
Performance of Fair Distributed Mutual
Exclusion Algorithms

Kandarp Jani and Ajay D. Kshemkalyani

Computer Science Department, Univ. of Illinois at Chicago, Chicago, IL 60607, USA
{kjani,ajayk}@cs.uic.edu

Abstract. The classical Ricart-Agrawala algorithm (RA) has long been
considered the most efficient fair mutual exclusion algorithm in dis-
tributed message-passing systems. The algorithm requires 2(N −1) mes-
sages per critical section access, where N is the number of processes in
the system. Recently, Lodha-Kshemkalyani proposed an improved fair
algorithm (LK) that requires between N and 2(N −1) messages per crit-
ical section access, and without any extra overhead. The exact number of
messages depends on the concurrency of requests, and is difficult to prove
or analyze theoretically. This paper shows the superior performance of
LK over RA using extensive simulations under a wide range of critical
section access patterns and network loads.

1 Introduction

Mutual exclusion is a fundamental paradigm in computing. Over the past two
decades, several algorithms have been proposed to achieve mutual exclusion in
asynchronous distributed message-passing systems [2, 8]. Designing such algo-
rithms becomes difficult when the the requirement for “fair” synchronization
needs to be satisfied. The commonly accepted definition of fairness is that re-
quests for access to the critical section (CS) are satisfied in the order of their
logical timestamps [4]. If two requests have the same timestamp, the process
identifier is used as a tie-breaker. Lamport’s logical clock [4] is used to assign
timestamps to messages to order the requests. The algorithm to update the
clocks and to timestamp requests keeps all logical clocks closely sychronized. A
fair mutual exclusion algorithm needs to guarantee that requests are accessed in
increasing order of the timestamps. Of the many distributed mutual exclusion
algorithms, the only algorithms that are fair in the above context are Lamport
[4], Ricart-Agrawala (RA) [7], and Lodha-Kshemkalyani (LK) [5].

The performance metrics for mutual exclusion algorithms are the following:
the number of messages, the synchronization delay, the response time, and the
waiting time. Others such as the throughput can be expressed in terms of the
above metrics and inherent characteristics of the programs – such as the CS
execution time, and the time spent executing non-CS code. For a system con-
sisting of N processes, let d denote the time for a message hop and css, the time

A. Sen et al. (Eds.): IWDC 2004, LNCS 3326, pp. 2–15, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Performance of Fair Distributed Mutual Exclusion Algorithms 3

spent executing the CS. The lower bounds on the waiting time T, the response
time (which is T + css), and the synchronization delay are 2d, 2d + css, and
d, respectively, for both the Lamport [4] and the RA [7] algorithms. The mes-
sage complexity of Lamport is 3(N − 1) messages per CS access. The message
complexity of RA is 2(N − 1) messages per CS access. The RA algorithm has
been considered a classic in mutual exclusion algorithms, since 1983. It has been
presented in many textbooks on distributed algorithms and distributed systems.

Recently, Lodha and Kshemkalyani proposed an improved algorithm (LK)
[5], over the RA algorithm. This algorithm uses the same model as RA, but has
a message complexity between N and 2(N −1) messages per CS access. All other
metrics measure the same as or better than those of RA. The exact number of
messages per CS access depends on the concurrency of the requests being made.

The improvement achieved by LK is difficult to determine theoretically or
analytically. In this paper, we show via simulations that the performance of LK
is better than that of RA. We consider two performance measures – the number
of messages and the waiting time, to access the CS. As the response time can be
derived from the waiting time, we view the waiting time as a more fundamental
measure than the response time. The simulations study the performance of the
algorithms under a wide range of requesting patterns (high load and low load),
and under a wide range of program behaviors (time spent executing the CS).
The study also accounts for a wide range of network dimensions and loads.

2 Overview of RA and LK Algorithms

The system model assumes there are N processes in the error-free asynchronous
message-passing system. Message transit times may vary. Channels are FIFO. It
is assumed that a single process runs on each site. So a site is synonymous with
a process. A process requests a CS by sending REQUEST messages and waits
for appropriate REPLY messages from the other processes. While a process is
waiting to enter the CS, it cannot make another request to enter CS. Each process
executes the following loop forever: execute the noncritical section, request to
enter the CS, wait to get permission, execute the CS. In each iteration, the three
durations are denoted NCSS, Waiting, and CSS. The time relations among the
durations, and λ, the mean inter-request time, are shown in Fig. 1.

