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Abstract— Taxicabs are an important element of urban 

public transportation. Taxicabs either cruise through city 

streets in search of passengers or wait at several hotspots (like 

airports, rail stations, malls, stadiums, taxi stands, etc). Cruising 

by empty Taxis increases city traffic and carbon footprint while 

reducing net profit. Alternatively, there might be places where 

passengers are waiting long for taxis. In order to improve 

coordination between taxis and passengers with a view to 

decrease passenger waiting time and to increase taxi profits, we 

propose a taxi selection algorithm (TSA) as well as a hotspot 

recommendation approach (HRA). While the proposed TSA 

achieves its objective through distributed coordination among 

the participating taxis and passengers, the HRA uses a clustering 

approach over a large-scale taxi dataset to pin-point hotspots. 

The main contribution of this paper lies in extensive 

experimentation using large-scale taxi dataset of SFO to show 

that the TSA outperforms existing taxi selection algorithms by 

finding a taxi which can reach the passenger in minimum time 

with up to 97.59% accuracy. We also evaluate the HRA using 

another taxi dataset from NYC which shows that 60% of the 

times, a taxi will get a passenger following our recommendation 

scheme. 

Keywords—Taxi Selection; Hotspot Recommendation; Smart 

Transportation; Distributed Coordination; Data Analysis 

I. INTRODUCTION  

Taxicabs provide passengers a comfortable and faster 
mode of transport with pickups and drop offs at desired place 
and time. Although there are significant demands of taxis at 
airports, train stations and stadiums (during matches), it is not 
hard to find empty taxis in stands (called, waiting) or 
ploughing city streets (called, cruising) in search of 
passengers. Many a times, passengers wait for long at 
designated sites for taxis to arrive. So, in efficient taxi service 
provisioning, the critical underlying challenge lies in 
connecting a waiting passenger with a waiting / cruising taxi 
with minimum possible delay. This challenge emanates from 
the goal to select the taxi, which can reach the passenger 
location in shortest time, and this is not possible, if any 
random taxi is selected. This can reduce waiting time for 
passenger and waiting / cruising time for taxis. Moreover, it 
can reduce fuel consumption and traffic congestion (resulting 
from low-speed cruising) both of which have monetary as well 
as environmental significance. Also, finding a passenger more 
efficiently will increase the profit of taxi drivers by increasing 
overall taxi occupancy time.  

According to our analysis done on GPS traces of 535 taxis 
in San Francisco [7] for a period of 22 days, it can be seen 

that most of the distance travelled by taxis is while cruising. 
Fig. 1(a) shows the ratio of distance travelled by taxis while 
it was occupied (i.e., carrying passenger) to the total distance 
they travelled in the day. The average ratio is 0.56, which is 
quite low. This means that half of the distance is cruising, 
which directly reduces their profit. Fig. 1(b) shows the Taxi 
occupancy rate (ratio of the time a taxi is occupied to the total 
time it was on the street) which also peaks only at 0.53. 

  

(a) Distance Ratio of Taxis in 

SFO 

(b) Occupancy Rate of Taxis in 

SFO 

Fig. 1. Preliminary Taxi Data Analysis 

In this paper, we aim to address this challenge by 
developing a distributed taxi searching solution for passengers 
which works by localized coordination between nearby taxis 
through a hop-by-hop message transfer. We further enhance 
profitability of taxi drivers by recommending them nearby 
locations with higher chances of finding passengers. 

Researchers have proposed both centralized as well as 
distributed solutions for taxi selection. Centralized taxi 
dispatching solutions finds a taxi, which is nearest to the 
passenger, or might take shortest time to reach [5], or by 
suggesting to taxi drivers, the most probable place to get the 
next passenger [10]. Some researchers used machine-learning 
algorithms for finding number of vacant taxis in an area based 
on day, time and weather conditions [12]. 

Given the scalability concern of centralized systems, 
distributed taxi selection algorithms have been investigated 
where passenger requests are propagated in a multi-hop 
manner until a free taxi is found (or up to a certain number of 
hops). One critical challenge in distributed taxi selection 
approach is Blocking Time where unoccupied taxis 
participating in a selection process are barred to participate in 
parallel selection processes. Since, only one taxi will be 
selected finally in a selection process, other unoccupied taxis 
perceive this blocking period as a wastage of opportunity. 
Longer the blocking period the taxi is losing profits 
proportionally. EZCab [2] deploys a Probabilistic Proactive 
routing protocol for selecting taxis which can reach the 
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passenger in minimum time. However, they actually find the 
first free taxi assuming that it will reach the passenger in 
minimum time. Also, they did not address the blocking 
problem. Sheu, et al. [3] proposed a protocol for selecting a 
taxi with minimum driving distance by sending replies 
following the driving path. However, they did not study how 
much time the selected taxi takes to reach the passenger which 
determines the passenger waiting time. They also focused on 
reducing taxi blocking time. 

