
Cross-Layer Protocols for WSNs: A Simple Design
and Simulation Paradigm

Mohamed Hefeida∗, Min Shen∗∗, Ajay Kshemkalyani∗∗ and Ashfaq Khokhar∗

* Department of Electrical and Computer Engineering
** Department of Computer Science

University of Illinois at Chicago, Chicago, IL 60607
Email: {mhefei2, mshen6, ajay, ashfaq}@uic.edu

Abstract—In this paper, we propose a Cross-Layer Application-
aware Paradigm (CLAP) for designing and simulating Cross-
Layer (CL) protocols. CLAP allows each layer to publish its local
information to be shared with other layers and subscribe to other
layers’ shared information via an Information-Layer (I-Layer).
The controlling layer, where optimization decisions are made,
also utilizes the I-Layer to configure the behavior of other layers
according to its current demands and their reported status. The
publish/subscribe behavior is achieved by a new API designed as
an augmentation to the SIDnet-SWANS simulator. This eliminates
the need for bypassing/hacking conventional design hierarchies
and simulator architectures, which greatly reduces the design and
implementation complexities of CL protocols. CLAP facilitates
CL interactions and extends the application layer’s awareness
and capabilities. This will lead CL protocol design in WSNs
to a higher level of awareness via seamless CL information
access and sharing, a new dimension of adaptability to operating
conditions via continuous reconfiguration, and much simpler
implementations.

Index Terms—Cross layer design paradigms; design complex-
ity; simulator hierarchies; wireless sensor networks

I. INTRODUCTION

In wireless communication systems, the random time-
varying nature of the channel leads to variations in system
performance. Such variations can affect all conventional Open
System Interconnection (OSI) layers and cause significant per-
formance degradation. Although the OSI model standardizes,
simplifies and accelerates efficient development of network
protocols, it falls short in dealing with such variations. This is
mainly due to the rigid boundaries set on the functionality
of each protocol operating at each layer, and the limited
information shared between adjacent layers.

In response to the above limitations, various studies ex-
plored possible gains from violating the OSI model when
designing network protocols, which are referred to as Cross-
Layer (CL) protocols. A wide variety of CL protocols exists
in the literature, varying from utilizing CL information (in-
formation from a different layer) in optimizing the operation
of another layer [1] to completely merging the functionality
of several layers [2], [3]. Along with CL protocols, CL
paradigms, aiming at standardizing the CL design process, also
emerged [4]–[7]. Since most CL protocols do not follow a
specific CL paradigm (e.g. [1], [8]), and many CL paradigms
are tailored towards specific protocol optimizations (e.g. [9],

[10]), in our brief review of those efforts, we refer to both as
CL approaches.

CL approaches can be classified, based on their archi-
tecture and behavior, as being evolutionary or revolutionary
[11]. Evolutionary approaches consider compatibility with the
standard OSI model (i.e. incorporating CL capability into
the OSI architecture), while revolutionary approaches only
consider performance optimization and completely disregard
the standard (i.e. several layers are melted into one). Examples
of evolutionary CL approaches in Mobile Ad hoc Networks
(MANETs) were presented in [4]–[7], [11], and a few
studies adopting the revolutionary approach in Wireless Sensor
Networks (WSNs) are discussed in [2]. A key difference
between MANETs and WSNs, that must be considered in any
CL approach for WSNs, is that the latter suffers much tighter
energy constraints, due to infeasibility of battery recharging.

In this paper, we propose a Cross-Layer Application-aware
Paradigm (CLAP), to facilitate CL protocol design in WSNs
and overcome implementation complexities encountered in
most CL approaches. CLAP incorporates an Information-
Layer (I-Layer) as means of CL interaction. The I-Layer is
accessible to all layers of the network stack through a publish-
and-subscribe fashion. The I-Layer’s architecture gives the
application layer the capability of directly accessing lower
layer(s) information and modifying their behavior(s), without
following the conventional OSI hierarchy. This introduces a
new level of application layer awareness and control over
underlying protocols, which is a key distinction between
CLAP and other CL approaches.