2.1 Ricart-Agrawala’s Algorithm [7]

1. When a process Pi wants to enter the CS, it sends a timestamped REQUEST
message to the other processes.

2. When a process Pj receives a REQUEST from Pi, it sends a REPLY to Pi

if (i) Pj is not requesting nor executing the CS, or (ii) Pj is requesting with
lower priority. Otherwise, Pj defers Pi’s request.

3. Pi can enter the CS after it receives a REPLY from all other processes.
4. When Pi exits its CS, it sends as REPLY to all the processes whose requests

it had deferred (step 2).
Thus, there are exactly 2(N − 1) messages exchanged per CS access.

4 K. Jani and A.D. Kshemkalyani

CS;

concurrency set, algorithm)

waiting time T= f(propagation

Send out Requests

time (NCSS) (CSS)time, CSS, sync. delay,

Want to enter

critical section time

inter−request time (mean is lambda)

response time

enter CS exit CS

non−critical section

Fig. 1. The relationships among CSS, NCSS, λ, and Waiting time at a process

2.2 Lodha-Kshemkalyani Algorithm [5]

The LK algorithm assumes the same system model as that of RA but reduces
the number of messages required per CS access. To realize this objective, LK
uses three types of messages and a queue, the Local Request Queue (LRQ),
which contains “concurrent requests”.

Concurrent Requests: Consider two requests Ri initiated by process Pi and
Rj initiated by process Pj . Ri and Rj are concurrent iff Pi’s REQUEST is
received by Pj after Pj has made its REQUEST and vice versa.

Concurrency Set: The concurrency set of request Rk
i , the kth request made

by Pi, is defined as: CSeti(Rk
i) = {Rj |Ri is concurrent with Rj}

⋃{Ri}. As
a single request by Pi can be outstanding at a time, we simply use CSeti to
denote its concurrency set.

Three types of messages are used by the LK algorithm: REQUEST, REPLY,
and FLUSH. The REQUEST message contains the timestamp of the request.
The REPLY and FLUSH messages contain the timestamp of the last completed
CS access by the sender of that REPLY or FLUSH message. The REQUEST and
REPLY messages hold a different significance from that in the RA algorithm,
and have substantially enhanced semantics! FLUSH is the extra type used by
the LK algorithm to achieve the savings in the messages. We emphasize that
the size of messages used by LK is the same as that used by RA. The savings in
the number of messages is not at the cost of any other parameter. The following
observations indicate how the savings are achieved.

Observations

1. All requests are totally ordered by priority, similar to the RA algorithm.
2. A process receiving a REQUEST message can immediately determine

whether the requesting process or itself should be allowed to enter the CS
first.

3. Multiple uses of the REPLY message:
– It acts a reply from a process that is not requesting.
– It acts a collective reply from processes with higher priority requests.

Performance of Fair Distributed Mutual Exclusion Algorithms 5

The REPLY (Rj) message from Pj indicates that Rj is the latest REQUEST
for which Pj executed the CS. This indicates that all requests that have prior-
ity greater than that of Rj have finished CS and are no longer in contention.
When a process Pi receives REPLY (Rj), it can remove those REQUESTs
whose priority ≥ priority of Rj , from its local request queue (LRQi). Thus,
REPLY (Rj) is a logical reply that denotes a collective reply from all pro-
cesses that had made higher priority requests than or equal to Rj .

4. Multiple uses of FLUSH message: A FLUSH message is sent by a process
after executing the CS, to the concurrently requesting process with the next
highest priority (if it exists.) When entering the CS, a process can determine
the state of all other processes in some consistent state with itself. Any other
process is either requesting CS access and its (lower) priority is known, or
it is not requesting. After executing CS, Pi sends a FLUSH(Ri) message
to Pj which is the concurrently requesting process with the next highest
priority. FLUSH(Ri) is a logical reply that denotes a collective reply from
all processes that had made higher priority requests than or equal to Ri.

5. Multiple uses of REQUEST message: A process Pi that wants to invoke CS
sends a REQUEST message to all other processes. On receipt of a REQUEST
message, a process Pj that is not requesting sends a REPLY message imme-
diately. If process Pj is requesting concurrently, it does not send a REPLY
message. If Pj ’s REQUEST has a higher priority, the received REQUEST
from Pi serves a reply to Pj . Pj will eventually execute CS (before Pi) and
then through a chain of FLUSH/REPLY messages, Pi will eventually receive
a logical reply to its REQUEST. If Pj ’s REQUEST has a lower priority than
Pi’s REQUEST, Pj likewise awaits Pi’s logical permission via a chain of
FLUSH/REPLY messages.