In order to increase taxi occupancy rate, taxi drivers can 
be suggested best locations (called hotspots) to look for 
passengers. Hotspot recommendation to taxi drivers have 
been studied by many researchers by analyzing the pickup 
pattern of passengers [13], by developing recommendation 
systems [14] or by calculating regions generating high 
revenues [15]. Some of these approaches [14][15] require 
continuous GPS traces to evaluate which is costly to collect 
and to process. Although the aforementioned research works 
have added significant contribution to the domain, they have 
not used real dataset to evaluate their proposed schemes. 
Since, this is an application problem, experimenting with real 
data helps us to test the system more critically.  

In this paper, we have proposed a taxi selection algorithm, 
called TSA, with dual purpose – (1) to select the taxi which 
can reach to passenger’s location in shortest time (thereby 
reduces passenger waiting time), and (2) to reduce the 
blocking time of unselected taxis (to increase taxi 
availability). TSA works by creating a dynamic tree overlay 
on the taxi communication network with the passenger as the 
root. Requests are wirelessly disseminated over the tree for 
certain pre-specified number of hops. Later, the taxi 
responses are collected by converge cast and the passenger 
gets one or more responses among which s/he chooses one 
taxi. We also proposed a hotspot recommendation scheme, 
named TAR which is similar to [13]. It uses taxi trip 
information (containing passenger's pickup and drop 
locations and corresponding time) as well as pick up pattern 
of passengers and summarily outperforms the scheme 
proposed in [13]. We use Grid Clustering and K-means 
Clustering algorithms to find the hotspots, and provide a 
scoring scheme for suggesting a nearby hotspot to a taxi 
driver. In summary, we make the following contributions in 
this paper. 

 We used the Google API to calculate journey time 
between two locations, which is highly practical. Other 
papers calculated journey time based on average taxi 
speed, which does not give realistic estimates. 

 We propose a distributed algorithm to select a taxi 
which can reach the passengers in minimum time after 
s/he fires a request. We used real taxi traces to evaluate 
our algorithm and did a simulation using actual 
locations of passengers and taxis which, to the best of 
our knowledge, no other papers did. Using real data 
gives exact scenario. Significant empirical evaluation 
over San Francisco [7] taxi GPS traces shows that our 
algorithm selects the taxi requiring minimum time 
with up to 97.59% accuracy. 

 We also propose a hotspot recommendation approach 
for taxi drivers by applying data mining techniques on 

the historical taxi trip dataset. Empirical evaluation 
using 143.35 million trip records from New York City 
(NYC) [9] Taxi GPS traces show that 60% of the 
times, a taxi will find a passenger while following our 
recommendation. No other prior research works used 
such large data set for evaluation. Furthermore, our 
experiments with the huge NYC taxi data goes to 
prove the scalability of our algorithm. 

II. RELATED WORKS 

In this section, we shall discuss research works related to 
taxi selection and hotspot recommendation to taxi drivers and 
passengers. 

A. Taxi Selection  

Two popular methods are centralized and distributed taxi 
selection and dispatching approaches. Centralized taxi 
selection approaches select taxi based on its distance from the 
requesting passenger or the time it takes to reach the 
passenger’s location [5]. Performance improvements of taxi 
selection have been achieved by more accurately locating 
passengers either by providing a route to cruising taxi with 
high expectation of passengers [10] or using GSM based 
location detection of passengers while booking a taxi [11]. 
Phithakkitnukoon et al. [12], used Bayesian classifier with a 
sequential error-based learning algorithm for finding number 
of vacant taxis in an area based on day, time and weather 
conditions. Though performing well, centralized functioning 
of taxi dispatching systems are less scalable and suffer from 
a bottleneck.  

Distributed taxi selection works by exchanging messages 
between passenger and nearby taxis using short-range 
wireless communication. Zhou et al. [2], proposed an 
application EZCab, which allows passengers to use mobile 
phones to send a taxi-booking-request which propagates from 
taxi to taxi until a free taxi is found or up to a maximum of 
20 hops. The message routing protocols used in EZCab are 
flooding, Probabilistic On-Demand, and Probabilistic 
Proactive where the last one is found to select a taxi, which 
can reach the passenger in minimum time although it is not 
guaranteed. Moreover, EZCab did not provided any solution 
for reducing taxi blocking time. Sheu et al. [3], proposed a 
protocol for selecting a taxi with minimum driving distance 
by sending replies following the driving path. So, the taxi, 
from which the reply message is first received, by the 
passenger, is selected. Due to different reasons, like traffic 
congestion, it cannot be guaranteed that the physically nearest 
taxi can reach the passenger in minimum time. They focused 
on reducing taxi blocking time by sending staying (STA) 
messages to the blocked taxis which increases 
communication overhead. D’Orey et al. [4], proposed a 
distributed taxi selection system for ride sharing, which aims 
to select a taxi providing minimum trip fare. The afore-
mentioned algorithms do not provide any solution for 
selecting a taxi which reaches in minimum time to 
passenger’s location.  