We implement an extension to the SIDnet-SWANS simula-
tor [12] to incorporate CLAP. By designing the I-Layer as a
hash table and providing an API for other layers to store and
access information in it, we are able to realize the proposed
paradigm in this simulator. Based on the simulator, we also
demonstrate a sample scenario adopting the new paradigm.
CLAP increases the level of adaption and awareness, while
simplifying the design, implementation and operation of CL
protocols. It allows changes made at the very top of the
network stack to directly impact its very bottom, which gives
CL protocol developers unprecedented design freedom and
implementation simplicity.

The remainder of this paper is organized as follows: section
II is a brief review of CL protocols and paradigms. Section

978-1-4577-1379-8/12/$26.00 ©2012 IEEE 844

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:38:40 UTC from IEEE Xplore. Restrictions apply.

III discusses the details of CLAP, its architecture and imple-
mentation which extends the SIDnet-SWANS simulator. An
example CL protocol, utilizing CLAP, is presented in section
IV, followed by the conclusion and future work in section V.

II. RELATED WORK

It is suggested by many studies that the revolutionary CL
approach is more suitable for emerging technologies, such
as WSNs [11], [13]. This can be true when the application
operates in a standalone fashion or requires minimal compat-
ibility. However, many WSN applications are integrated and
interfaced with larger, conventionally designed networks (e.g.
[14]). For such applications, sacrificing interoperability and
compatibility, as suggested in revolutionary CL approaches,
must be reconsidered. We use the terms conventionally and
OSI-Like interchangeably.

Realizing limitations due to absence of modularity in rev-
olutionary CL approaches, many research efforts adopted the
evolutionary approach in proposing CL paradigms. In [6], CL
information reflects a layer’s state and can only be commu-
nicated between adjacent layers. Attempting to regulate CL
interactions, information from non-adjacent layers is accessed
via a mapping of that information to the adjacent layer. In [7],
CL information is stored and organized via a network status
entity that preserves layer separation. Finally, in [5], a similar
architecture to that in [7] is proposed, however global network
information is piggybacked over each data packet and factored
in the optimization decision. All the above CL paradigms
mainly target MANET environments with less critical energy
constraints, compared to WSNs, and do not give in-depth
details about an actual protocol operation. Moreover, they treat
the application layer as a client that demands service without
being involved in operation of lower layers. A comparison
between several CL paradigms is presented in [5].

In addition to the above studies proposing new CL
paradigms, other efforts developing CL protocols, not adhering
to any CL paradigm, also exist. These efforts vary from
utilizing a single parameter from one layer in the functionality
of another to merging the functionality of two layers [13],
[15]. For example, in [1], next-hop information from the
routing layer is utilized at the MAC layer to schedule multi-
hop traffic flows. The shared information was extended in [8],
where all packets in the routing buffer were considered in the
scheduling process and led to significant performance gains.
On the other hand, in [3], a joint scheduling and routing
scheme was proposed (i.e. completely melting routing and
MAC). The main differences between CL protocols are (i)
the type and amount of CL information communicated/shared
and involved in the design, and (ii) which layers interact and
how.

Although CL information utilized is different and for differ-
ent purposes, the evolutionary CL protocols discussed above,
and many others summarized in [13], [15], share many of the
following design and implementation aspects and limitations:
• expose CL information, that is hidden or considered

irrelevant in conventional designs, which led to significant

performance improvements.
• CL interaction is usually tailored to one layer and a few

parameters (e.g. packet similarity/order in routing buffer
in [8])

• application layer interaction/involvement in lower layer
operation is very limited (e.g. overheard packets in [16]).

• were implemented via CL operations on simulators de-
signed with OSI-like architectures at the core of their op-
eration, which influenced the CL design and significantly
increased implementation complexity.

The design complexity of CL protocols is partly due to
incorporating CL information in the design process; however,
a greater complexity lies in the implementation and instability
of such protocols. The implementation complexity results from
the need to bypass/hack simulator hierarchies that originally
targeted non-CL simulations. This strongly contradicts the
main purpose of discrete-event simulations which aim at
reducing complexity [17]. This is also a main reason for the
limited presence of CL paradigms in the design process of
various CL protocols (i.e. limited publicity of CL paradigms
beyond the proposing research group).The instability encoun-
tered in any CL approach results from often foreseen joint
optimization of layers. That is, feedback from one layer affects
the operation of another, which creates a closed-loop feedback
system [18].

