal

Dept. of CSE

IIT Roorkee

Roorkee, India

anmol.agrawal17@gmail.com

Vaskar Raychoudhury

Dept. of CSE

Miami University

Oxford, OH, USA

vaskar@ieee.org

Divya Saxena

Dept. of Computing

The Hong Kong PolyU

Kowloon, Hong Kong

divya.saxena.2015@ieee.org

Ajay D Kshemkalyani

Dept. of CSE

Univ. of Illinois at Chicago

Chicago, IL, USA

ajay@uic.edu

Abstract— Taxicabs are an important element of urban

public transportation. Taxicabs either cruise through city

streets in search of passengers or wait at several hotspots (like

airports, rail stations, malls, stadiums, taxi stands, etc). Cruising

by empty Taxis increases city traffic and carbon footprint while

reducing net profit. Alternatively, there might be places where

passengers are waiting long for taxis. In order to improve

coordination between taxis and passengers with a view to

decrease passenger waiting time and to increase taxi profits, we

propose a taxi selection algorithm (TSA) as well as a hotspot

recommendation approach (HRA). While the proposed TSA

achieves its objective through distributed coordination among

the participating taxis and passengers, the HRA uses a clustering

approach over a large-scale taxi dataset to pin-point hotspots.

The main contribution of this paper lies in extensive

experimentation using large-scale taxi dataset of SFO to show

that the TSA outperforms existing taxi selection algorithms by

finding a taxi which can reach the passenger in minimum time

with up to 97.59% accuracy. We also evaluate the HRA using

another taxi dataset from NYC which shows that 60% of the

times, a taxi will get a passenger following our recommendation

scheme.

Keywords—Taxi Selection; Hotspot Recommendation; Smart

Transportation; Distributed Coordination; Data Analysis

I. INTRODUCTION

Taxicabs provide passengers a comfortable and faster
mode of transport with pickups and drop offs at desired place
and time. Although there are significant demands of taxis at
airports, train stations and stadiums (during matches), it is not
hard to find empty taxis in stands (called, waiting) or
ploughing city streets (called, cruising) in search of
passengers. Many a times, passengers wait for long at
designated sites for taxis to arrive. So, in efficient taxi service
provisioning, the critical underlying challenge lies in
connecting a waiting passenger with a waiting / cruising taxi
with minimum possible delay. This challenge emanates from
the goal to select the taxi, which can reach the passenger
location in shortest time, and this is not possible, if any
random taxi is selected. This can reduce waiting time for
passenger and waiting / cruising time for taxis. Moreover, it
can reduce fuel consumption and traffic congestion (resulting
from low-speed cruising) both of which have monetary as well
as environmental significance. Also, finding a passenger more
efficiently will increase the profit of taxi drivers by increasing
overall taxi occupancy time.

According to our analysis done on GPS traces of 535 taxis
in San Francisco [7] for a period of 22 days, it can be seen

that most of the distance travelled by taxis is while cruising.
Fig. 1(a) shows the ratio of distance travelled by taxis while
it was occupied (i.e., carrying passenger) to the total distance
they travelled in the day. The average ratio is 0.56, which is
quite low. This means that half of the distance is cruising,
which directly reduces their profit. Fig. 1(b) shows the Taxi
occupancy rate (ratio of the time a taxi is occupied to the total
time it was on the street) which also peaks only at 0.53.

(a) Distance Ratio of Taxis in

SFO

(b) Occupancy Rate of Taxis in

SFO

Fig. 1. Preliminary Taxi Data Analysis

In this paper, we aim to address this challenge by
developing a distributed taxi searching solution for passengers
which works by localized coordination between nearby taxis
through a hop-by-hop message transfer. We further enhance
profitability of taxi drivers by recommending them nearby
locations with higher chances of finding passengers.

Researchers have proposed both centralized as well as
distributed solutions for taxi selection. Centralized taxi
dispatching solutions finds a taxi, which is nearest to the
passenger, or might take shortest time to reach [5], or by
suggesting to taxi drivers, the most probable place to get the
next passenger [10]. Some researchers used machine-learning
algorithms for finding number of vacant taxis in an area based
on day, time and weather conditions [12].

Given the scalability concern of centralized systems,
distributed taxi selection algorithms have been investigated
where passenger requests are propagated in a multi-hop
manner until a free taxi is found (or up to a certain number of
hops). One critical challenge in distributed taxi selection
approach is Blocking Time where unoccupied taxis
participating in a selection process are barred to participate in
parallel selection processes. Since, only one taxi will be
selected finally in a selection process, other unoccupied taxis
perceive this blocking period as a wastage of opportunity.
Longer the blocking period the taxi is losing profits
proportionally. EZCab [2] deploys a Probabilistic Proactive
routing protocol for selecting taxis which can reach the

2018 21st International Conference on Intelligent Transportation Systems (ITSC)
Maui, Hawaii, USA, November 4-7, 2018

978-1-7281-0323-5/18/$31.00 ©2018 IEEE 1920

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:08 UTC from IEEE Xplore. Restrictions apply.

passenger in minimum time. However, they actually find the
first free taxi assuming that it will reach the passenger in
minimum time. Also, they did not address the blocking
problem. Sheu, et al. [3] proposed a protocol for selecting a
taxi with minimum driving distance by sending replies
following the driving path. However, they did not study how
much time the selected taxi takes to reach the passenger which
determines the passenger waiting time. They also focused on
reducing taxi blocking time.