RA-Type Messages: The REPLY messages sent by concurrently requesting
processes in RA, but not in LK (where LRQ prioritizes concurrent requests).

3 Objectives of Simulation

The total number of messages used for a particular CS access is 2N − |Cset|,
where Cset is the concurrency set of that CS access request [5]. This is because
there are N − 1 REQUEST messages, (N − 1) − |Cset| REPLY messages, and 1
FLUSH message. The number of concurrent requests potentially depends on: the
number of processes, inter-request time, time spent in the CS, and the propaga-
tion delay. The actual number of messages in a real system is difficult to analyze
theoretically. The objectives of the simulation are as follows.

– To measure the message overhead of LK, per CS access, under a wide range
of requesting conditions and network conditions. The message overhead of
RA is always 2(N − 1) messages per CS access.

– To compare the waiting time of RA and LK under varying requesting and
network conditions.

6 K. Jani and A.D. Kshemkalyani

3.1 Simulation Parameters

Input Parameters
1. Number of Processes (N): As N increases, and assuming that the mean

inter-request time is not changed, there are more requests for the CS. This
affects the concurrency set and waiting time also increases. Hence N is an
important parameter. By varying N , we also study scalability. On the Intel
Pentium 3 with 128 MB RAM used for the simulation, up to 45 processes
could be simulated. Note that the earlier comprehensive performance study
of distributed mutual exclusion algorithms assumed only 21 processes, and
did not test for sensitivity to N [2].

2. Inter-request Time (λ): Inter-request time is the time between generating
two requests by a process. This parameter is exponentially distributed with
λ as the mean. As processes begin requesting more furiously (λ decreases),
there will be more requests, the probability of concurrent requests is higher,
and hence a reduction in the number of messages per CS access. λ directly
affects the concurrency set. Also, the inter-request time is related to the
waiting time, propagation delay and CSS (see Section 3.2), and is therefore
of interest. The typical values of the mean λ used in the simulations range
from 10−4s to 10s.

3. Critical Section Sitting Time (CSS): The critical section sitting time is
the amount of time a process executes in the critical section. It is modeled as
an exponential distribution with a mean of CSS. It is difficult to analyze how
the concurrency set is affected by CSS. However, CSS impacts the waiting
time (see Section 3.2). Also, a process cannot request when executing the
CS. This puts a bound on how frequently a process can request the CS. The
values of the mean CSS used in the simulations range from 10−7s to 10−3s.

4. Propagation Delay (D): The link propagation delay is the time elapsed
while propagating a message from one process to another over the network.
Realistic systems inherently exhibit this delay, and the waiting time at a
process depends on this delay. The network is a complex entity to model [3].
As we would like to consider a single parameter to characterize (i) physical
network size and/or distances, (ii) speed for all the links, and (iii) congestion,
we model transmission time as an exponential distribution about the mean,
D, as representative of all links. This distribution can also approximate TCP
delays [1]. While simulating the mutual exclusion algorithms, we only im-
plicitly model this parameter D because, (i) it follows the same distribution
as CSS, and (ii) the occurrence of this delay D is tightly coupled with the
CSS (see Section 3.2). Rather, we assume that CSS implicitly includes D.
Note that the earlier comprehensive performance study of distributed mutual
exclusion algorithms did not model this delay [2].

Output Parameters

1. Normalized Message Complexity (Mnorm): The normalized message
complexity is ((total number of messages exchanged per CS access) / N).

Performance of Fair Distributed Mutual Exclusion Algorithms 7

2. Waiting Time (T): The waiting time is the time a process has to wait
to enter the CS after requesting the CS. The LK algorithm uses LRQ to
track the concurrent requests at each process. By having to wait for fewer
replies, LK’s waiting time decreases with respect to RA but enqueuing and
dequeuing may add some time overhead.

3.2 Inter-relation Amongst CSS, λ, T , and D

– The mean inter-request time λ equals the mean critical section sitting time
(CSS), the mean waiting time (T), and the mean noncritical section time
(NCSS), as seen from Fig. 1. Further, T is a function of the CSS, D, the
concurrency set, and the mutual exclusion algorithm used. Thus,
λ = CSS +NCSS +T = CSS +NCSS +f(CSS, D, Cset, ME. algorithm)
λ, CSS, and D are assumed to be the means of exponential distributions.
Hence, propagation time can be viewed as being incorporated in CSS.