III. CLAP DESIGN

In this section, we illustrate CLAP’s design by comparing it
to conventional paradigms and emphasize its novelty compared
to state of the art in CL design. We also cover CLAP’s
implementation details which extends SIDnet-SWANS [12].

A. Comparing to Conventional Designs

We present a new CL paradigm to facilitate the design of
CL protocols for WSNs in which CL interaction and control is
achieved via the I-Layer (Information-Layer). The I-Layer is
accessible to all other layers of the network stack and contains
all information shared between them. The information stored
in the I-Layer can either be status or control information. One
of the layers (the application layer in the proposed scenario)
is granted control over CL operation and hence dictates how
the information is utilized (e.g. tradeoff energy consump-
tion for throughput). The controlling layer publishes control
information, reflecting the desired behavior, to which other
(non-controlling) layers subscribe and adapt their behavior
accordingly. Non-controlling layers publish status information,
to which the controlling layer subscribes, as discussed in
section III-B.

Figure 1 illustrates the main differences between con-
ventional (OSI-like) CL information sharing/interaction and
CLAP. For presentation simplicity, we integrate the transport
layer into the routing layer and the physical layer into the
MAC layer. In CLAP, assuming application control of CL
interaction as in Fig. 1(b), IA captures the application decision
to modify the underlying MAC and/or routing operation. How-
ever, in the conventional case, IA only represents CL info (i.e.

845

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:38:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. A comparison between CL protocol operation in (a) conven-
tional paradigm and (b) CLAP: IA, IR and IM denote information
shared by Application, Routing and MAC layers, respectively. The
functionality of each layer is denoted by f(), and OP represents
Optimization Parameters.

no control info). In CLAP, CL information is communicated
and handled via the I-layer, which allows non-adjacent layers
to interact without unnecessary involvement of other layers.
For example, the application and MAC layer can interact
without routing layer involvement. This would greatly simplify
the design and implementation of protocols involving such
CL interaction [16]. In [16], the overheard data packets (at
the MAC layer) are processed at the application layer which
suppresses packets to be sent, if it detects correlation between
them and the overheard packet. In addition, accessing other
layers’ information does not require permission nor hacking
the design hierarchy, it is accessible via the I-Layer. Another
advantage of CLAP is the ability of involving more than two
layers in the interaction and no restriction on what information
can be shared. This makes tri-layer interaction possible as
discussed in section IV.

Although the idea of providing means of CL interaction,
involving more than two layers, is not new [7], the ap-
plication’s involvement/control capabilities over the protocol
as well as the information sharing technique are unique to
CLAP. Moreover, studies like [7] mainly target MANETs,
where energy constraints are considerably looser (i.e. no
duty cycling), compared to WSNs, and hence, suffer less
performance instability [19].

To demonstrate the unique capabilities of CLAP, we con-
sider the case of application control over protocol behavior.
Such control is embedded in CL control information (IA in
Fig. 1(b)) and its details are decided by the protocol designer
(see section IV for an example). This gives the application
knowledge about underlying layers’ operating conditions and
direct control over their operation. For example, in a con-
ventional scenario, the running application is not aware and
has no control over the transmission retry limit which is
solely set by the underlying MAC scheme (retry limit defined
and illustrated in section IV). In CLAP, the application layer
would not only be aware of the retry limit set by the MAC

protocol, it would have the ability to change it according
to its observations (IM and IR) and its needs (reflected in
OP), resulting in an application-controlled customizable and
reconfigurable MAC operation. More details about application
awareness, optimization parameter formulation and interaction
with other layers can be found in [10].

Notice that all protocols in the literature, where CL interac-
tion is limited to information sharing (e.g. MAC and routing
interaction in [8]), can still be implemented using CLAP. In
such scenario, the controlling and controlled layer are the same
(i.e. no control info will be published). However, more efficient
and seamless access to CL information can be achieved via
the I-Layer (i.e. no need for extra control messages to request
access to CL info and no complex hacking for simulator
hierarchy). Moreover, CLAP can implement non-CL protocols,
which guarantees compatibility, however at the cost of the non-
utilized CL capability overhead (i.e. I-Layer).

B. CLAP Implementation

CLAP’s novelty lies in the following unique features:
• CL information is encapsulated in the I-Layer via a

publish-and-subscribe manner, which eases cross-layer
information sharing by enabling direct interaction be-
tween any two layers without having to go through others.