In order to increase taxi occupancy rate, taxi drivers can
be suggested best locations (called hotspots) to look for
passengers. Hotspot recommendation to taxi drivers have
been studied by many researchers by analyzing the pickup
pattern of passengers [13], by developing recommendation
systems [14] or by calculating regions generating high
revenues [15]. Some of these approaches [14][15] require
continuous GPS traces to evaluate which is costly to collect
and to process. Although the aforementioned research works
have added significant contribution to the domain, they have
not used real dataset to evaluate their proposed schemes.
Since, this is an application problem, experimenting with real
data helps us to test the system more critically.

In this paper, we have proposed a taxi selection algorithm,
called TSA, with dual purpose – (1) to select the taxi which
can reach to passenger’s location in shortest time (thereby
reduces passenger waiting time), and (2) to reduce the
blocking time of unselected taxis (to increase taxi
availability). TSA works by creating a dynamic tree overlay
on the taxi communication network with the passenger as the
root. Requests are wirelessly disseminated over the tree for
certain pre-specified number of hops. Later, the taxi
responses are collected by converge cast and the passenger
gets one or more responses among which s/he chooses one
taxi. We also proposed a hotspot recommendation scheme,
named TAR which is similar to [13]. It uses taxi trip
information (containing passenger's pickup and drop
locations and corresponding time) as well as pick up pattern
of passengers and summarily outperforms the scheme
proposed in [13]. We use Grid Clustering and K-means
Clustering algorithms to find the hotspots, and provide a
scoring scheme for suggesting a nearby hotspot to a taxi
driver. In summary, we make the following contributions in
this paper.

 We used the Google API to calculate journey time
between two locations, which is highly practical. Other
papers calculated journey time based on average taxi
speed, which does not give realistic estimates.

 We propose a distributed algorithm to select a taxi
which can reach the passengers in minimum time after
s/he fires a request. We used real taxi traces to evaluate
our algorithm and did a simulation using actual
locations of passengers and taxis which, to the best of
our knowledge, no other papers did. Using real data
gives exact scenario. Significant empirical evaluation
over San Francisco [7] taxi GPS traces shows that our
algorithm selects the taxi requiring minimum time
with up to 97.59% accuracy.

 We also propose a hotspot recommendation approach
for taxi drivers by applying data mining techniques on

the historical taxi trip dataset. Empirical evaluation
using 143.35 million trip records from New York City
(NYC) [9] Taxi GPS traces show that 60% of the
times, a taxi will find a passenger while following our
recommendation. No other prior research works used
such large data set for evaluation. Furthermore, our
experiments with the huge NYC taxi data goes to
prove the scalability of our algorithm.

II. RELATED WORKS

In this section, we shall discuss research works related to
taxi selection and hotspot recommendation to taxi drivers and
passengers.

A. Taxi Selection

Two popular methods are centralized and distributed taxi
selection and dispatching approaches. Centralized taxi
selection approaches select taxi based on its distance from the
requesting passenger or the time it takes to reach the
passenger’s location [5]. Performance improvements of taxi
selection have been achieved by more accurately locating
passengers either by providing a route to cruising taxi with
high expectation of passengers [10] or using GSM based
location detection of passengers while booking a taxi [11].
Phithakkitnukoon et al. [12], used Bayesian classifier with a
sequential error-based learning algorithm for finding number
of vacant taxis in an area based on day, time and weather
conditions. Though performing well, centralized functioning
of taxi dispatching systems are less scalable and suffer from
a bottleneck.

Distributed taxi selection works by exchanging messages
between passenger and nearby taxis using short-range
wireless communication. Zhou et al. [2], proposed an
application EZCab, which allows passengers to use mobile
phones to send a taxi-booking-request which propagates from
taxi to taxi until a free taxi is found or up to a maximum of
20 hops. The message routing protocols used in EZCab are
flooding, Probabilistic On-Demand, and Probabilistic
Proactive where the last one is found to select a taxi, which
can reach the passenger in minimum time although it is not
guaranteed. Moreover, EZCab did not provided any solution
for reducing taxi blocking time. Sheu et al. [3], proposed a
protocol for selecting a taxi with minimum driving distance
by sending replies following the driving path. So, the taxi,
from which the reply message is first received, by the
passenger, is selected. Due to different reasons, like traffic
congestion, it cannot be guaranteed that the physically nearest
taxi can reach the passenger in minimum time. They focused
on reducing taxi blocking time by sending staying (STA)
messages to the blocked taxis which increases
communication overhead. D’Orey et al. [4], proposed a
distributed taxi selection system for ride sharing, which aims
to select a taxi providing minimum trip fare. The afore-
mentioned algorithms do not provide any solution for
selecting a taxi which reaches in minimum time to
passenger’s location.

B. Taxi Recommendation Systems

Researchers analyze passenger pick up patterns to
identify top pick up points and suggest such locations to the
taxi drivers in order to improve their occupancy and
profitability. Lee et al. [13], used K-means [20] clustering to

1921

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:08 UTC from IEEE Xplore. Restrictions apply.

analyze pickup pattern of passengers across 100 clusters.
Yuan et al. [14], built a recommendation system for both taxis
and passengers using the Beijing taxi dataset, and proposed
an algorithm for finding possible parking places for empty
taxis. Powell et al. [15], developed a Spatio-Temporal
Profitability Map for taxi drivers by dividing a region into
grids and calculating profitability of a location using
historical dataset. Zhang et al. [16], have used L1 SVM for
finding (and differentiating between) efficient and inefficient
passenger searching strategies for taxi drivers and provided a
correlation between service strategies and revenues. Ge et al.
[17], proposed an energy-efficient recommendation
approach, which provides taxi drivers with a sequence of
locations such that the driving distance to get a passenger is
minimized. Moreira-Matias et al. [18], proposed an online
recommendation to choose taxi stands for taxi drivers using
time-series forecasting technique to predict spatio-temporal
distribution of passengers in real time.