B. Taxi Recommendation Systems 

Researchers analyze passenger pick up patterns to 
identify top pick up points and suggest such locations to the 
taxi drivers in order to improve their occupancy and 
profitability. Lee et al. [13], used K-means [20] clustering to 
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analyze pickup pattern of passengers across 100 clusters. 
Yuan et al. [14], built a recommendation system for both taxis 
and passengers using the Beijing taxi dataset, and proposed 
an algorithm for finding possible parking places for empty 
taxis. Powell et al. [15], developed a Spatio-Temporal 
Profitability Map for taxi drivers by dividing a region into 
grids and calculating profitability of a location using 
historical dataset. Zhang et al. [16], have used L1 SVM for 
finding (and differentiating between) efficient and inefficient 
passenger searching strategies for taxi drivers and provided a 
correlation between service strategies and revenues. Ge et al. 
[17], proposed an energy-efficient recommendation 
approach, which provides taxi drivers with a sequence of 
locations such that the driving distance to get a passenger is 
minimized. Moreira-Matias et al. [18], proposed an online 
recommendation to choose taxi stands for taxi drivers using 
time-series forecasting technique to predict spatio-temporal 
distribution of passengers in real time. 

While [13] used dataset containing trip information 
(passengers’ pickup and drop location, and time) of taxis to 
find the locations where the probability of finding a taxi is 
high, other recommendation models [14][15] used 
continuous and dense GPS traces which are costly to collect 
and to maintain. Our recommendation model is different from 
others as it uses real dataset having taxis’ trip information and 
we analyze passenger pick up patterns across weekdays and 
weekends considering both peak and non-peak hours in order 
to decide the hotspots for both taxis and passengers. 

III. PROPOSED WORK: TAXI SELECTION ALGORITHM 

In this section, we present the details of our taxi selection 
algorithm. Depending on whether the taxi is having passenger 
or not, taxi can be in one of the following states: Occupied, 
Unoccupied or Blocked. Fig. 2 shows the transition among 
these taxi states. All the variables and messages used in our 
algorithm are listed in Table I and Table II, respectively.  

Unoccupied OccupiedBlocked Gets a Passenger

Send Reply Message

Drops Passenger

Gets a Passenger

Not Selected

 
Fig. 2. Taxi State Change Diagram 

TABLE I.  VARIABLES USED 

Variable Significance 

Ti Taxi Ti∈ {T} where T is set of all Taxis 

To Set of all Occupied Taxis 

Tu Set of all Unoccupied Taxis 

Pi Passenger Pi ∈ {P} where P is the set of all passengers 

Succx Set of all neighbor taxis from Taxi/Passenger x 

P_idi Id of Passenger Pi 

T_idj Id of Taxi Tj 

LPi Location (Latitude, Longitude) of Passenger Pi 

LTi Location (Latitude, Longitude) of Taxi Ti 

∆Ti Tolerance Time (MaxWaiting Time) given by Passenger Pi 

PARt Parent of Taxi t in the Diffusion Tree 

𝑃𝑅𝑇𝑡
𝑃 Passenger Reaching Time (Time for Taxi t to reach P) 

Max_Hop

_Count 
Maximum hops to which Pi 's request will be forwarded 

 

TABLE II.  MESSAGE TABLE 

Messages Significance 

REQ (P_id, LP, ∆T, 

Hop_Count, PRT) 
Request sent/forwarded by Passenger/taxis 

REP (P_id, T_id, LP, LT, 

PRT) 
Taxis send reply message to their parent 

ACCEPT (P_id, T_id) 
Passenger/Taxi sends Accept message to its 

child with minimum PRT 

CONF (P_id, T_id) Confirmation sent by Passenger to a selected taxi 

A. Distributed Taxi Selection Algorithm 

Problem: Given a passenger Pi at location LPi and a set 
of taxis T located ‘near’ (within a radius d of) Pi, select a taxi 

Tj ϵ T at location LTj such that 𝑃𝑅𝑇Tj
𝑃𝑖 ≤ 𝑃𝑅𝑇Tk

𝑃𝑖 where, Tk ϵ 

({T}– Tj).  