• allowing all layers (including the application layer) to
publish and subscribe to the I-Layer, which makes com-
plex CL interactions, especially those involving more than
two layers, easier to control, manage, and implement.

1) Architecture: The implementation is done on SIDNet-
SWANS. Fig. 2 depicts the architecture of the system and our
extensions are highlighted. SWANS provides the implementa-
tion to represent the network stack of each node in the simula-
tion, while SIDNet provides a user-friendly GUI together with
a NodeAPI, giving the user run-time information, to better
manage all the nodes [12]. Our implementation utilizes the
advantages of SIDNet-SWANS, and supports CL interaction
by extending the behavior of the node stack and NodeAPI,
in order to integrate the I-Layer into the system. Layers
that are involved in CL interactions will publish their CL
information into the I-Layer and subscribe to CL information
of interest that is published by other layers. The I-Layer itself
acts as storage for CL information and demands. This is

Fig. 2. System Architecture: Modifying CL interaction in the node
stack by enabling CL information sharing via I-Layer through an ex-
tended NodeAPI interface. Modifications/extensions are highlighted.

846

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:38:40 UTC from IEEE Xplore. Restrictions apply.

achieved via the publish and subscribe actions of other layers.
In the remaining part of this section, we will discuss those
functionalities in detail.

2) I-Layer Hookup: Being a layer that is not part of the
traditional network stack, the hookup of the I-Layer can be
non-trivial. However, the implementation of SIDNet-SWANS
makes this task relatively simple and straightforward. From
Fig. 2 we can see that, for each node, all the layers involved
in CL interactions are associated within the Node object. In the
implementation of SIDNet-SWANS [12], the class defining
each layer includes the Node object as an instance variable.
This makes the Node class a reasonable choice for placing
the I-Layer, since all the layers will have an easy access to
the I-Layer through the Node object. In our implementation,
we assign an I-Layer object as an instance variable in the
Node class. We also extend the methods in the NodeAPI, and
the interface of the Node class to expose methods interacting
with the I-Layer. Hence, through the NodeAPI, all the layers
involved in the CL interaction will have a unified access to
the I-Layer. The details of how this access occurs is discussed
in sections IV-B and IV-C.

3) Publishing CL Information: Before publishing CL in-
formation into the I-Layer, each type of information has to be
assigned a key which has to be agreed on among all layers
taking part in the CL interaction. When some layer l wants
to publish CL information with key k, it calls the publish(key)
method in the NodeAPI as shown in Fig. 3. This will trigger
the control unit of I-Layer to put a new key-value pair with
key k in the internal hash table of the I-Layer. The control
unit will also remember that the entry with key k in the hash
table can only be updated by layer l. When layer l has the
actual data to write into I-Layer, it will call the update(key,
value) method in NodeAPI. This will trigger the control unit
to verify the caller being layer l and update the entry with key
k in the hash table.

4) Subscribing to CL Information: CL information sharing
not only requires publishing information to the I-Layer, but
also subscribing to the I-Layer in order to access other layers’
shared information. The subscribing part of the interaction
works as follows. Since the layers have agreed upon the keys
for all CL information, if layer l wants to subscribe to a
particular type of information with key k, it only needs to
call the subscribe(key) method in NodeAPI (Fig. 3). However,
before that, it also needs to call the getKeyList() method

Fig. 3. CL information shared in a publish-and-subscribe manner.

in NodeAPI to verify that the information has already been
published. getKeyList() tells the control unit of the I-Layer to
return all the keys in the hash table as a list. The caller, layer
l, will then be able to see whether k is within this list. If the
verification succeeds, layer l can then call the subscribe(key)
method. This will cause the control unit to remember that the
entry with key k in the hash table will be read by layer l.
After calling subscribe(key), layer l will periodically check
the I-Layer by calling retrieve(key) to gain the current value
of the CL information it is interested in. Calling retrieve(key)
in NodeAPI will tell the control unit of the I-Layer to check if
layer l is among those layers that are interested in information
associated with key k, and return the current value of the entry
with key k in the hash table. Our implementation also supports
subscribing to the CL information dynamically. If some layer
wants to start subscribing to a new type of information at
run time, it just needs to call getKeyList() first to verify the
desired information is already published. The control unit of
the I-Layer will cover the rest as described above.

