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Abstract— Taxicabs play an important role in urban public 

transportation. Analyzing taxi traffic of Shanghai, San 

Francisco, and New York City, we have found that the short trips 

within city are mostly of commuters during office hours and span 

a specific city area. Now, if the large number of commuters are 

ready to share their rides, that will have a huge impact on the 

‘super-commute’ problem faced in various cities of USA and 

around the world. While ride-sharing can increase taxi 

occupancy and profit for drivers and savings for passengers, it 

reduces the overall on-road traffic and thereby the average 

commute time and carbon foot-print. While centralized ride-

sharing services, like car-pooling, can address the problem to 

some extent, they lack scalability and power to dynamically 

adapt the taxi schedule for best results. In this paper, we propose 

a four-way model for the ride-sharing problem and develop a 

novel distributed taxi ride sharing (TRS) algorithm to address 

dynamic scheduling of ride sharing requests. Our algorithm 

shows the overall reduction in total distance travelled by taxis as 

a result of ride sharing. Empirical results using large scale taxi 

GPS traces from Shanghai, China show that TRS algorithm can 

grossly outperform a Taxi Distance Minimization (TDM) 

algorithm. TRS accommodates 33% higher ride share among 

passengers while dealing with 44,241 requests handled by 4,000 

taxis on a single day in Shanghai. 

Keywords—Taxi ride sharing; Smart Transportation; 

Distributed Coordination; Data Analysis; GPS traces. 

I. INTRODUCTION 

Transportation in big cities is often a nightmare for 
commuters mainly during peak hours of the working days. In 
this paper, we focus on taxis as a convenient and comfortable 
medium of public transport. Since, number of taxis often falls 
short of demand, during peak hours, passengers may have to 
queue up for a long time to get a taxi. While increasing number 
of taxis in a city will lead to more traffic congestion and 
growing carbon footprint, ride sharing can address those 
problems, given the willingness of passengers to share rides.  

Fig. 1(a) and (b) shows the heat map of the taxi pickup and 
drop-off locations, respectively for a particular day (February 
20, 2007) in Shanghai, China. The regions of higher intensity 
are shown as red and the regions of lower intensity are shown 
as green. Close observation shows that the pickup and drop-
off locations are spread across a particular area of the city and 
are not widely distributed. From this, we can conclude that 
commute of people usually shares common routes. That 
means, it is possible for two or more passengers to share a 
complete ride or a part of it as long they are spatially and 
temporally co-located for the whole or part of the trip. Efficient 
ride sharing systems can decrease passenger’s waiting time, 

travel cost (using cost sharing among riders) and carbon 
footprint while increasing average taxi occupancy and thereby 
driver’s profit. 

Ride sharing can be either static (pre-coordinated offline 
between a number of passengers and does not change 
afterwards, like Dial-a-Ride [1]-[6] or carpooling [7][8]) or 
dynamic (real-time and online). Static ride sharing solutions 
collect all the requests and apply various heuristics or 
optimization based strategies to achieve the best results. 
Dynamic Ride Sharing, on the other hand, is non-trivial as it 
requires a moving taxi to continuously adapt its schedule in 
real time in order to accommodate eligible (which are possible 
to serve) incoming requests. An incoming request is 
considered eligible by a taxi, only if the associated pick up and 
drop off events are not in conflict with the already accepted 
events in the current schedule of the taxi. 

  
(a)  (b)  

Fig. 1. Heat map for (a) pickup and (b) drop-off locations 

Existing solutions for dynamic ride sharing are either 
centralized or distributed. Centralized solutions require all 
passengers and taxi drivers to communicate to a central server, 
which does a back-end match making and often becomes a 
bottleneck due to the lack of scalability. Distributed Real Time 
Taxi Ride Sharing Solutions operate by independent localized 
co-ordinations between passengers and Taxis using message 
passing. However, to the best of our knowledge, there is no 
distributed taxi ride sharing algorithm with extensive 
experimentation using real taxi GPS traces. 

In this paper, we have proposed four different models for 
distributed ride sharing and developed a generic algorithm. We 
assume synchronous wireless messaging system with real-time 
responses. In summary, we make the following contributions 
in this paper: 

 Four different models for ride sharing have been 
proposed depending on the pickup and drop off 
locations of passengers interested in ridesharing. The 
models vary from most constrained to most generic in 
terms of flexibility of ride sharing. 