Initialization: 

1. ∀to ∈ To, Stateto  Occupied 

2. ∀tu ∈ Tu, Statetu  Unoccupied 

Tree Creation Phase at Pi: 

3. ∀t ∈ SuccPi, send REQ to t 

4. Start RTPi, STPi 

Tree Creation Phase at Tj: 

5. Receives REQ from Pi/Ti AND set PARTj  Pi/Ti 

6. Start RTTj, STTj 

7. if State Tj = Unoccupied, 

8.       Calculate 𝑃𝑅𝑇𝑇𝑗
𝑃𝑖 , send REP to PARTj 

9.        Start ATTj 

10. if TTL ≠ 0, 

11.        Decrement TTL by 1 

12.        if 𝑃𝑅𝑇𝑇𝑗
𝑃𝑖 < PRTReq 

13.              Update PRTReq = 𝑃𝑅𝑇𝑇𝑗
𝑃𝑖  

14.         ∀t ∈ SuccPj, send REQ to t 

Convergence Phase at Tj: 

15. if ACCEPT received before ATTj expires 

16.        Wait for CONF from PARTj 

17. else 

18.        StateTj  Unoccupied 

19. ∀t ∈ SuccTj, wait to receive REP from t until RTTj expires 

20.        Send ACCEPT to t with min. 𝑃𝑅𝑇𝑡
𝑃𝑖  

21. if STTj expires 

22.         ∀t ∈ SuccTj, Send REP with min PRTt to PARTj 

23. When CONF message Cm received 

24.        if Cm ∈ Tj,  

25.               State Tj  Occupied 

26.                Head towards P 

27.         else 

28.                Forward Cm 

Convergence Phase at Pi : 

29. ∀t ∈ SuccPi, wait to receive REP from t until RTPi expires 

30. Send ACCEPT to t with min 𝑃𝑅𝑇𝑡
𝑃𝑖  

31. if STPi expires 

32.        Send CONF to t with minimum 𝑃𝑅𝑇𝑡
𝑃𝑖  

Fig. 3. TSA Algorithm 

Our algorithm (Fig. 3) starts when a passenger (Pi) 
looking for a taxi broadcasts a REQ message from his 
smartphone. Each of the neighboring taxis receiving the 
REQ, sets the sender as its parent and decides on its course 
of action depending on its current state. If a duplicate REQ is 
received, that is simply ignored. When an unoccupied taxi Tu 
receives a REQ (from P or any other intermediate node), it 
calculates the time (𝑃𝑅𝑇𝑇𝑢

𝑃𝑖 ) to reach Pi’s location and iff that 
is less than the PRT mentioned in the REQ, then Tu replaces 
the original PRT with 𝑃𝑅𝑇𝑇𝑢

𝑃𝑖  and forwards the REQ message 
to neighbors except the parent node and starts the Selection 
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(ST) and Rejection (RT) timers. If Tu is at the maximum 
permissible distance from P, it is a leaf node and it does not 
forward the REQ message any further and instead sends a 
REP back to its parent iff it’s 𝑃𝑅𝑇𝑇𝑢

𝑃𝑖 is less than the PRT 
received through REQ and starts an Accept timer (AT). 
Otherwise, the leaf node unblocks itself. When an 
intermediate node receives one or more REP messages from 
its successors until its RT expires, it chooses the child which 
sent the REP with minimum PRT and sends an ACCEPT 
message. All child nodes which sent the REP to their parent 
but did not receive an ACCEPT message before the AT 
expires will unblock themselves. In this way, REP messages 
converge towards the tree root and finally the passenger 
chooses the minimum PRT node among its children and 
sends a CONF. 

B. Greedy Taxi Selection Algorithm 

We also develop the greedy approach of TSA (G-TSA) 
where a taxi will only forward REQ further if its passenger 
reaching time is greater than the tolerance time set by the 
passenger. It is similar to the EZCab approach where they try 
to find the first free taxi and only ACCEPT timer is used to 
unblock the taxis. Taxi sends the REP as soon as it receives 
REQ, and it is forwarded immediately towards the root. The 
passenger sends CONF to the taxi whose REP arrived first. 
So, according to this approach, an Occupied taxi with 
minimum Haversine distance receives the REQ first and 
sends the REP. Hence, it selects the taxi with minimum 
Haversine distance assuming that a taxi can reach fast if its 
REP is received first. 

IV. HOTSPOT RECOMMENDATION MODEL FOR TAXIS & 

PASSENGERS 

In this section, we first outline the model framework and 
the data mining techniques used followed by the detailed 
working description of the model. 
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Fig. 4. Recommendation Model Framework 

A. HRA Model Framework 

Fig. 4 illustrates the framework of the Recommendation 
model built by using NYC taxi dataset (yellow taxis) [9], 
which consists 143,352,415 (≈ 143.35 million) entries where 
each entry contains data for one trip. Each trip has 
passenger’s pickup and drop location (geographic 
coordinates), and corresponding times. We use 8 months’ 
(from January to August) containing 97,991,425 (≈ 98 
million) (66.66% of the whole dataset) trip records as training 
dataset, while we use rest as the testing dataset. The dataset 
is divided into subsets based on the trip time and day of the 
week. We further apply data mining approaches on those 
subsets for finding the various profitable locations in the city. 
Below, we briefly discuss the various steps involved in 
building the model and its working. 