IV. SAMPLE SCENARIO

A. Overview

In this section, we introduce a sample scenario developed
based on CLAP. As mentioned in section III-A, we consider
the case of application control over CL interaction and pro-
tocol operation. The application layer monitors status info,
published by MAC and routing layers, by subscribing to the
I-Layer. The user is provided with an interface to both ob-
serve and specify values (i.e. run-time application preferences)
of the status information currently being monitored [10].
Upon receiving user input, the application layer processes
user demands, based on which it issues control instructions
to the underlying layers by publishing the instructions into
the I-Layer. Underlying layers, which subscribe to control
instructions published by the application layer, will take
corresponding actions in an attempt to draw current status
towards the user’s/application’s desired status. The details of
this process are explained in the following subsections.

B. Monitoring and Control

In CLAP, the application’s decision to modify the un-
derlying protocol’s behavior is based on the current status
information, both local to the application layer (e.g. remaining
battery) and that reported by other layers, and the run-time
application/user preferences represented by target values for
specific status information (e.g. delay, power consumption
etc.). We define the set of target values T

′
= T

′

1, T
′

2,, T
′

i .
Each element of T

′
is assigned a weight Wi based on its

priority among the other target elements, where ΣiWi = 1,
and has a current value Ti and Ti ∈ T , where T is the set of
current values of all elements in T

′
. The distance between Ti

and T
′

i is Di which is computed as Di = Wi
|Ti−T

′
i |

T
′
i

. Both Wi

and T
′

i are assigned by the application along with an error tol-
erance, toli. These assignments can be changed (reconfigured)
according to the application demands and observed network

847

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:38:40 UTC from IEEE Xplore. Restrictions apply.

operating conditions. We define a set of possible actions, A,
the application can execute to modify underlying MAC and/or
routing functionality where A = {A1, A2, ..., Ai}. Note that
for presentation simplicity, we assume one action per status
reported (Ti), however, each Ti can have several actions (Ais)
affecting it, as shown in Table I.

Without loss of generality, we assume the application is
aware of the following:
• current average power consumption (T1)
• current average delay (T2)
• current average delivery ratio (T3)
• desired target values of the above parameters (i.e.

{T ′

1, T
′

2, T
′

3}) and their weights (i.e. {W1,W2,W3})
The application can modify routing and MAC operation via
the following set of actions:
• retry limit (A1)
• duty cycle (A2)
• order packets in routing buffer based on destination (A3)

Note that the above awareness info/actions can be extended or
limited by the protocol designer.

We define delay as the time a packet spends in the routing
buffer; delivery ratio is the ratio of number of packets suc-
cessfully transmitted to the total number of packets sent. All
monitored parameters (status info) are averaged over the same
time interval. Retry limit is the number of attempts by MAC
layer to send a packet before dropping it, and duty cycle is the
ratio between active period duration and total frame duration
(i.e. active + sleep).

C. Processing User Input

In the scope of the capabilities and awareness described in
section IV-B, we explain the application-layer decision making
process. The application is capable of increasing/decreasing
the retry limit and/or duty cycle and/or reordering packets
in the routing buffer. The first two capabilities/actions have
a direct effect on power consumption and delay; however,
reordering packets does not. Increasing the retry limit is
expected to increase power consumption and delay, however,
it is also expected to increase delivery ratio, and vice versa.
Increasing the duty cycle is expected to reduce delay and
increase power consumption, and vice versa.

The relationship between the above status info (T) ,
user/application demands (T ′), and possible actions (A), is
greatly dependent on operating conditions (e.g. congestion,
network topology, traffic patterns etc.). This makes the quan-
tification of such relationships infeasible. Therefore, the ap-
plication adopts an exhaustive search for the combination of
actions that will steer the functionality of underlying layers in
order to meet its own demands (i.e. target values). However,
there are no guarantees that the application demands will

TABLE I
DEMAND/ACTION RELATIONSHIP

Application demand Related action
±delivery ratio ±retry limit
±delay ±retry limit; ∓duty cycle
±power consumption ±retry limit ; ±duty cycle

be achieved, and in such case the initial state (prior to
applying the search) is retrieved. The general relationship
between application demands and related actions is illustrated
in Table I. Note that any combination of such demands is
possible. Although any increase in retry limit is expected to
increase duty cycle, we assume that the increase in retry count
encountered by one packet is offset by a decrease in that of
another packet sent in the same cycle, and hence consider both
actions to be independent. This assumption is based on the
MAC protocol capability of sending multiple packets/frame.