While [13] used dataset containing trip information
(passengers’ pickup and drop location, and time) of taxis to
find the locations where the probability of finding a taxi is
high, other recommendation models [14][15] used
continuous and dense GPS traces which are costly to collect
and to maintain. Our recommendation model is different from
others as it uses real dataset having taxis’ trip information and
we analyze passenger pick up patterns across weekdays and
weekends considering both peak and non-peak hours in order
to decide the hotspots for both taxis and passengers.

III. PROPOSED WORK: TAXI SELECTION ALGORITHM

In this section, we present the details of our taxi selection
algorithm. Depending on whether the taxi is having passenger
or not, taxi can be in one of the following states: Occupied,
Unoccupied or Blocked. Fig. 2 shows the transition among
these taxi states. All the variables and messages used in our
algorithm are listed in Table I and Table II, respectively.

Unoccupied OccupiedBlocked Gets a Passenger

Send Reply Message

Drops Passenger

Gets a Passenger

Not Selected

Fig. 2. Taxi State Change Diagram

TABLE I. VARIABLES USED

Variable Significance

Ti Taxi Ti∈ {T} where T is set of all Taxis

To Set of all Occupied Taxis

Tu Set of all Unoccupied Taxis

Pi Passenger Pi ∈ {P} where P is the set of all passengers

Succx Set of all neighbor taxis from Taxi/Passenger x

P_idi Id of Passenger Pi

T_idj Id of Taxi Tj

LPi Location (Latitude, Longitude) of Passenger Pi

LTi Location (Latitude, Longitude) of Taxi Ti

∆Ti Tolerance Time (MaxWaiting Time) given by Passenger Pi

PARt Parent of Taxi t in the Diffusion Tree

𝑃𝑅𝑇𝑡
𝑃 Passenger Reaching Time (Time for Taxi t to reach P)

Max_Hop

_Count
Maximum hops to which Pi 's request will be forwarded

TABLE II. MESSAGE TABLE

Messages Significance

REQ (P_id, LP, ∆T,

Hop_Count, PRT)
Request sent/forwarded by Passenger/taxis

REP (P_id, T_id, LP, LT,

PRT)
Taxis send reply message to their parent

ACCEPT (P_id, T_id)
Passenger/Taxi sends Accept message to its

child with minimum PRT

CONF (P_id, T_id) Confirmation sent by Passenger to a selected taxi

A. Distributed Taxi Selection Algorithm

Problem: Given a passenger Pi at location LPi and a set
of taxis T located ‘near’ (within a radius d of) Pi, select a taxi

Tj ϵ T at location LTj such that 𝑃𝑅𝑇Tj
𝑃𝑖 ≤ 𝑃𝑅𝑇Tk

𝑃𝑖 where, Tk ϵ

({T}– Tj).

Initialization:

1. ∀to ∈ To, Stateto Occupied

2. ∀tu ∈ Tu, Statetu Unoccupied

Tree Creation Phase at Pi:

3. ∀t ∈ SuccPi, send REQ to t

4. Start RTPi, STPi

Tree Creation Phase at Tj:

5. Receives REQ from Pi/Ti AND set PARTj Pi/Ti

6. Start RTTj, STTj

7. if State Tj = Unoccupied,

8. Calculate 𝑃𝑅𝑇𝑇𝑗
𝑃𝑖 , send REP to PARTj

9. Start ATTj

10. if TTL ≠ 0,

11. Decrement TTL by 1

12. if 𝑃𝑅𝑇𝑇𝑗
𝑃𝑖 < PRTReq

13. Update PRTReq = 𝑃𝑅𝑇𝑇𝑗
𝑃𝑖

14. ∀t ∈ SuccPj, send REQ to t

Convergence Phase at Tj:

15. if ACCEPT received before ATTj expires

16. Wait for CONF from PARTj

17. else

18. StateTj Unoccupied

19. ∀t ∈ SuccTj, wait to receive REP from t until RTTj expires

20. Send ACCEPT to t with min. 𝑃𝑅𝑇𝑡
𝑃𝑖

21. if STTj expires

22. ∀t ∈ SuccTj, Send REP with min PRTt to PARTj

23. When CONF message Cm received

24. if Cm ∈ Tj,

25. State Tj Occupied

26. Head towards P

27. else

28. Forward Cm

Convergence Phase at Pi :

29. ∀t ∈ SuccPi, wait to receive REP from t until RTPi expires

30. Send ACCEPT to t with min 𝑃𝑅𝑇𝑡
𝑃𝑖

31. if STPi expires

32. Send CONF to t with minimum 𝑃𝑅𝑇𝑡
𝑃𝑖

Fig. 3. TSA Algorithm

Our algorithm (Fig. 3) starts when a passenger (Pi)
looking for a taxi broadcasts a REQ message from his
smartphone. Each of the neighboring taxis receiving the
REQ, sets the sender as its parent and decides on its course
of action depending on its current state. If a duplicate REQ is
received, that is simply ignored. When an unoccupied taxi Tu
receives a REQ (from P or any other intermediate node), it
calculates the time (𝑃𝑅𝑇𝑇𝑢

𝑃𝑖) to reach Pi’s location and iff that
is less than the PRT mentioned in the REQ, then Tu replaces
the original PRT with 𝑃𝑅𝑇𝑇𝑢

𝑃𝑖 and forwards the REQ message
to neighbors except the parent node and starts the Selection

1922

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:08 UTC from IEEE Xplore. Restrictions apply.