B. Data Division 

Fig. 5 illustrates average number of passenger requests 
arriving on different days of the week and different times of 
the day for the month of August, 2016 in NYC [9]. Fig. 6 
illustrates the passenger count at different time of the days for 
a period of 22 days in San Francisco. 

  

Fig. 5. Average Passenger 

Count in NYC (August, 2016) 

Fig. 6. Passenger Count in San Francisco 

The passenger patterns mostly changes on weekends but 
does not vary much on weekdays. During Friday nights, most 
number of requests are generated. Hence, data is divided into 
four categories: Friday, Saturday, Sunday and Weekdays 
(remaining days). Then there is a huge variation on different 
times of a day. The number of requests is more in the morning 
and evening than any other time of the day on weekdays. 
Thus, the dataset is further divided according to the time. 

C. Data Mining Approaches 

After dividing the dataset into subsets, the datasets are 
clustered based on the trip’s pickup location using Grid 
Clustering, so that, the city is divided into square grids (areas) 
of size 1 sq. km (Fig. 7). Fig. 8 shows pickup points clustered 
in a grid. Since, a grid area is large, we further classified it 
into small clusters using K-means clustering which provides 
cluster centroids that can be used to define the cluster’s 
location for the recommendation. In this algorithm, we need 
to provide the number of clusters (K) in advance. Fig. 9 
shows the clusters formed inside a grid. We used these 
clustering techniques because of their linear time 
complexities. 

   
Fig. 7. NYC Grid 

Structure 

Fig. 8. Pickup Points 

Clustered in a Grid 

Fig. 9. Clusters formed 

inside a Grid by K-means 

1) The value of K is decided such that the maximum 

number of clusters inside a grid does not go beyond a number 

Gk. The value of K is calculated using the formula given in 

Eq 2. 

𝐺𝑘 =
√𝑁𝑚𝑎𝑥/2

R
…. (1) 𝐾𝑖 =

√𝑁𝑖/2

R
       ….(2) 

R is the number which is calculated using the value of Gk 

and, Nmax is the number of points present in the grid with 
maximum points in it. Ni is the number of points present in 
the grid Gi. 

2) Clustering Output: After dividing the data, we perform 

clustering of data of each time slot of all the days. Hence, we 

have a set of clusters for each hour of the four different days 

1923

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:08 UTC from IEEE Xplore.  Restrictions apply. 



 

(Ref. Section IV(B)). Fig. 10 and 11 shows the heatmap of 

trips’ pickup location in the morning time on weekdays and 

evening time on Friday, respectively. This represents that 

some locations have more trips than others. Fig. 12 and 13 

represent the clusters formed during the weekdays’ morning 

(9 AM to 10 AM) and evening (6 PM to 7 PM) time, 

respectively. These two figures clearly show that change in 

time changes the locations from where more passengers’ 

request originates. Similarly, Fig. 14 represents the clusters 

formed during Saturday’s morning and evening time. Fig. 15 

represents the clusters formed in the evening time of 

weekdays and Saturday. This figure shows even at the same 

time, different days (Weekdays and Saturday) have different 

clusters representing changing behavior of passenger 

requests with days. The value of threshold used to calculate 

GS and CS is the mean value of grid and cluster in a time slot, 

respectively. The maximum clusters inside a grid is taken as 

16 (each cluster size will be greater than 250 sq. meters). 

   

Fig. 10. Heatmap of 

Pickup Locations on 

Weekday Mornings 

Fig. 12. Clusters for 

Weekday Mornings 

Fig. 14. Clusters for 

Saturday Mornings (Blue) 

and Evenings (Red)  

   

Fig. 11. Heatmap of 

Pickup Locations on 

Friday Evenings 

Fig. 13. Clusters for 

Weekday Evenings 

Fig. 15. Clusters for 

Weekday (Blue) and 

Saturday (Red) Evenings 

D. Grid and Cluster Scoring 

After obtaining the clusters, we calculate their 
profitability using Grid Score (GS) and Cluster Score (CS), 
and finally these scores are used to provide a 
recommendation. We need to normalize both GS and CS, so 
that they do not dominate the other one while calculating the 
final score for the recommendation. 

1) Cluster Score (CS): It is calculated by dividing the 

total number of points lying inside the cluster by the cluster 

threshold. Cluster threshold is taken as the mean of points 

present inside the clusters as shown in Eq 3. The cluster score 

calculation is given by the Eq 4. 

𝑇𝑐 =
∑ 𝑁𝑖

𝐶

𝐶
      …. (3) 𝐶𝑆𝑖 =

𝑁𝑖

Tc
      …. (4) 

where, 𝑇𝑐 is the cluster threshold, 𝑁𝑖
𝐶 is the number of 

points in cluster i, C is the total number of clusters, and 𝐶𝑆𝑖 
is the CS of cluster i. 