– λ > CSS because a process cannot request when executing the critical
section and the rate of CS executions cannot exceed the rate of request
generation. If we allow the processes to request while executing the critical
section, those requests will be lost. As a result, the input distribution of CS
requests will no longer remain exponential.

– The total waiting time of the system is directly proportional to CSS and D.
As CSS increases, system-wide waiting time also increases. The average-case
waiting time Tavg = (|CSet|/2)(CSS + D). This equation also justifies why
the propagation delay D can be viewed as being incorporated within CSS.

The above points explain how the value of λ is constrained by CSS, D, and T .

4 Simulation Results

4.1 Experimental Setup

The LK and RA algorithms were implemented in C using the simulation frame-
work of OPNET [6]. We report three experiments, in which we test the perfor-
mance for various combinations of the input parameters N , CSS, λ.

1. The number of messages exchanged in the system was measured for multiple
settings of the tuple (N , CSS), as the mean inter-request time (λ) is varied.

2. The number of messages exchanged in the system was measured for multiple
settings of the tuple (CSS, λ), as the number of processes (N) increased.

3. The average waiting time (T) in the system was measured for both the
LK and RA algorithms, for different settings of the tuple (CSS, λ), as the
number of processes (N) was varied.

The machine used for simulation is an Intel Pentium 3 with 128 MB of RAM.
For each simulation run, statistics were collected for 1000 CS requests per pro-
cess, which amounted to a minimum of 10,000 requests and a maximum of 45,000
requests. For each simulation run, the statistics collected for the initial 10% re-
quests were discarded to eliminate the effects of startup. Each statistic reported

8 K. Jani and A.D. Kshemkalyani

in the results is an average of the statistics of ten simulation runs with different
seeds. Propagation delay (D) was implicitly accounted for (Section 3).

The ranges and distributions of the three input parameters were discussed in
Section 3.1. Based on the observations (Section 3.2), the range of λ is adjusted
based on the value of CSS (and D).

To present the results on message overhead, following statistics are collected.
1. Total number of requests messages in the system after steady state. (Mreq)
2. Total number of messages in the system after steady state. (Mtot)

For each experiment, the normalized message complexity is reported as Mnorm =
Mtot/Mreq. For RA, Mnorm = 2. Mnorm for KS will vary from 1 to 2.

4.2 Expt. 1: Impact of Inter-request Time (λ) on Message
Overhead

The worst-case message complexity of the LK algorithm is the same as that of
RA. However, on an average, LK performs better than RA. Here, the goal is to
study LK’s message overhead Mnorm as the processes request more furiously. The
simulations were performed for 20 settings of the tuple (N , CSS) while varying
λ from 10−4 to 101. The settings were formed by taking all combinations of the
values of N : 10, 20, 30, and 40, and the 4 values of CSS: 10−7, 10−6, 10−4, and
10−3. The results are plotted in Figs. 2, 3, 4, and 5.

Fig. 2: SP11(10, 10−7), SP12(10, 10−6), SP13(10, 10−4), SP14(10, 10−3)
Fig. 3: SP21(20, 10−7), SP22(20, 10−6), SP23(20, 10−4), SP24(20, 10−3)
Fig. 4: SP31(30, 10−7), SP32(30, 10−6), SP33(30, 10−4), SP34(30, 10−3)
Fig. 5: SP41(40, 10−7), SP42(40, 10−6), SP43(40, 10−4), SP44(40, 10−3)

The mean inter-request time (λ) is varied as per the constraint imposed (see
Section 3.2). As seen from the plots for sets SPx3(N, 10−4) and SPx4(N, 10−3),
there are no data points for λ < 7 × 10−4 and λ < 7 × 10−3 respectively.

Fig. 2. Normalized message complexity vs. inter-request time (SP1x)

Performance of Fair Distributed Mutual Exclusion Algorithms 9

Fig. 3. Normalized message complexity vs. inter-request time (SP2x)

Fig. 4. Normalized message complexity vs. inter-request time (SP3x)

Observations
– As the value of λ increases, the value of Mnorm increases but is still lower

than the value for RA, which is 2. With an increase in the value of λ, the
concurrency set grows sparse. This results in more number of messages of
RA-type being exchanged. Thus, LK performs much better when the load
on the system is heavier, conforming to the expression, 2N − |Cset|, for the
message overhead.