(ST) and Rejection (RT) timers. If Tu is at the maximum
permissible distance from P, it is a leaf node and it does not
forward the REQ message any further and instead sends a
REP back to its parent iff it’s 𝑃𝑅𝑇𝑇𝑢

𝑃𝑖 is less than the PRT
received through REQ and starts an Accept timer (AT).
Otherwise, the leaf node unblocks itself. When an
intermediate node receives one or more REP messages from
its successors until its RT expires, it chooses the child which
sent the REP with minimum PRT and sends an ACCEPT
message. All child nodes which sent the REP to their parent
but did not receive an ACCEPT message before the AT
expires will unblock themselves. In this way, REP messages
converge towards the tree root and finally the passenger
chooses the minimum PRT node among its children and
sends a CONF.

B. Greedy Taxi Selection Algorithm

We also develop the greedy approach of TSA (G-TSA)
where a taxi will only forward REQ further if its passenger
reaching time is greater than the tolerance time set by the
passenger. It is similar to the EZCab approach where they try
to find the first free taxi and only ACCEPT timer is used to
unblock the taxis. Taxi sends the REP as soon as it receives
REQ, and it is forwarded immediately towards the root. The
passenger sends CONF to the taxi whose REP arrived first.
So, according to this approach, an Occupied taxi with
minimum Haversine distance receives the REQ first and
sends the REP. Hence, it selects the taxi with minimum
Haversine distance assuming that a taxi can reach fast if its
REP is received first.

IV. HOTSPOT RECOMMENDATION MODEL FOR TAXIS &

PASSENGERS

In this section, we first outline the model framework and
the data mining techniques used followed by the detailed
working description of the model.

T
a
x

i
tr

ip
 d

a
ta

In
p
u
t

Taxi

recommendation
(based on time, location &

day)

Passenger

recommendation
(based on time, location &

day)

K-means

clustering

(applied on

each grid)

Grid and

Cluster

scoring

Data

division

Day-based

dataset

Time-based

dataset

Grid

clustering

Knowledge

of

profitable

locations

Fig. 4. Recommendation Model Framework

A. HRA Model Framework

Fig. 4 illustrates the framework of the Recommendation
model built by using NYC taxi dataset (yellow taxis) [9],
which consists 143,352,415 (≈ 143.35 million) entries where
each entry contains data for one trip. Each trip has
passenger’s pickup and drop location (geographic
coordinates), and corresponding times. We use 8 months’
(from January to August) containing 97,991,425 (≈ 98
million) (66.66% of the whole dataset) trip records as training
dataset, while we use rest as the testing dataset. The dataset
is divided into subsets based on the trip time and day of the
week. We further apply data mining approaches on those
subsets for finding the various profitable locations in the city.
Below, we briefly discuss the various steps involved in
building the model and its working.

B. Data Division

Fig. 5 illustrates average number of passenger requests
arriving on different days of the week and different times of
the day for the month of August, 2016 in NYC [9]. Fig. 6
illustrates the passenger count at different time of the days for
a period of 22 days in San Francisco.

Fig. 5. Average Passenger

Count in NYC (August, 2016)

Fig. 6. Passenger Count in San Francisco

The passenger patterns mostly changes on weekends but
does not vary much on weekdays. During Friday nights, most
number of requests are generated. Hence, data is divided into
four categories: Friday, Saturday, Sunday and Weekdays
(remaining days). Then there is a huge variation on different
times of a day. The number of requests is more in the morning
and evening than any other time of the day on weekdays.
Thus, the dataset is further divided according to the time.

C. Data Mining Approaches

After dividing the dataset into subsets, the datasets are
clustered based on the trip’s pickup location using Grid
Clustering, so that, the city is divided into square grids (areas)
of size 1 sq. km (Fig. 7). Fig. 8 shows pickup points clustered
in a grid. Since, a grid area is large, we further classified it
into small clusters using K-means clustering which provides
cluster centroids that can be used to define the cluster’s
location for the recommendation. In this algorithm, we need
to provide the number of clusters (K) in advance. Fig. 9
shows the clusters formed inside a grid. We used these
clustering techniques because of their linear time
complexities.

Fig. 7. NYC Grid

Structure

Fig. 8. Pickup Points

Clustered in a Grid

Fig. 9. Clusters formed

inside a Grid by K-means

1) The value of K is decided such that the maximum

number of clusters inside a grid does not go beyond a number

Gk. The value of K is calculated using the formula given in

Eq 2.

𝐺𝑘 =
√𝑁𝑚𝑎𝑥/2

R
…. (1) 𝐾𝑖 =

√𝑁𝑖/2

R
 ….(2)

R is the number which is calculated using the value of Gk

and, Nmax is the number of points present in the grid with
maximum points in it. Ni is the number of points present in
the grid Gi.