D. Simulation Results

We use CLAP to implement the sample scenario explained
in section IV-C. The underlying MAC protocol is SMAC [20]
and we assume that single schedule and routing information
are available to nodes as in [1], [8]. We simulate two networks,
a 17-node cross-chain, and a 25-node grid. Each simulation
lasts for 2000 seconds. On both networks, the distance between
adjacent nodes is 200 meters. The simulation parameters are
similar to those in [1], [8].

The main goal of our simulations is to demonstrate CLAP’s
ability of tailoring main performance metrics, namely, delivery
ratio and delay. Energy consumption is kept constant by
keeping a constant duty cycle throughout the simulations.
Delay and delivery ratio were defined in section IV-B.

Fig. 4 shows how increasing the retry limit can increase
delivery ratio. When the data rate is at 1 packet/second and the
retry limit is increased from 2 to 7, delivery ratio is increased
from 84.6% to 90%. This modest 6.4% improvement is offset
by a 7.8% increase in delay as shown in Fig. 5. This delay
penalty also offsets the delivery ratio gains at the lower data
rates. This is due to the bottle neck occurring at the center

Fig. 4. Average delivery ratio of the 17-node cross-chain network at
various data rates and retry limits.

Fig. 5. Average delay of the 17-node cross-chain network at various
data rates and retry limits.

848

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:38:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Average delivery ratio of the 25-node grid. Retry limit
increased from 2 in region 1 to 5 in region 2, then to 7 in region 3.

Fig. 7. Average delay of the 25-node grid. Retry limit increased from
2 in region 1 to 5 in region 2, then to 7 in region 3.

node (at the crossing of the two chains) which greatly limits
the traffic flow of both routes. Note that cross-chain results
were averaged over the entire simulation duration and over
the entire network.

Fig. 6 shows the effect of CLAP’s response to the user’s
(application’s) demand of increasing delivery ratio by increas-
ing the retry limit. The delivery ratio increases from 57% to
79% when the data rate is at 1 packet/second. This 38.6%
increase in delivery ratio causes an increase in delay of only
16.8%, as shown in Fig. 7. The least improvement in delivery
ratio occurs at the lowest data rate (1 packet/ 4 seconds). This
is due to the very small margin available for any improvement
in delivery ratio, as it is already at 98% when the retry limit
is 2. This is reflected in the delay results at lower data rates,
as shown in Fig. 7.

V. CONCLUSION AND FUTURE WORK

The complexity of developing CL protocols in WSNs should
not be affected by lack of CL information that is hidden in con-
ventional single layered design approaches and their comple-
menting simulators. Such conventional hierarchies influence
the design process and add significant complexity to CL pro-
tocol implementation. Towards facilitating CL protocol design
and simulation, we presented a new Cross-Layer Application-
aware design Paradigm (CLAP). CLAP incorporates an I-
Layer to efficiently moderate CL interactions. Any layer can
access the I-Layer for monitoring/updating/control purposes.
Not only this allows any combination of CL interactions to
be realized by CLAP, it also grants the application layer
new awareness and control capabilities. We integrated CLAP
into SIDnet-SWANS [12] and simulated a sample scenario.
The simulated scenario allows the user (application) to steer
the operation of the underlying protocol(s), resulting in a
reconfigurable CL application-controlled protocol.

In our current setup, the user is assumed to be configuring
the application needs. This assumption limits the application
scope of the proposed design approach. To expand the appli-
cability of CLAP, we plan to extend its functionality to allow
remote reconfiguration.

REFERENCES

[1] S. Du, A. Saha, and D. Johnson, “RMAC: A routing-enhanced duty-
cycle MAC protocol for wireless sensor networks,” in Proceedings
of the IEEE International Conference on Computer Communications
(INFOCOM), pp. 1478–1486, May 2007.