– For lower values of N (Fig. 2), as λ increases, there is a jump in the value
of Mnorm which later saturates, and tends towards a value of 1.8. But for
higher N (Figs. 3, 4, 5), Mnorm is lower and follows a smoother curve. The
effect of N on Mnorm is studied in Section 4.3.

– No definite relationship can be readily inferred between CSS and Mnorm.

10 K. Jani and A.D. Kshemkalyani

Fig. 5. Normalized message complexity vs. inter-request time (SP4x)

Fig. 6. Normalized message complexity vs. number of processes (SC1x)

Thus, we experimentally see how the LK algorithm outperforms RA under
heavy CS request load. Even under light load, LK shows some improvement over
RA.

4.3 Expt. 2: Scalability with Increasing Number of Processes

This experiment studies the message overhead of the LK algorithm as the num-
ber of processes in the system is increased. This also measures scalability. The
simulations were performed for 20 settings of the tuple (CSS, λ) while varying
N from 10 to 45. The settings were formed by taking all combinations of the 4
values of CSS: 10−7, 10−6, 10−4, and 10−3, and the 5 values of λ: 10−4, 10−3,
10−2, 10−1 and 101. The results are plotted in Figs. 6, 7, 8, and 9.

Performance of Fair Distributed Mutual Exclusion Algorithms 11

Fig. 7. Normalized message complexity vs. number of processes (SC2x)

Fig. 8. Normalized message complexity vs. number of processes (SC3x)

Fig. 6: SC11(10−7, 10−4), SC12(10−7, 10−3), SC13(10−7, 10−2), SC14(10−7, -
10−1), SC15(10−7, 1)

Fig. 7: SC21(10−6, 10−4), SC22(10−6, 10−3), SC23(10−6, 10−2), SC24(10−6, -
10−1), SC25(10−6, 1)

Fig. 8: SC31(10−4, 7×10−4), SC32(10−4, 10−3), SC33(10−4, 10−2), SC34(10−4,-
10−1), SC35(10−4, 1)

Fig. 9: SC41(10−3, 7×10−3), SC42(10−3, 10−2), SC43(10−3, 10−1), SC44(10−3,1)
Note from Fig. 9 that SC4x consists of four data sets instead of five as λ > CSS.

Observations

– As N increases, Mnorm decreases first but then levels off. This shows the
scalability of LK. With an increase in N and at a fixed λ, the number of

12 K. Jani and A.D. Kshemkalyani

Fig. 9. Normalized message complexity vs. number of processes (SC4x)

Fig. 10. Waiting time vs. number of processes (WT1)

concurrent requests increases (load increases), and hence the waiting time
increases. Waiting times will tend to overlap more, as also the non-CSS
reduces. This potentially affects the probability of two processes making
concurrent requests. The exact impact observed on Mnorm is difficult to
explain by theory.

– For low values of N , as N increases, the dip in Mnorm is quite noticable.
However, the curves tend to saturate for N > 30. This suggests that Mnorm

will tend to a steady value as the number of processes increases.
– Another observation which complements the results of Section 4.2 is that, for

lower values of λ, the curves are also lower. Lesser the inter-request time, the
probability that there will be more number of concurrent requests increases.
Consequently the message overhead reduces. As the value of λ increases, so
does the normalized message complexity.

Performance of Fair Distributed Mutual Exclusion Algorithms 13

Fig. 11. Waiting time vs. number of processes (WT2)

Recall from Section 4.2 the propagation delay D is treated as being a part of
CSS. Modeling D independently is beyond the scope of this simulation.

4.4 Expt. 3: Improvement in Waiting Time

This experiment compares the waiting times in the RA and LK algorithms.
Theoretically, it can be predicted that the waiting time of LK is at least as good
as that of RA. This is because the “RA-type” messages are absent in LK, and
hence, a requesting process need not wait to receive REPLY messages from all
the concurrently requesting processes. Specifically, LK has two cases.
– A high-priority process does not have to wait for a REPLY message from a

lower priority process. Under low load, this savings may not be large because
there are not many processes requesting concurrently; thus, there may not be
many lower priority concurrent requests. Under high load, this savings may
not be large because there are many concurrently requesting processes, and
a process may need to wait anyway because there are several higher priority
processes that need to execute their CS before this process can enter its
CS. Hence, not having to wait for the REPLY messages from lower priority
processes may not reduce the waiting time substantially.