2) Clustering Output: After dividing the data, we perform

clustering of data of each time slot of all the days. Hence, we

have a set of clusters for each hour of the four different days

1923

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:08 UTC from IEEE Xplore. Restrictions apply.

(Ref. Section IV(B)). Fig. 10 and 11 shows the heatmap of

trips’ pickup location in the morning time on weekdays and

evening time on Friday, respectively. This represents that

some locations have more trips than others. Fig. 12 and 13

represent the clusters formed during the weekdays’ morning

(9 AM to 10 AM) and evening (6 PM to 7 PM) time,

respectively. These two figures clearly show that change in

time changes the locations from where more passengers’

request originates. Similarly, Fig. 14 represents the clusters

formed during Saturday’s morning and evening time. Fig. 15

represents the clusters formed in the evening time of

weekdays and Saturday. This figure shows even at the same

time, different days (Weekdays and Saturday) have different

clusters representing changing behavior of passenger

requests with days. The value of threshold used to calculate

GS and CS is the mean value of grid and cluster in a time slot,

respectively. The maximum clusters inside a grid is taken as

16 (each cluster size will be greater than 250 sq. meters).

Fig. 10. Heatmap of

Pickup Locations on

Weekday Mornings

Fig. 12. Clusters for

Weekday Mornings

Fig. 14. Clusters for

Saturday Mornings (Blue)

and Evenings (Red)

Fig. 11. Heatmap of

Pickup Locations on

Friday Evenings

Fig. 13. Clusters for

Weekday Evenings

Fig. 15. Clusters for

Weekday (Blue) and

Saturday (Red) Evenings

D. Grid and Cluster Scoring

After obtaining the clusters, we calculate their
profitability using Grid Score (GS) and Cluster Score (CS),
and finally these scores are used to provide a
recommendation. We need to normalize both GS and CS, so
that they do not dominate the other one while calculating the
final score for the recommendation.

1) Cluster Score (CS): It is calculated by dividing the

total number of points lying inside the cluster by the cluster

threshold. Cluster threshold is taken as the mean of points

present inside the clusters as shown in Eq 3. The cluster score

calculation is given by the Eq 4.

𝑇𝑐 =
∑ 𝑁𝑖

𝐶

𝐶
 …. (3) 𝐶𝑆𝑖 =

𝑁𝑖

Tc
 …. (4)

where, 𝑇𝑐 is the cluster threshold, 𝑁𝑖
𝐶 is the number of

points in cluster i, C is the total number of clusters, and 𝐶𝑆𝑖
is the CS of cluster i.

2) Grid Score (GS): It is calculated similar to CS where

a cluster is replaced by a grid. Grid threshold is taken as the

mean of points present inside the grids. Eq 5 and 6 represents

the calculation of Grid Score.

𝑇𝐺 =
∑ 𝑁𝑖

𝐺

𝐺
 …. (5) 𝐺𝑆𝑖 =

𝑁𝑖

𝑇𝐺
 …. (6)

where, 𝑇𝐺 is the grid threshold, 𝑁𝑖
𝐺is the number of points

in grid i, G is the total number of clusters, and 𝐺𝑆𝑖 is the GS
of grid i.

E. Taxi/Passenger Recommendation
Taxi recommendation request by passengers contains

information about their current location (Lat., Long.),
recommendation time and day of the week. In this way, they
can also make requests for a later time also and not only for
present time. On the basis of all these parameters, nearby
locations (w.r.to their current location) are suggested to them.

Recommendation for taxi drivers is not straightforward
like the passengers’. We develop a technique to address two
concerns – (1) taxis should be directed uniformly to different
locations instead of a small set of locations, and (2) distance
to the recommended locations should not be very large. So,
we need to strike a balance between taxi profitability and taxi
availability. In order to achieve this objective we recommend
the centroids of the clusters obtained by K-means clustering.
Selection of top locations is done by giving a final score to
each location based on the distance from taxi’s location to the
recommended location, CS and GS (grid to which cluster
belong). Eq. 8 shows the calculation of final Score.

𝐷𝑆𝐿 = S𝑚𝑎𝑥 −
D(T, L) . 𝑆𝑚𝑎𝑥

R
 …. (7)

𝐹𝑆𝐿 = 𝛼. 𝐶𝑆𝐿 + 𝛽. 𝐺𝑆𝐿 + µ. 𝐷𝑆𝐿 (8)

where L belongs to the set of locations (cluster centroid)
within range. 𝐹𝑆𝐿 is the final Score of L, 𝐶𝑆𝐿 is the CS of
location L, 𝐺𝑆𝐿 is the GS of location L, 𝐷𝑆𝐿 is the Normalized
Distance Score (DS). DS is calculated using Eq. 7. S𝑚𝑎𝑥 is
the maximum distance score, D (T, L) is the distance from
taxi’s current location to the selected location, and R is the
range within which locations are selected, i.e., the maximum
allowable distance.

From these equations, we can see that least distance will
have maximum score, i.e., nearby locations are given a better
score than locations far from the taxi. 𝛼, 𝛽, µ are the
weightage given to each score. This scoring system will
prevent recommending all the taxis to the same location. By
adding DS, the final score will change as the distance of every
taxi will be different from the same location. Taxis which are
nearby, however, may get same recommendation.

V. EXPERIMENTS AND RESULTS

In this section, we describe the performance of our
proposed algorithms.