Real-Time Distributed Taxi Ride Sharing 
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 A novel distributed algorithm for ride sharing among 
numerous passengers has been proposed which works 
by localized communication between nearby 
passengers and taxi drivers. The algorithm accepts 
real-time ride requests and checks whether they can be 
accommodated into the existing taxi schedule with 
nominal finite delay to the other passengers.  

 We have evaluated our proposed scheme using large 
scale GPS traces of 4,000 taxis in Shanghai. We have 
successfully adapted the dataset pertaining to 
individual taxi rides for testing our ride sharing 
algorithm and this step in itself was quite challenging. 
Our extensive experimentation reveals that ride 
sharing can effectively increase driver’s profit and 
passenger's savings while reducing the total distance 
travelled (without ride-sharing).  

II. LITERATURE SURVEY 

Ride sharing in public vehicles is an interesting problem 
which has received recent attention from multiple researchers. 
The existing literature in this area can be divided into static 
and dynamic ride sharing.  

A. Static Ride Sharing Solutions 

Static Ride Sharing are of different types - dial-a-ride, 
carpooling and slugging. Dial-a-Ride Problem (DARP) [1] is 
a NP-hard problem and existing papers try to intelligently 
group passengers for ride sharing so that the travel costs can 
be minimized on various routes. They either use integer 
programming based optimization [2] or adopt various 
heuristics to solve large static DARP instances [1][3][4][5][6]. 
Carpooling is a regular commute service of passengers like 
going to office from home or vice versa. It does not take into 
consideration the trip request which are generated in real time 
as discussed in [7][8]. Slugging is a typical form of ride 
sharing where passengers walk to the origin of the driver’s 
trip, board at the departure time, debark at the driver’s 
destination and then walk to their own destinations [9]. 

B. Dynamic Ride Sharing: Centralized Approach 

Dynamic ride sharing problem considers that the requests 
from passengers are generated in real-time and on-the-fly. So, 
we need algorithms to match ride requests with the available 
vehicles in real-time while aiming to optimize the costs. Based 
on the solution approach, existing works on dynamic ride 
sharing can be either centralized or distributed.  

Centralized schemes have been thoroughly surveyed in 
[10] with respect to the adopted optimization strategies that 
match drivers and riders in real-time. An opportunistic user 
interface to support centralized ride sharing planning has been 
designed in [11] while preserving location privacy. In [12], 
taxi searching, scheduling process is performed in cloud. In 
[13], central server is used for searching and scheduling. In 
[14], rides are considered to be “one to many” (one pick up 
but different drop off locations), and “many to one” (one drop 
off location but many pick up locations) and there is a central 
server. These approaches are not scalable. 

Taxi searching is an important module in taxi ride sharing. 
In [12][15][16][17], the process of searching a taxi is 
facilitated by partitioning the road network into square grids. 

In [13][16][17], branch and bound and integer programming 
solutions are proposed although they are not dynamic. 
Authors in [18] propose to reduce the taxi search space using 
two constraints, such as seat availability and destination 
closeness but do not consider reducing passenger waiting 
time. In order to address the scalability issues of centralized 
systems, [19] has proposed to use Hadoop MapReduce and 
[20] uses cloud computing. In [21], the main focus is on 
matching of passengers with drivers with minimum matching 
latency.  

Heuristic algorithms to solve the problem of taxi ride 
sharing has been proposed in [6][22][23][24][25]. In [25], 
passengers are transferred between multiple drivers to reduce 
the total miles travelled by the taxi. However, the system is 
not flexible for passengers because they have to switch 
between multiple drivers in between their journey. We have 
implemented this algorithm and compared it with the 
performance of our proposed algorithm (see Section V(G)). 

In [26], commuters connect with each other through social 
network like Twitter and arrange rides with each other. 
However, the information about traffic and the constraints for 
passengers have not been taken into account and in [27], 
mobile phone Call Detail Records (CDRs), Twitter, and 
Foursquare data have been used for the trips between home 
and work location. In [28], close by requests are grouped 
together to utilize cab space efficiently. Parallel algorithms 
along with space partitioning techniques have been used to 
improve the scalability of the system.  