2) Grid Score (GS): It is calculated similar to CS where 

a cluster is replaced by a grid. Grid threshold is taken as the 

mean of points present inside the grids. Eq 5 and 6 represents 

the calculation of Grid Score. 

𝑇𝐺 =
∑ 𝑁𝑖

𝐺

𝐺
      …. (5) 𝐺𝑆𝑖 =

𝑁𝑖

𝑇𝐺
         …. (6) 

where, 𝑇𝐺 is the grid threshold, 𝑁𝑖
𝐺is the number of points 

in grid i, G is the total number of clusters, and 𝐺𝑆𝑖 is the GS 
of grid i. 

E. Taxi/Passenger Recommendation 
Taxi recommendation request by passengers contains 

information about their current location (Lat., Long.), 
recommendation time and day of the week. In this way, they 
can also make requests for a later time also and not only for 
present time. On the basis of all these parameters, nearby 
locations (w.r.to their current location) are suggested to them.  

Recommendation for taxi drivers is not straightforward 
like the passengers’. We develop a technique to address two 
concerns – (1) taxis should be directed uniformly to different 
locations instead of a small set of locations, and (2) distance 
to the recommended locations should not be very large. So, 
we need to strike a balance between taxi profitability and taxi 
availability. In order to achieve this objective we recommend 
the centroids of the clusters obtained by K-means clustering. 
Selection of top locations is done by giving a final score to 
each location based on the distance from taxi’s location to the 
recommended location, CS and GS (grid to which cluster 
belong). Eq. 8 shows the calculation of final Score. 

𝐷𝑆𝐿 = S𝑚𝑎𝑥 − 
D(T,   L) .  𝑆𝑚𝑎𝑥

R
 …. (7) 

𝐹𝑆𝐿 = 𝛼. 𝐶𝑆𝐿 +  𝛽. 𝐺𝑆𝐿 +  µ. 𝐷𝑆𝐿       (8) 

where L belongs to the set of locations (cluster centroid) 
within range. 𝐹𝑆𝐿 is the final Score of L, 𝐶𝑆𝐿 is the CS of 
location L, 𝐺𝑆𝐿 is the GS of location L, 𝐷𝑆𝐿 is the Normalized 
Distance Score (DS). DS is calculated using Eq. 7. S𝑚𝑎𝑥 is 
the maximum distance score, D (T, L) is the distance from 
taxi’s current location to the selected location, and R is the 
range within which locations are selected, i.e., the maximum 
allowable distance.  

From these equations, we can see that least distance will 
have maximum score, i.e., nearby locations are given a better 
score than locations far from the taxi. 𝛼, 𝛽, µ are the 
weightage given to each score. This scoring system will 
prevent recommending all the taxis to the same location. By 
adding DS, the final score will change as the distance of every 
taxi will be different from the same location. Taxis which are 
nearby, however, may get same recommendation. 

V. EXPERIMENTS AND RESULTS 

In this section, we describe the performance of our 
proposed algorithms.  

A. Performance Analysis of TSA 

1) Dataset: We use the taxi dataset of San Francisco [7] 

to check the working of TSA. The dataset contains GPS traces 

of 535 taxis over 22 days (from 18 May, 2008 to 8 June, 

2008). After cleaning and pre-processing , we found 414,865 

1924

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:08 UTC from IEEE Xplore.  Restrictions apply. 



 

passenger requests among which we select 16,500 passenger 

requests occurred on 19 - 20 May, 2008. 

2) Performance Metrics: Below, we formally define our 

performance metrics for TSA: 

 Selection Time: It is the time elapsed between 
origination of a passenger request and a corresponding 
confirmation is received by a selected taxi. 

 Average Blocking Time: It is the average amount of 
time during which Unoccupied taxis were in blocked 
state while executing the TSA. 

 Number of Messages (NM): It is the total number of 
messages exchanged between taxis and a passenger 
during the execution of the TSA. 

 Selection Accuracy Percentage (SAP): It is the 
percentage of times a taxi with the shortest PRT is 
selected.  

3) Simulation Details: We assume that the location of 

passenger request origin is same as the passenger’s pickup 

location. We use Omnet++ 5.0 [21] along with 

INetworkNode (INet) framework [22] for the simulation 

purpose. To create the scenario, we select the passenger and 

all the taxis within 1 km range of selected passenger, then we 

use their geographic locations to set their starting point in the 

simulation. The simulation parameters are given in Table III.  