A. Performance Analysis of TSA

1) Dataset: We use the taxi dataset of San Francisco [7]

to check the working of TSA. The dataset contains GPS traces

of 535 taxis over 22 days (from 18 May, 2008 to 8 June,

2008). After cleaning and pre-processing , we found 414,865

1924

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:08 UTC from IEEE Xplore. Restrictions apply.

passenger requests among which we select 16,500 passenger

requests occurred on 19 - 20 May, 2008.

2) Performance Metrics: Below, we formally define our

performance metrics for TSA:

 Selection Time: It is the time elapsed between
origination of a passenger request and a corresponding
confirmation is received by a selected taxi.

 Average Blocking Time: It is the average amount of
time during which Unoccupied taxis were in blocked
state while executing the TSA.

 Number of Messages (NM): It is the total number of
messages exchanged between taxis and a passenger
during the execution of the TSA.

 Selection Accuracy Percentage (SAP): It is the
percentage of times a taxi with the shortest PRT is
selected.

3) Simulation Details: We assume that the location of

passenger request origin is same as the passenger’s pickup

location. We use Omnet++ 5.0 [21] along with

INetworkNode (INet) framework [22] for the simulation

purpose. To create the scenario, we select the passenger and

all the taxis within 1 km range of selected passenger, then we

use their geographic locations to set their starting point in the

simulation. The simulation parameters are given in Table III.

TABLE III. PARAMETERS

Parameters Values

Transmission Range (meters) 100 150 200

Bit Rate 1 Mbps

Number of Hops 5

Taxi Speed 20 km/hr

Taxi Mobility Random

One scenario performs the selection process for one
passenger request. So, our selection time is same as execution
time. We use Google’s Distance Matrix API to calculate the
time required by the taxis to reach the passenger’s location
and the actual road distance. We calculate the results using
three different transmission ranges. For the selection
accuracy, we compare, TSA, EZCab [2] and G-TSA (similar
to [3]).

4) Results: The performance of G-TSA and EZCab is

same for all the metrics except Blocking time and SAP.

Therefore, we compare the performance of TSA with EZCab

only for the Blocking time. For the remaining parameters, we

compare the performance of TSA with G-TSA.

(a) 100 meters

(b) 150 meters

(c) 200 meters

Fig. 16. Blocking Time w.r.to

Number of Taxis

Fig. 17. Execution Time w.r.to

Number of Taxis

Fig. 18. NM vs Number of

Taxis

Fig.19. Average NM Per Taxi

w.r.to Number of Taxis

Blocking Time: Fig. 16 shows the comparison of average
blocking time w.r.to the number of available taxis. In EZCab,
all the Unoccupied taxis who receives request are blocked for
a fixed period of time. While in TSA, we use an ACCEPT
message to unblock the other taxis if a taxi with shorter time
is available. So, TSA and G-TSA perform better in reducing
blocking time. We can notice that the Blocking time is high

for TSA if the numbers of taxis are very less which reduces
with the increase in number of taxis.

Execution Time: Fig. 17 (a), (b) and (c) show the
execution time w.r.to the number of available taxis with
variable transmission ranges. The execution time of the TSA
is more than G-TSA as it waits for the REP of all the taxis and

1925

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:08 UTC from IEEE Xplore. Restrictions apply.

selects the one with shortest time. G-TSA, on the other hand,
selects the first free taxi without waiting for any other replies.

Number of Messages: Fig. 18 and 19 depicts the total
messages sent and average number of messages sent per taxi,
respectively. In G-TSA, an Unoccupied taxi do not forward
the REQ and a taxi who received REP message do not send
the ACCEPT message to any of its children, hence the
messages sent are less in G-TSA as compared to TSA.

Fig. 20. Selection Accuracy Percentage

Selection Accuracy Percentage: Fig. 20 shows the
selection accuracy of all three algorithms with varied
transmission ranges. TSA selects the taxi with shortest time
more than 90% times. It sometimes fails due to message loss
and transmission delay.

B. Performance Analysis of HRA
In this section, we describe the datasets used for HRA

followed by our clustering methods and results.

1) Dataset: We use two different datasets to check the

working of HRA Model. First is San Francisco dataset (Ref.

Section V(A)), where we use 9 days’ data to train the model

and the next 13 days’ data to test it. We further used the NYC

dataset, which consists of 12 months’ of trip records in the

year 2015. Another dataset used is NYC taxi dataset (yellow

taxis) [9] as described in Section IV(A). In both the datasets,

the testing data is divided based on pickup day - Friday,

Saturday, Sunday and Weekdays (See Section IV(B)). Then

each dataset is further divided according to hour of a trip, and

such 24 sets are made – one for each hour.

2) Performance Metrics: To measure the working of

HRA, we use the following performance metrics.

 Taxi Availability Ratio (TAR): TAR represents the
number of times the passengers get a taxi when
requested. This is calculated as the ratio of number of
taxis available to the number of passenger requests
made across all the time slots, for all clusters in that
time slot and all days in testing data. Eq. 9 shows the
calculation of TAR. High ratio represents the less
waiting time of passengers.

𝑇𝐴𝑅 =
∑ ∑ ∑ min (𝑇𝑎𝑥𝑖𝑠𝑐

𝑑,𝑡, 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑐
𝑑,𝑡)𝑑𝑐𝑡

∑ ∑ ∑ 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑐
𝑑,𝑡

𝑑𝑐𝑡

 … (9)

where t is a time slot, c is a cluster (c ∈ Cluster list)
formed in time slot t, d is a day in testing data,

𝑇𝑎𝑥𝑖𝑠𝑐
𝑑,𝑡

 is the number of available taxis in a given

cluster, date and time slot, and 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑐
𝑑,𝑡 is the

number of passenger requests made in a cluster given
cluster, date and time slot.