C. Dynamic Ride Sharing: Distributed Approach 

An algorithm for dynamic ride sharing through distributed 
coordination among vehicles and passengers has been 
proposed in [29], which first inserts a new request at the end 
of a taxi schedule and then calculates all the possible 
permutations of the routes which the taxi can follow. A purely 
distributed and very loosely coupled system for ride sharing 
has been proposed in [30]. However, this system is more 
conceptual and is not tested. In [31], based on the geometry 
matching, passengers are matched with vehicles considering 
the traffic information obtained through message exchanges. 

Vehicle to vehicle (V2V) and Vehicle to Road (V2R) 
communications have been used in [32] to provide ride 
sharing services. Carpooling information collected by Road 
Side Unit (RSU) is broadcasted within its one hop 
communication range. Geometric method is used by vehicles 
to create travel path for carpooling service. In [33], the 
transportation network has been considered as an ad-hoc 
mobile geo-sensor network with different communication 
strategies for dissemination of ride sharing requests. In [34], 
an agent based concept is used for real time carpooling. 
Dijkstra algorithm has been used in distributed manner to find 
the shortest path for route calculation. In [35], the concept of 
detour has been explained. Two more interesting dynamic 
solutions are proposed in [36][37]. In summary, there is no 
fully functional distributed algorithm for taxi ride sharing. 

III. DEFINITIONS, VARIABLES AND SYSTEM MODEL 

In this section, we present four different system models for 
ride sharing depending on the pickup and drop off locations 
of passengers interested in ridesharing. Before presenting our 
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system models, we formally define some key terms and 
concepts used in our algorithm. 

Event: Taxi considers each REQUEST (see Table II) from 
a passenger as a composition of two events, one pickup (epick) 
and the corresponding drop-off (edrop). Each event (e) has 
some attributes like Id, location (latitude and longitude), time 
of occurrence and a Boolean flag to distinguish between 
pickup (flag = 0) and drop-off (flag = 1) events.  

Taxi Schedule / Event order schedule: Every taxi has 
two schedules - temporary and permanent and they consist of 
a sequence of events ordered by their timestamps of 
occurrence (not timestamp of REQUEST arrival). Each taxi 
inserts events from a REQUEST in its temporary schedule and 
checks for their eligibility to incorporate in the permanent 
schedule. Events in the temporary schedule are eligible iff 
they are not in conflict with events in the permanent schedule. 
Expired events from the permanent schedule are deleted 
during each update. Taxis operate only as per their permanent 
schedule. 

A. Variables and Data Structures 

In this section, we have listed the variables and data 
structures (Table I) as well as messages (Table II) used in the 
description and the pseudocode of our proposed algorithm.  

TABLE I. VARIABLES AND DATA STRUCTURES USED IN ALGORITHM 

Variables Significance 

Pid Unique integer identifier of a Passenger P 

Sp Pick up location (latitude, longitude) of P 

Dp Drop off location (latitude, longitude) of P  

t Time at which P made a ride sharing request  

MAX_WAIT Maximum time (mins.) up to which P wait for pickup 

duration Time interval for which P travels in taxi. (journey time) 

Δ 
Maximum Time (in mins.) up to which the duration can 

be exceeded from the actual time of trip (slack time) 

Tid Unique integer identifier of a Taxi T 

Tloc Current location (latitude, longitude) of T  

speed Average speed of each taxi (40 km/hr.) 

N Capacity (in integer) of T, it is set as 4  

Nvac Number of available seats (in integer) in T 

e Pick up (epick) or drop-off (edrop) event 

Qp Permanent schedule at T for final storage of e 

Qt Temporary schedule at T for temporary storage of e 

pick_ index The position where e is inserted in Qt 

timep Time (in minutes) estimated by T to reach Sp 

timed 
Time (in mins.) estimated by T to reach Dp (considering 

current state of Qt and road congestion)  

Ckm Cost per km, we have assumed it to be Rs. 22/km 

Cp Estimated total cost (real value) for the ride of P.  

time (a, b) 
Time (in minutes) estimated by T to reach b from a 

where a and b are (latitude, longitude) pairs  

dist (a, b) 
Distance (in kms) estimated by T between b and a where 

a and b are (latitude, longitude) pairs  

L Sorted (w.r.to Cp) list of REPLY messages stored by P.  