TABLE III.  PARAMETERS 

Parameters Values 

Transmission Range (meters) 100 150 200 

Bit Rate 1 Mbps 

Number of Hops 5 

Taxi Speed 20 km/hr 

Taxi Mobility Random 

One scenario performs the selection process for one 
passenger request. So, our selection time is same as execution 
time. We use Google’s Distance Matrix API to calculate the 
time required by the taxis to reach the passenger’s location 
and the actual road distance. We calculate the results using 
three different transmission ranges. For the selection 
accuracy, we compare, TSA, EZCab [2] and G-TSA (similar 
to [3]).  

4) Results: The performance of G-TSA and EZCab is 

same for all the metrics except Blocking time and SAP. 

Therefore, we compare the performance of TSA with EZCab 

only for the Blocking time. For the remaining parameters, we 

compare the performance of TSA with G-TSA. 

    
(a) 100 meters 

    
(b) 150 meters 

    
(c) 200 meters 

Fig. 16. Blocking Time w.r.to 

Number of Taxis 

Fig. 17. Execution Time w.r.to 

Number of Taxis 

Fig. 18. NM vs Number of 

Taxis 

Fig.19. Average NM Per Taxi 

w.r.to Number of Taxis 

Blocking Time: Fig. 16 shows the comparison of average 
blocking time w.r.to the number of available taxis. In EZCab, 
all the Unoccupied taxis who receives request are blocked for 
a fixed period of time. While in TSA, we use an ACCEPT 
message to unblock the other taxis if a taxi with shorter time 
is available. So, TSA and G-TSA perform better in reducing 
blocking time. We can notice that the Blocking time is high 

for TSA if the numbers of taxis are very less which reduces 
with the increase in number of taxis. 

Execution Time: Fig. 17 (a), (b) and (c) show the 
execution time w.r.to the number of available taxis with 
variable transmission ranges. The execution time of the TSA 
is more than G-TSA as it waits for the REP of all the taxis and 
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selects the one with shortest time. G-TSA, on the other hand, 
selects the first free taxi without waiting for any other replies. 

Number of Messages: Fig. 18 and 19 depicts the total 
messages sent and average number of messages sent per taxi, 
respectively. In G-TSA, an Unoccupied taxi do not forward 
the REQ and a taxi who received REP message do not send 
the ACCEPT message to any of its children, hence the 
messages sent are less in G-TSA as compared to TSA. 

 
Fig. 20. Selection Accuracy Percentage 

Selection Accuracy Percentage: Fig. 20 shows the 
selection accuracy of all three algorithms with varied 
transmission ranges. TSA selects the taxi with shortest time 
more than 90% times. It sometimes fails due to message loss 
and transmission delay. 

B. Performance Analysis of HRA 
In this section, we describe the datasets used for HRA 

followed by our clustering methods and results. 

1) Dataset: We use two different datasets to check the 

working of HRA Model. First is San Francisco dataset (Ref. 

Section V(A)), where we use 9 days’ data to train the model 

and the next 13 days’ data to test it. We further used the NYC 

dataset, which consists of 12 months’ of trip records in the 

year 2015. Another dataset used is NYC taxi dataset (yellow 

taxis) [9] as described in Section IV(A). In both the datasets, 

the testing data is divided based on pickup day - Friday, 

Saturday, Sunday and Weekdays (See Section IV(B)). Then 

each dataset is further divided according to hour of a trip, and 

such 24 sets are made – one for each hour. 

2) Performance Metrics: To measure the working of 

HRA, we use the following performance metrics. 

 Taxi Availability Ratio (TAR): TAR represents the 
number of times the passengers get a taxi when 
requested. This is calculated as the ratio of number of 
taxis available to the number of passenger requests 
made across all the time slots, for all clusters in that 
time slot and all days in testing data. Eq. 9 shows the 
calculation of TAR. High ratio represents the less 
waiting time of passengers. 

𝑇𝐴𝑅 =
∑ ∑ ∑ min ( 𝑇𝑎𝑥𝑖𝑠𝑐

𝑑,𝑡, 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑐
𝑑,𝑡)𝑑𝑐𝑡

∑ ∑ ∑ 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑐
𝑑,𝑡

𝑑𝑐𝑡

    … (9) 

where t is a time slot, c is a cluster (c ∈ Cluster list) 
formed in time slot t, d is a day in testing data, 

𝑇𝑎𝑥𝑖𝑠𝑐
𝑑,𝑡

 is the number of available taxis in a given 

cluster, date and time slot, and 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑐
𝑑,𝑡 is the 

number of passenger requests made in a cluster given 
cluster, date and time slot. 

 Hit Ratio: Hit ratio represents the number of taxis 
who received a passenger during a time slot. It is given 
by the number of passenger requests made by the 

number of available taxis in all the time slots, for all 
clusters in that time slot and all days in testing data. 
Eq. 10 shows the calculation of Hit Ratio. High ratio 
represents a good recommendation to taxis, and 
reduced waiting and cruising time of taxis. 

𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 =
∑ ∑ ∑ min (𝑇𝑎𝑥𝑖𝑠𝑐

𝑑,𝑡,   𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑐
𝑑,𝑡)𝑑𝑐𝑡

∑ ∑ ∑ 𝑇𝑎𝑥𝑖𝑠𝑐
𝑑,𝑡

𝑑𝑐𝑡

  (10) 

where t is a time slot, c is a cluster (c ∈ Cluster list) 
formed in time slot t, d is a day in testing data, 

𝑇𝑎𝑥𝑖𝑠𝑐
𝑑,𝑡 is the number of available taxis at given 

cluster, date and time slot, and 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑐
𝑑,𝑡 is the 

number of passenger requests made at a given cluster, 
date and time slot. 

3) Results: In this section, we show the results obtained 

for San Francisco dataset. Due to space constraints we omit 

the results of using NYC dataset which is also very similar. 

San Francisco Dataset: To evaluate the increase in 

selection rate after recommendation, we select top 20 clusters 

on Friday, Saturday, Sunday and Weekdays, and calculated 

TAR for each day. TAR will show the number of requests 

fulfilled when it was made resulting in a decrease in waiting 

time of passengers. Table IV shows the TAR obtained for 

individual day category before the recommendation and after 

recommendation. The result shows an overall increase of 

8.725% after recommendation. 

TABLE IV.  TAR FOR SAN FRANCISCO DATASET 

Days 
TAR (Before 

recommendation) 

TAR (After 

recommendation) 

Friday 0.725078819146 0.854437788336 

Sat 0.730122746876 0.89643551523 

Sun 0.772526501767 0.810496236409 

Weekdays 0.818628175171 0.887917389010 

Overall 0.7860343954961428 0.8732912994307143 
 

TABLE V.  HIT RATIO FOR SAN FRANCISCO DATASET 

Algorithm/ 

Hit ratio 

Set 1 (α = 0.34, β 

= 0.33, µ = 0.33) 

Set 2 (α = 0.5, β 

= 0.3, µ = 0.2) 

Model created 

using K-means [13] 

Weekdays 0.607778336286 0.435972205582 0.4483678912 

Friday 0.586644832529 0.417380929407 0.3982883721 

Saturday 0.575202722322 0.400828539605 0.4103714374 

Sunday 0.604897785342 0.428763305370 0.4072697065 

Overall 0.599254108663 0.426831453986 0.4299144401 

We calculate hit ratio for all the clusters formed after 
clustering. The weightage given to CS (𝛼), GS (𝛽) and DS 
(µ) are 0.34, 0.33 and 0.33, respectively. Table V shows the 
Hit ratio achieved after recommendation for all the day 
categories. The result shows an overall Hit ratio (for all the 
days) of 0.449. Then we compare Hit ratio of San Francisco 
using two different value sets for score weights and compared 
their result with the model built using K-means and obtained 
a 17% improvement. 

NYC Dataset: We calculate Hit ratio of NYC dataset 
using HRA model and compared it with another model which 
is created by applying K-means [13] on the whole dataset 
without making any data division which we did in our 
approach. We calculate Hit ratio for two different sets of 
values for the weightage given to CS (𝛼), GS (𝛽) and DS (µ). 
In set 1, equal weightage of 0.33 is given to all, while in set 
2, the values of 𝛼, 𝛽, µ are taken as 0.5, 0.3 and 0.2, 
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respectively. Table VI shows the hit ratio of HRA for both 
sets and the model created using K-means algorithm. It is 
found that set 1 gives better results than set 2 and model using 
the model generated using K-means algorithm. The result of 
set 2 is almost same as the results obtained from K-means 
algorithm, which shows the selection of weightage 
parameters is important. 

TABLE VI.  HIT RATIO FOR NYC DATASET 

Days Hit Ratio 

Friday 0.424431968047 

Saturday 0.450935241604 

Sunday 0.463739376771 

Weekdays 0.452065704331 

Overall 0.449082502799 

VI. CONCLUSION AND FUTURE WORKS 

In this paper, we focused on better coordination between 
passengers and taxi cabs, as public transport facilities, which 
can reduce passengers’ waiting time while improving taxi 
drivers’ profit by increasing taxi occupancy rate. First, we 
proposed a Taxi Selection algorithm which aims to find a taxi 
that can reach the passenger’s location in least possible time. 
We also proposed a Hotspot Recommendation Model which 
suggests taxi drives (passengers) nearby locations where the 
chances of finding passengers (taxis) are high. We have 
carried out extensive empirical evaluation of our proposed 
schemes using two large scale taxi datasets of San Francisco 
and New York and have established the strength of our 
schemes. In future, we plan to introduce a cognitive model 
which updates the solution using current information in an 
adaptive manner and based on current passenger movements. 
This will be useful for locations which have recently become 
popular because of the opening of a new landmark and was 
not included in the old model, and it also eliminates the 
locations where from the passenger requests have reduced. 
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