 Hit Ratio: Hit ratio represents the number of taxis
who received a passenger during a time slot. It is given
by the number of passenger requests made by the

number of available taxis in all the time slots, for all
clusters in that time slot and all days in testing data.
Eq. 10 shows the calculation of Hit Ratio. High ratio
represents a good recommendation to taxis, and
reduced waiting and cruising time of taxis.

𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 =
∑ ∑ ∑ min (𝑇𝑎𝑥𝑖𝑠𝑐

𝑑,𝑡, 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑐
𝑑,𝑡)𝑑𝑐𝑡

∑ ∑ ∑ 𝑇𝑎𝑥𝑖𝑠𝑐
𝑑,𝑡

𝑑𝑐𝑡

 (10)

where t is a time slot, c is a cluster (c ∈ Cluster list)
formed in time slot t, d is a day in testing data,

𝑇𝑎𝑥𝑖𝑠𝑐
𝑑,𝑡 is the number of available taxis at given

cluster, date and time slot, and 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑐
𝑑,𝑡 is the

number of passenger requests made at a given cluster,
date and time slot.

3) Results: In this section, we show the results obtained

for San Francisco dataset. Due to space constraints we omit

the results of using NYC dataset which is also very similar.

San Francisco Dataset: To evaluate the increase in

selection rate after recommendation, we select top 20 clusters

on Friday, Saturday, Sunday and Weekdays, and calculated

TAR for each day. TAR will show the number of requests

fulfilled when it was made resulting in a decrease in waiting

time of passengers. Table IV shows the TAR obtained for

individual day category before the recommendation and after

recommendation. The result shows an overall increase of

8.725% after recommendation.

TABLE IV. TAR FOR SAN FRANCISCO DATASET

Days
TAR (Before

recommendation)

TAR (After

recommendation)

Friday 0.725078819146 0.854437788336

Sat 0.730122746876 0.89643551523

Sun 0.772526501767 0.810496236409

Weekdays 0.818628175171 0.887917389010

Overall 0.7860343954961428 0.8732912994307143

TABLE V. HIT RATIO FOR SAN FRANCISCO DATASET

Algorithm/

Hit ratio

Set 1 (α = 0.34, β

= 0.33, µ = 0.33)

Set 2 (α = 0.5, β

= 0.3, µ = 0.2)

Model created

using K-means [13]

Weekdays 0.607778336286 0.435972205582 0.4483678912

Friday 0.586644832529 0.417380929407 0.3982883721

Saturday 0.575202722322 0.400828539605 0.4103714374

Sunday 0.604897785342 0.428763305370 0.4072697065

Overall 0.599254108663 0.426831453986 0.4299144401

We calculate hit ratio for all the clusters formed after
clustering. The weightage given to CS (𝛼), GS (𝛽) and DS
(µ) are 0.34, 0.33 and 0.33, respectively. Table V shows the
Hit ratio achieved after recommendation for all the day
categories. The result shows an overall Hit ratio (for all the
days) of 0.449. Then we compare Hit ratio of San Francisco
using two different value sets for score weights and compared
their result with the model built using K-means and obtained
a 17% improvement.

NYC Dataset: We calculate Hit ratio of NYC dataset
using HRA model and compared it with another model which
is created by applying K-means [13] on the whole dataset
without making any data division which we did in our
approach. We calculate Hit ratio for two different sets of
values for the weightage given to CS (𝛼), GS (𝛽) and DS (µ).
In set 1, equal weightage of 0.33 is given to all, while in set
2, the values of 𝛼, 𝛽, µ are taken as 0.5, 0.3 and 0.2,

1926

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:08 UTC from IEEE Xplore. Restrictions apply.

respectively. Table VI shows the hit ratio of HRA for both
sets and the model created using K-means algorithm. It is
found that set 1 gives better results than set 2 and model using
the model generated using K-means algorithm. The result of
set 2 is almost same as the results obtained from K-means
algorithm, which shows the selection of weightage
parameters is important.

TABLE VI. HIT RATIO FOR NYC DATASET

Days Hit Ratio

Friday 0.424431968047

Saturday 0.450935241604

Sunday 0.463739376771

Weekdays 0.452065704331

Overall 0.449082502799

VI. CONCLUSION AND FUTURE WORKS

In this paper, we focused on better coordination between
passengers and taxi cabs, as public transport facilities, which
can reduce passengers’ waiting time while improving taxi
drivers’ profit by increasing taxi occupancy rate. First, we
proposed a Taxi Selection algorithm which aims to find a taxi
that can reach the passenger’s location in least possible time.
We also proposed a Hotspot Recommendation Model which
suggests taxi drives (passengers) nearby locations where the
chances of finding passengers (taxis) are high. We have
carried out extensive empirical evaluation of our proposed
schemes using two large scale taxi datasets of San Francisco
and New York and have established the strength of our
schemes. In future, we plan to introduce a cognitive model
which updates the solution using current information in an
adaptive manner and based on current passenger movements.
This will be useful for locations which have recently become
popular because of the opening of a new landmark and was
not included in the old model, and it also eliminates the
locations where from the passenger requests have reduced.