status 
Boolean flag to indicate if taxi is selected (status = true) 

or rejected (status = false) 

actual time Time taken to travel directly from Sp to Dp 

TABLE II. MESSAGES USED IN ALGORITHM 

Messages  Significance 

REQUEST (Pid, Sp, Dp, t) Request for ride sharing sent by P  

REPLY (Tid, timep, timed, Cp) Reply from T to P with estimated pick up 
time, drop off  time and cost for ride  

CONFIRMATION (Pid, status) Acceptance / Rejection status sent by P to T  

B. System Model and Assumptions 

Given a set of passengers P = {p1, p2,…, pn} and a set of 
taxis T= {t1, t2,..., tm}, the models (Table III) are as below: 

 Model 1: For all pi ⊆ P and pi ≤ N, the pickup and drop 
off locations are same. This is the most constrained 
case and can be statically scheduled. There is only one 
pair of event in the event order schedule. 

 Model 2: For all the users, u ⊆ P and u ≤ N, the pickup 
location is same (e.g., Airport, Rail Stn.) but they have 
different drop off locations. For n number of 
passengers, the total number of events in taxi’s 
schedule is bounded by (n+1). 

 Model 3: For all the users, u ⊆ P, the pickup locations 
are different but they have same drop off location (e.g., 
Airport, Stadium). For n passengers, total number of 
events is bounded by (n+1). 

 Model 4: For all the users, u ⊆ P, the pickup and drop 
off locations are different. This case is most generic 
and the taxi starts after picking up the first passenger 
and decides on other passengers while on the move 
(dynamically). For n number of passengers, the event 
order schedule may contain maximum (n x 2) events. 

TABLE III. MODELS OF RIDE SHARING 

                Pickup Location 

Drop-off  

Location 

Fixed Different 

Fixed  M 1/ static M 3/ dynamic 

Different  M 2/ static M 4/ dynamic 
 

In this paper, we have proposed a dynamic algorithm to 
solve the most generic model (Model 4) since the other 
models are more constrained cases of the M4. Both a taxi and 
a passenger check eligibility of a new REQUEST as per the 
following constraints:  

 The speed of eligibility determination of a request is 
much faster than the taxi speed. 

 Every passenger request is actually a ride sharing 
request for one seat at a time and taxis must commit 
as per their capacity: Empty => Nvac = N, Full => Nvac 
= 0, Otherwise => 0< Nvac < N.  

 Waiting time of a passenger is upper-bounded by 
MAX_WAIT. 

 The pickup event timestamp should always precede 
the drop-off event timestamp for the same REQUEST. 
(precedence rule). 

 Promised pickup and drop-off times for committed 
passengers are strictly upper bounded by Δ (No 
Conflict rule). 

IV. TAXI RIDE SHARING (TRS) ALGORITHM 

Our algorithm (Fig. 2) starts when a passenger (Pi) 
broadcasts a REQUEST message to all the taxis within the 
wireless transmission range of 200 meters. A taxi on receiving 
a REQUEST, inserts the corresponding events in its temporary 
schedule (Qt) and checks their eligibility (lines 7-9) using the 
Schedule ( ) procedure. If the events are eligible, the taxi sends 
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REPLY to P and waits for CONFIRMATION (line 10-11). P 
collects all the REPLY and sorts it w.r.to cost, available seats 
(objective is to maximize occupancy) and minimum time to 
destination and sends CONFIRMATION to the most suited 
taxi (line 3-6) with a true status and false to others. On 
receiving a CONFIRMATION with true status, the taxi 
updates the eligible events into the permanent schedule (Qp), 
otherwise, the events are removed from Qt (line 12-15). 

Eligibility of a request is the possibility of the 
corresponding pick up and drop off events to be incorporated 
into the permanent schedule of a taxi and is evaluated using 
the Schedule () function. For Pickup Scheduling, a taxi finds 
the appropriate value of the pick index to insert the pickup 
event of P. If the taxi is full, then pickup event can be inserted 
only after the first existing drop-off event in Qt. Let insertion 
of pickup event (epick) is checked between events ej and event 
ek (see Fig. 3), where j and k are any integer values between 0 
and size of schedule length, and j<k. Before inserting the epick, 
following constraints are checked which are self-explanatory. 