– A low-priority process does not have to wait for a REPLY message from all
the higher priority processes. It suffices if the FLUSH/REPLY message with
the immediately higher priority than that of the requesting process, reaches
the requesting process; the LRQ queue would get purged of all higher priority
requests than that on the received REPLY/FLUSH. Here, the reduction in
waiting time may not be high, as also seen from the following scenario.
Assume that Pj ’s request has a higher priority than Pk’s request which
has a higher priority than Pi’s request. Statistically, the probability of a
REPLY/FLUSH sent later by Pk arriving at Pi earlier than the REPLY of
Pj (which would be sent in RA) is low.

14 K. Jani and A.D. Kshemkalyani

It is difficult to theoretically analyze the improvement in waiting time of LK
over RA. Hence, we simulate both algorithms. The curves in Figs. 10 and 11 are
plotted for the following settings of (CSS, λ), with N varying from 10 to 45.

Fig. 10: WT1(10−6, 10−4)
Fig. 11: WT2(10−7, 10−4)

In the graphs, the RA curve is clearly above the LK curve. Thus, LK gives a
better waiting time than RA. The following observations can also be made.

Observations

– Initially, with a low N , the concurrency set is small. The LK curve follows
the RA curve but is below it because of having to wait for fewer messages.

– As the value of N increases, contention for CS increases. The rate of increase
of waiting time for RA curve remains the same. However, the same decreases
for the LK curve. This behavior can be attributed to the increase in the size
of the concurrency set with increasing N . A larger concurrency set implies
not having to wait for more number of RA-type replies (that will never get
sent in the LK algorithm). Consequently, there is a relative reduction in the
waiting time for LK.

– As N is increased further, however, the two curves start getting closer. The
LK curve runs much more closer to the RA curve for N > 30. This may be
attributed to the fact that there are now more higher-priority processes that
need to execute their CS first. Therefore, not having to wait for the REPLY
messages from lower priority processes as well as (earlier) higher priority
processes is not as effective in reducing the waiting time. Another reason is
that, along with increase in the size of the concurrency set, the number of
enqueue and dequeue operations (for LRQ) at each process also increases.
and their overhead becomes nontrivial.

The simulations show that the waiting time in the LK algorithm is somewhat
lower than in the RA algorithm under all conditions tested.

5 Conclusions

The RA algorithm was the most efficient fair algorithm for distributed mutual
exclusion for about two decades. This paper experimentally studied the perfor-
mance of the recently proposed LK algorithm, and showed that it outperforms
the RA algorithm in both message complexity and waiting time, without com-
promising on fairness or any other metrics.

Acknowledgements

This work was supported by US NSF grant CCR-9875617. We thank Shashank
Khanvilkar for his help with OPNET.

Performance of Fair Distributed Mutual Exclusion Algorithms 15

References

1. P. Chandra, P. Gambhire, A. D. Kshemkalyani, Performance of the Optimal Causal
Multicast Algorithm: A Statistical Analysis, IEEE Transactions on Parallel and
Distributed Systems, 15(1):40-52, January 2004.

2. Y.-I. Chang, A Simulation Study on Distributed Mutual Exclusion, J. Parallel and
Distributed Computing, Vol. 33(2): 107-121, 1996.

3. S. Floyd, V. Paxson, Difficulties in Simulating the Internet, IEEE/ACM Transac-
tions on Networking, Vol. 9(4): 392-403, August 2001.

4. L. Lamport, Time, Clocks and the Ordering of Events in Distributed Systems,
Comm. ACM, Vol. 21(7): 558 - 565, Jan 1978.

5. S. Lodha, A. Kshemkalyani, A Fair Distributed Mutual Exclusion Algorithm, IEEE
Trans. on Parallel and Distributed Systems, 11(6): 537-549, June 2000.

6. OPNET, Available at: 〈http://www.opnet.com/products/modeler/home.html〉
7. G. Ricart, A. K. Agrawala, An Optimal Algorithm for Mutual Exclusion in Com-

puter Networks, Comm. ACM, 24(1):9-17, Jan. 1981.
8. M. Singhal, A Taxonomy of Distributed Mutual Exclusion, J. Parallel and Dis-

tributed Computing, 18(1):94-101, May 1993.

	Introduction
	Overview of RA and LK Algorithms
	Ricart-Agrawala’s Algorithm [7]
	Lodha-Kshemkalyani Algorithm [5]

	Objectives of Simulation
	Simulation Parameters
	Inter-relation Amongst CSS, λ, T , and D

	Simulation Results