VII. ACKNOWLEDGMENT

Research work reported in this paper is partially funded

by the Alexander von Humboldt Foundation through the

post-doctoral Fellow Dr. Vaskar Raychoudhury. Also, we

acknowledge the critical comments and advices provided by

Dr. Rajdeep Niyogi, Associate Professor, Department of

CSE, IIT Roorkee, India, during the initial stages of this

work. We also thank Ms Shrawani Silwal from Miami Univ.,

Ohio, USA for her help to improve the paper.

REFERENCES

[1] M. Batty, K. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani, M.
Wachowicz, G. Ouzounis, and Y. Portugali, "Smart cities of the
future," The European Physical Journal Special Topics, vol. 214, no.
1, 2012, pp. 481-518.

[2] P. Zhou, T. Nadeem, P. Kang, C. Borcea and L. Iftode, “EZCab: A Cab
Booking Application Using Short-Range Wireless Communication,”
In proceedings of theThird IEEE International Conference on
Pervasive Computing and Communications, 2005, pp. 27-38.

[3] J. P. Sheu, G. Y. Chang, and C. H. Chen, “A Distributed Taxi Hailing
Protocol in Vehicular Ad-Hoc Networks,” In proceedings of the 2010
IEEE 71st Vehicular Technology Conference, 2010, pp. 1–5.

[4] P. M. d’Orey, “Empirical evaluation of a dynamic and distributed taxi
sharing system,” In proceedings of the 15th IEEE Conference on
Intelligent Transportation Systems, 2012, pp. 140–146.

[5] D. Lee, H. Wang, R. Cheu, and S. Teo, “Taxi Dispatch System Based
on Current Demands and Real-Time Traffic Conditions,”
Transportation Research Record: J. Transportation Research Board,
vol. 1882, no. 1, 2004, pp. 193-200.

[6] New York City Report. http://www.techinsider.io/why-new-york-city-
looks-like-it-does-2015-9 [accessed on April,2016]

[7] Mobility traces of taxi cabs in San Francisco, USA.
http://crawdad.org/epfl/mobility/20090224/cab/[accessed on March,
2017]

[8] New York City Taxi and Limousine Commission. Taxi of Tomorrow
Survey Results, Feb 2011. http://www.nyc.gov/ [accessed on April,
2016]

[9] NYC Taxi and Limousine Commission (TLC) Trip Record
Data.http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
[accessed on April, 2017]

[10] K. Yamamoto, K. Uesugi, and T. Watanabe, “Adaptive Routing of
Cruising Taxis by Mutual Exchange of Pathways,” In proceedings of
the 12th International Conference on Knowledge-Based Intelligent
Information and Engineering Systems, 2010, pp. 559-566.

[11] K. T. Voon and K. C. Yow, “GSM Positioning- Based Taxi Booking
and Dispatch System,” In proceedings of the 10th WSEAS
International Conference on Applied Informatics and
Communications, and 3rd International Conference Biomedical
Electronics and Biomedical Informatics, 2010, pp. 25-30.

[12] S. Phithakkitnukoon, M. Veloso, C. Bento, A. Biderman, and C. Ratti,
“Taxi-Aware Map: Identifying and Predicting Vacant Taxis in the
City,” In proceedings of the First International Joint Conf. Ambient
Intelligence (AMI), 2010, pp. 86-95.

[13] J. Lee, I. Shin, and G. Park, “Analysis of the passenger pick-up pattern
for taxi location recommendation,” In proceedings of the 4th
International Conference on Networked Computing and Advanced
Information Management, 2008, pp. 199–204.

[14] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun, “Where to Find My
Next Passenger?” In proceedings of the 13th International Conference
on Ubiquitous Computing, 2011, pp. 109-118.

[15] J. Powell, Y. Huang, F. Bastani and M. Ji, “Towards reducing taxicab
cruising time using spatio-temporal profitability maps,” In proceedings
of the 12th International Conference on Advances in Spatial and
Temporal Databases, 2011, pp. 242–260.

[16] D. Zhang, L. Sun, B. Li, C. Chen, G. Pan, S. Li, and Z. Wu,
“Understanding taxi service strategies from taxi GPS traces,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 1,
2015, pp. 123–135.

[17] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. Pazzani.
“An energy-efficient mobile recommender system,” In proceedings of
the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2010, pp. 899–908.

[18] L. Moreira-Matias, R. Fernandes, J. Gama, M. Ferreira, J. Mendes-
Moreira, and L. Damas, “An online recommendation system for the
taxi stand choice problem (Poster),” In proceedings of the IEEE
Vehicular Networking Conference, 2012, pp. 173–180

[19] H. S. Kim, S. Gao, Y. Xia, G. B. Kim and H. Y. Bae “DGCL: An
Efficient Density and Grid Based Clustering Algorithm for Large
Spatial Database”, In proceedings of the 7th International Conference,
WAIM, 2006, pp. 362-371.

[20] J. Han and M. Kamber, “Cluster Analysis: Basic Concepts and
Methods”, in Data Mining: Concepts and Techniques, 3rd Edition,
India: Academic Press, 2011.

[21] OMNeT++ Home Page. https://omnetpp.org/ [accessed on April, 2017]

[22] OMNeT++ INet Framework Home Page. https://inet.omnetpp.org/
[accessed on January, 2017]

[23] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Large Clusters in Large Spatial Databases
with Noise,” In proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, 1996, pp. 226-231.

1927

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:08 UTC from IEEE Xplore. Restrictions apply.