Pseudo Code at Passenger’s end 

1. L  ∅ 

2. Broadcast REQUEST message 

3. L.append (REPLY message) \\collect REPLY messages  

4. Sort L based on Cp and then based on Nvac and then based on timed 

5. Select the taxi from L where wait time < MAX_WAIT and 

duration ≤ actual time+  Δ 

6. Send CONFIRMATION message to the selected taxi with status as 

true and with status as false to the rejected taxis  

Pseudo Code at Taxi’s end 

7. pick_ index  Schedule (Qt, P ,1, Sp) 

8. drop index  Schedule (Qt, P, pick_index+1, Dp) 

9. Insert pickup and drop-off in Qt 

10. Send REPLY message to P 

11. Wait for CONFIRMATION message from P 

12. if status=true then  

13.         Insert pickup and drop-off in Qp 

14. else 

15.         Remove pickup and drop-off event from Qt 

Schedule (Qt, P, index, e.loc) 

16. while index < Qt.size() do 

17.     time1time(Qt[index-1].loc, Qt[index].loc) 

18.     time2time(Qt[index-1].loc, e.loc) 

19.     time3time (e.loc, Qt[index].loc) 

20.     if time1 > time2 then 

21.          if Qt[index-1]. time + time2 + time3 ≤ Qt[index].time then 

22.                time Qt [index-1]. time + time2 

23.                return index 

24.     index++ 

25. schedule_length Qt.size()-1 

26. time2time(Q[schedule_length]. loc, e.loc) 

27. timeQt[schedule_length].time + time2 

28. return schedule_length+1 

Fig. 2. Pseudocode of Taxi Ride Sharing (TRS) Algorithm 

time 2(ej, epick) < time 1(ej, ek) (1)            [line 20] 

time 2(ej, epick) + time 3(epick, ek) ≤ ek.time   (2)       [line 21] 

If there is no suitable interval in the taxi schedule is found 
to insert the pickup event, it is inserted at the end of the taxi 
schedule (line 25-28). The drop-off scheduling works similar 
to the pick-up scheduling keeping in mind that the drop-off 
event of P can be inserted after pickup event of P (precedence 
rule). This is ensured by passing index as pick_index+1. 

 
Fig. 3. Constraint Checking 

V. EXPERIMENTS AND RESULTS 

In this section, we describe the performance of our 
proposed algorithms.  

A. Dataset 

The biggest difficulty of testing our ride-sharing algorithm 
is that there is no ride-sharing related data available. So, we 
use a large-scale taxi GPS traces of Shanghai, China [38] for 
testing our proposed algorithm. The Shaghai dataset consists 
of GPS traces of 4,000 taxis collected over a duration of more 
than two years. The taxis operates in the whole urban area of 
Shanghai, which covers an area of over 120 square kilometers 
and sends GPS signals with periods varying from 10 seconds 
to several minutes.  

The dataset has attributes like taxi id, latitude, longitude, 
speed, angle, date-time and the Boolean status of the taxi 
(with / without passenger). We separated taxi-specific data for 
entire days and then sorted it, first date-wise and then pick-up 
time-wise (when the status variable changes to 1). In order to 
simulate the scenario of multiple requests for ride-sharing 
being submitted from the same or nearby regions, we have 
applied DBSCAN clustering on the real data set and assigned 
the requests that were within half km range of each other, to 
the same cluster. After finding the cluster for each request, 
requests were sorted based on cluster id so that requests from 
nearby regions can be grouped together. We have assumed 
that requests are submitted from the sorted list of requests to 
ensure that the requests are coming from places which are 
nearby. Since, we do not have the coordinates of path followed 
by a taxi, it is assumed to follow the discrete location 
coordinates of different events it serves and the taxi location is 
updated from the location of previous event to that of current 
event at the specific time of occurrence of those events. 

 

Fig. 4. Number of Requests submitted on each day 

We have performed experiments using data from February 
20-26, 2007. The total number of requests submitted on each 
of these days is shown in Fig. 4, which peaks on 24-02-2007 
(Saturday). Fig. 5 analyzes hour-wise the data for 20-02-2007. 

Broadcasting of REQUEST message is done within a 
range of 200 meters. We have calculated this distance using 
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Haversine formula and the distance and time between two 
locations is calculated at taxi’s end using Google Map 
Direction API [31].  