[2] M. Vuran and I. Akyildiz, “Xlp: A cross-layer protocol for efficient
communication in wireless sensor networks,” IEEE Transactions on
Mobile Computing, pp. 1578–1591, 2010.

[3] S. Cui, R. Madan, A. Goldsmith, and S. Lall, “Joint routing, mac, and
link layer optimization in sensor networks with energy constraints,” in
Communications, 2005. ICC 2005. 2005 IEEE International Conference
on, vol. 2, pp. 725–729, IEEE, 2005.

[4] V. Srivastava and M. Motani, “Cross-layer design: a survey and the road
ahead,” Communications Magazine, IEEE, vol. 43, no. 12, pp. 112–119,
2005.

[5] R. Winter, J. Schiller, N. Nikaein, and C. Bonnet, “Crosstalk: Cross-
layer decision support based on global knowledge,” Communications
Magazine, IEEE, vol. 44, no. 1, pp. 93–99, 2006.

[6] R. Knopp, N. Nikaein, C. Bonnet, H. Aiache, V. Conan, S. Masson,
G. Guibe, and C. Martret, “Overview of the widens architecture, a
wireless ad hoc network for public safety,” in IEEE SECON 2004, 2004.

[7] M. Conti, G. Maselli, G. Turi, and S. Giordano, “Cross-layering in
mobile ad hoc network design,” Computer, vol. 37, no. 2, pp. 48–51,
2004.

[8] T. Canli, M. Hefeida, and A. Khokhar, “BulkMAC: A cross-layer
based MAC protocol for wireless sensor networks,” in Proceedings
of the International Wireless Communications and Mobile Computing
Conference (IWCMC), pp. 442–446, 2010.

[9] A. Safwat, “A novel framework for cross-layer design in wireless ad
hoc and sensor networks,” in Global Telecommunications Conference
Workshops, 2004. GlobeCom Workshops 2004. IEEE, pp. 130–135,
IEEE, 2004.

[10] M. Hefeida, T. Canli, A. Kshemkalyani, and A. Khokhar, “Context
modeling in collaborative sensor network applications,” in Collaboration
Technologies and Systems (CTS), 2011 International Conference on,
pp. 274–279, IEEE.

[11] F. Aune, “Cross-layer design tutorial,” Norwegian University of Science
and Technology, Dept. of Electronics and Telecommunications, 2004.

[12] O. Ghica, G. Trajcevski, P. Scheuermann, Z. Bischof, and N. Valtchanov,
“Sidnet-swans: a simulator and integrated development platform for
sensor networks applications,” in Proceedings of the 6th ACM conference
on Embedded network sensor systems, pp. 385–386, ACM, 2008.

[13] T. Melodia, M. Vuran, and D. Pompili, “The state of the art in cross-layer
design for wireless sensor networks,” Wireless Systems and Network
Architectures in Next Generation Internet, pp. 78–92, 2006.

[14] R. Bajwa, R. Rajagopal, P. Varaiya, and R. Kavaler, “In-pavement
wireless sensor network for vehicle classification,” in Proceedings of
the IEEE International Conference on Information Processing in Sensor
Networks (IPSN), 2011, pp. 85–96.

[15] B. Yahya and J. Ben-Othman, “Towards a classification of energy aware
mac protocols for wireless sensor networks,” Wireless Communications
and Mobile Computing, vol. 9, no. 12, pp. 1572 – 1607, 2009.

[16] Y. Iima, A. Kanzaki, T. Hara, and S. Nishio, “Overhearing-based data
transmission reduction for periodical data gathering in wireless sensor
networks (pdf),” 2009.

[17] J. Henriksen, “Taming the complexity dragon,” Journal of Simulation,
vol. 2, no. 1, pp. 3–17, 2008.

[18] V. Kawadia and P. Kumar, “A cautionary perspective on cross-layer
design,” Wireless Communications, IEEE, vol. 12, no. 1, pp. 3–11, 2005.

[19] J. Garcia-Macias and J. Gomez, “Manet versus wsn,” Sensor Networks
and Configuration, pp. 369–388, 2007.

[20] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol
for wireless sensor networks,” in Proceedings of the IEEE INFOCOM,
vol. 3, pp. 1567–1576, 2002.

849

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:38:40 UTC from IEEE Xplore. Restrictions apply.