 

Fig. 5. Number of Requests submitted on 20-02-2007 per hour 

B. Ride Sharing Cost Calculation 

In a ride sharing, passengers may share some portion of 
distance with other peers in a taxi. So, the cost for the distance 
which is shared among 2 or more passengers, is divided 
uniformly among those passengers. The taxi calculates the 
cost (Initialcost) for ride sharing for P and communicates using 
a REPLY message. 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑐𝑜𝑠𝑡 = (
𝑑1

𝑛1
+

𝑑2

𝑛2
+ ⋯ + ⋯

𝑑

𝑛
) ∗ 𝐶𝑘𝑚 ……. (1) 

In eqn. (1), d1, d2, d3,...,d are the distances which taxi has 
to travel between the pickup and drop-off location of P and 
n1, n2, n3,...,n is the number of passengers in a taxi who 
together share the distance d1, d2, d3,...,d, respectively. The 
parameter Ckm indicates the monetary cost incurred for 
carrying passenger per kilometer (cost/km). When the 
passenger is dropped off the taxi, the cost is computed again 
using Eqn. (1). The re-computation is done because after 
communicating the initial cost to P, some other passengers 
may also have joined the ride and may have shared some 
distance with the existing passengers and thus they can cause 
the cost to be reduced further.  

𝑅𝑖𝑑𝑒𝑠ℎ𝑎𝑟𝑒𝑐𝑜𝑠𝑡 = (
𝑑1′

𝑛1′
+

𝑑2′

𝑛2′
+ ⋯ . .

𝑑′

𝑛′
) ∗ 𝐶𝑘𝑚… (2) 

The parameter {d1’, d2’,…., d’} indicates the distance 
between pickup and drop-off for a single passenger and {n1’, 
n2’,…. ,n’} indicates the number of passengers who share this 
corresponding distance in the end of trip of that particular 
passenger. Passengers will only pay for the finally calculated 
cost which is possibly lower than the initially quoted price. 

C. Performance Metrics 

In the next section, we discuss about the performance 
metrics used in our system. 

 Percentage of Requests Satisfaction (PRS): It is the 
ratio of the ride sharing requests satisfied by the taxi 
(Ns) to the total number of ride sharing requests (M) 
made to the taxi.  

𝑃𝑅𝑆 = (
𝑁𝑠

𝑀
) ∗ 100 

 Percentage of Savings per Passenger (SPP): It is the 
ratio of savings for a ride (S) per passenger to the 
initial cost for ride (Initialcost) per passenger. SPP is 
calculated as below. 

𝑆 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑐𝑜𝑠𝑡 − 𝑅𝑖𝑑𝑒𝑠ℎ𝑎𝑟𝑒𝑐𝑜𝑠𝑡 

𝑆𝑃𝑃 = (
𝑆

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑐𝑜𝑠𝑡

) ∗ 100 

If we calculate the savings of a passenger in terms of 
monetary value (Sm), then we can use: 𝑆𝑃𝑃 = 𝑆. 

 Percentage of Ride Sharing (RS): It is the percentage 
ratio of the number of passengers whose request is 
satisfied (Nr) to the number of passengers who 
travelled together in a taxi (Np). 

𝑅𝑆 = (𝑁𝑝/𝑁𝑟) ∗ 100 

 Usability Ratio per taxi (UR): It is the ratio of the time 
the taxi had one or more passenger (Tusable) to the total 
time the taxi travelled on road (Ttotal) for a particular 
day.  

𝑈𝑅 =
𝑇𝑢𝑠𝑎𝑏𝑙𝑒

𝑇𝑡𝑜𝑡𝑎𝑙

 

 Relative Distance Ratio (RDR): The shortest-path 
distance between the pickup and drop-off location of a 
request is called distance of a request. RDR is the ratio 
of the total distance travelled by the taxi (DT) to the 
sum of distances of requests (DR) that got fulfilled with 
more than one passenger (on a particular day). 

𝑅𝐷𝑅 =
𝐷𝑇

𝐷𝑅

 

If RDR is smaller than 1, then it indicates that ride 
sharing actually reduces total distance travelled. 

 Waiting Time per passenger (WT): It is the mean time 
elapsed between a time a ride sharing reqare u uest is 
submitted by a passenger (t) and the time the passenger 
is picked up by a taxi (timep). 

𝑊𝑇 = 𝑡𝑖𝑚𝑒𝑝 − 𝑡 

D. Experimental Setup 

The simulation parameters used for implementation is 
shown in Table IV.  

TABLE IV.  SIMULATION PARAMETERS 

Parameters Value 

Wireless Transmission Range (Tx) 200 m 

Number of Shifts for Taxis 3 (0-7, 8-15 and 16-23) 

Number of Taxis in each Shift 4,000 

Capacity of each Taxi (N) 4 

Number of Passengers/Requests in a day 44,241 

MAX_ WAIT 10, 15 (min.) 

Δ (slack time) 5, 10 (min.) 

 

We have performed our experiments using the data set of 
Shanghai with 44,241 passenger's requests. The requests of 
passengers are submitted in real time from the data set. Java 
is used to implement the framework. We have used Intel(R) 
Core (TM) (2.80GHz) processor for the experiment. Multi-
threaded environment is used to simulate the taxis, i.e., each 
taxi represents one thread. Google Map API is used to 
calculate distance and time between two locations. 

E. Results of Our Proposed TRS Algorithm 

The number of requests fulfilled in each hour of a day is 
shown in Fig. 6. The total number of requests submitted on 
20-02-2007 was 44,241 and out of these, 15,382 requests were 
fulfilled (Rf), i.e., ~ 34% of the total requests got fulfilled. 
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Fig. 6. Number of requests fulfilled in each hour of a day 

Variation of RS with each hour of a day is shown in Fig. 
7. It can be observed that, RS is highest during 7-8 am. There 
were 15,382 requests which got fulfilled (Rf) and out of these, 
531 passengers (~3.5%) journeyed in ride sharing and 
remaining passengers journeyed individually.  

 

Fig. 7. Percentage of Ride Sharing per hour 

Because of ride sharing, passengers have to pay less than 
what they have to pay without ride sharing. The savings for 
passengers is shown in Fig. 8. 

 

Fig. 8. Average Savings (Rs.) per hour 

The average UR for a taxi is approx. 87.99% during 0-7 
hour, 86.47 % during 8-15 hour and 88.89 % during 16-23 
hour. So, the taxis are being efficiently utilized. 

F. Results by varying MAX_WAIT and slack time (Δ) 

We have calculated the results using different values for 
MAX_WAIT and Δ. Variation of Rf with varying 
MAX_WAIT values are shown in Fig. 9(a) and (b), 
respectively. It can be observed that with increase in Δ, Rf  also 
increases. 

  
(a) (b) 

Fig. 9. Number of Requests Fulfilled (Rf) w.r.t. MAX_WAIT and Δ 

We also calculated the number of passengers who 
journeyed via ride sharing by changing the value of 
MAX_WAIT and Δ, and plotted the results in Fig. 10(a) and 
(b) with varying MAX_WAIT values. We get an insight that 
number of passengers who journeyed via ride sharing 
increases as the constraints are relaxed. 

  
(a) (b) 

Fig. 10. No. of Passengers in Ride Sharing w.r.t. MAX_WAIT and Δ 

Fig. 11 shows that total savings per passenger (Sm) 
increases with increase in Δ. This happens because as Δ 
increases, there are more chances that a passenger event will 
be inserted in between the journey of other passengers, 
because the chances that the constraints for other existing 
passengers will get violated, is less. 

 
Fig. 11. Total Savings per Passenger w.r.t. MAX_WAIT and Δ  

Fig. 12(a) and (b) show the variation of UR with varying 
Δ. We can observe that as the value of MAX_WAIT increases, 
UR decreases. As shown in Fig. 9, Rf increases with increase 
in MAX_WAIT. Thus, there are more chances that even 
though passenger is inserted at the end of the schedule, still 
passenger will accept the response from the taxi. Therefore, 
the total time up to which taxi travelled on road without 
passenger increases, which in turn, decreases the value of UR. 

  

(a) (b) 

Fig. 12. Usability Ratio (UR) w.r.t. MAX_WAIT and Δ 

The variation of RDR w.r.to different parameters is shown 
in Table V. The value of RDR is always less than one in all 
the cases. Thus, the value of DT is reduced if there is ride 
sharing. 

TABLE V. VARIATION OF RDR W.R.TO. MAX_WAIT AND Δ  

Shift of Taxi  

(in Hours) 

MAX_WAIT=10 min MAX_WAIT=20 min 

Δ =15 min Δ =20 min Δ =15 min Δ =20 min 

0-7 0.98 0.97 0.98 0.97 

8-15 0.97 0.96 0.95 0.75 

16-23 0.99 0.99 0.99 0.99 
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G. Comparisons of Results with Another Algorithm 

We have implemented the Taxi Distance Minimization 
Algorithm (henceforth called ‘TDM’) described in [25] for 
comparison purposes. The main objective of TDM is to 
minimize the distance travelled by taxis. For each possible 
pickup event insertion in taxi schedule, every possible interval 
for inserting drop-off event, is checked. For each of the 
possible schedule created after inserting pickup and drop-off 
events, the distance that taxi has to travel is calculated. The 
schedule in which distance travelled by taxi is minimum is 
selected as a feasible schedule and the response is sent to 
passenger. Let n (and m) be the number of intervals where 
pickup (and drop-off) event can be inserted, respectively. So, 
the complexity of TDM is O(n*m).  

 
Fig. 13. Comparison based on Percentage of Ride Sharing 

The variation of RS with each hour of a day using TRS 
and TDM are shown in Fig. 13. RS is higher for TRS except 
during hours 16-17, 17-18 and 18-19. In order to minimize DT, 
TDM considers inserting pickup and drop-off events at such 
positions in a taxi schedule which may not allow ride sharing. 
However, TRS aims to increase RS without considering DT. 
As observed in Fig. 13, RS is high during morning hour 7-8 
using TRS, whereas using TDM, RS is maximum during hour 
18-19. 

 

 

Fig. 14. Comparison based on average Savings per passenger  

Fig. 14 shows the variation of Sm in each hour of a day. It 
can be observed that using TRS, Sm is higher during most of 
the hours while compared to TDM. This happens because 
TRS aims to increase ride sharing unlike TDM, and higher 
sharing (also shown in Fig. 13.) increases the Sm (savings). 
Similarly, variation of SPP is shown in Fig. 15 and similar 
trends for TRS and TDM are also observed for this case. 

 
Fig. 15. Comparison based on Percentage of Savings 

Though ride sharing is economical for passengers it might 
increase passenger waiting time. As shown in Fig. 16, TRS 
incurs higher WT than TDM except during hours 16-17, 17-
18 and 18-19 (times during which TDM sports higher RS, as 
per Fig. 13).  

 
Fig. 16. Comparison based on average waiting time 

We have assumed that there are three shifts for the taxis. 
Shift 1 is for 0-7 hours, shift 2 is for 8-15 hours and Shift 3 is 
for 16-23 hours. The distance travelled by taxis with 
passengers in each shift is plotted in Fig. 17 and we can see 
that taxis travelled more distances with passengers in Shifts 2 
and 3 using TRS. 

 
Fig. 17. Distance Travelled by Taxis with Passenger 

As described in Table VI, RDR is less than 1 in each shift 
of the taxi using TDS. This indicates that using TDS, taxis are 
able to provide ride sharing and reduces DT. However, using 
TDM, RDR is greater than 1 for shift 0-7 which shows that 
taxis using TDM are not saving on DT by ride-sharing. 

TABLE VI.  COMPARISON OF RDR USING TRS AND TDM ALGORITHM 

Taxi 

Shifts  

TRS Algorithm  TDM Algorithm  

 DT (km) DR in km RDR DT in km DR in km RDR 

0-7 23173.38 23691.54 0.97 35820.64 25468.936 1.41 

8-15 43689.12 58185.5 0.75 34519.95 40295.06 0.85 

16-23 41901.1 42031.84 0.99 38514.13 39435.72 0.97 

VI. CONCLUSION AND FUTURE WORKS 

In this paper, we proposed a linear time distributed taxi 
ride sharing (TRS) algorithm, which aims to increase taxi 
occupancy and profit for drivers and savings for passengers. 
Our algorithm also reduces the total distance travelled by taxis 
as passengers share ride for the common path. Empirical 
results using a large scale taxi GPS traces from Shanghai, PRC 
shows that TRS algorithm can greatly outperform a Taxi 
Distance Minimization (TDM) algorithm [25]. TRS algorithm 
accommodates 33% higher ride share among passengers while 
dealing with 44,241 requests handled by 4,000 taxis on a 
single day in Shanghai. In future, we plan to extend our 
algorithm to incorporate rider matching based on gender, 
friendship or interest factors. 
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