
J. Parallel Distrib. Comput. 74 (2014) 1971–1983
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Detecting stable locality-aware predicates
Min Shen a, Ajay D. Kshemkalyani a,∗, Ashfaq Khokhar b
a Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA
b Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA

h i g h l i g h t s

• Algorithms to detect locality-aware predicates in large-scale systems.
• BFS tree topology of height k is used to define locality.
• Can detect stable conjunctive predicates and stable relational predicates.
• Applications to modular robotics and wireless sensor networks.

a r t i c l e i n f o

Article history:
Received 17 November 2012
Received in revised form
23 July 2013
Accepted 20 September 2013
Available online 29 September 2013

Keywords:
Predicate detection
Locality-aware
Scale-free
Modular robotics
Wireless sensor networks
Distributed computing

a b s t r a c t

In a large-scale locality-driven network such as in modular robotics and wireless sensor networks,
knowing the state of a local area is sometimes necessary due to either interactions being local and driven
byneighborhoodproximity or theusers being interested in the state of a certain region.Wedefine locality-
aware predicates (LAP) that aim at detecting a predicate within a specified area. We model the area of
interest as the set of processes that are within a breadth-first search tree (BFST) of height k rooted at
the initiator process. Although a locality-aware predicate specifies a predicate only within a local area,
observing the area consistently requires considering the entire system in a consistent manner. This raises
the challenge of making the complexities of the corresponding predicate detection algorithms scale-free,
i.e., independent of the size of the system. Since all existing algorithms for getting a consistent view of the
system require either a global snapshot of the entire system or vector clocks of the size of the system, a
new solution is needed. We focus on stable LAP, which are those LAP that remain true once they become
true. We propose a scale-free algorithm to detect stable LAP within a k-height BFST. Our algorithm can
detect both stable conjunctive LAP and stable relational LAP. In the process of designing our algorithm, we
also propose the first distributed algorithm for building a BFST within an area of interest in a graph, and
the first distributed algorithm for recording a consistent sub-cut within the area of interest. This paper
demonstrates that LAPs are a natural fit for detecting distributed properties in large-scale distributed
systems, and stable LAPs can be practically detected at low cost.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, distributed systems have found applications in
new areas such as modular robotics [1,3,10,12,13,30] and wireless
sensor networks (WSNs) [11]. These emerging areas share some
common properties such as large scale and dynamic topologies.
These properties lead to the need for robust and scalable algo-
rithms to manage, monitor, and reason about the distributed ex-
ecution in these applications.

A major problem in reasoning about a distributed execution
is the detection of distributed properties. The dynamism and
nondeterminism of executions present challenges to observing

∗ Corresponding author.
E-mail addresses:mshen6@uic.edu (M. Shen), ajay@uic.edu

(A.D. Kshemkalyani), ashfaq@uic.edu (A. Khokhar).

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.09.009
the distributed states of the system. To solve this problem, many
distributed predicate detection algorithms have been proposed
(see the survey chapter by Kshemkalyani and Singhal [23]). The
predicate detection problem is inherently different from the global
snapshot problem [4], another well studied problem in distributed
systems. A global snapshot gives one of the possible states that
could have existed during the period of algorithm execution, while
predicate detection verifies the occurrence of the predicate in all
possible states that could have existed. Predicates can be either
stable or unstable. A stable predicate remains true once it becomes
true while an unstable predicate does not satisfy this property.
So a snapshot algorithm can detect a stable predicate but not an
unstable predicate. In fact, detecting an unstable predicate is an
NP-complete problem [23].

Predicate detection has not been studied in large-scale dis-
tributed systems. The recent works on snapshots in large-scale
systems [15,21,35] take snapshots of the entire system in the

http://dx.doi.org/10.1016/j.jpdc.2013.09.009
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.09.009&domain=pdf
mailto:mshen6@uic.edu
mailto:ajay@uic.edu
mailto:ashfaq@uic.edu
http://dx.doi.org/10.1016/j.jpdc.2013.09.009

1972 M. Shen et al. / J. Parallel Distrib. Comput. 74 (2014) 1971–1983
context of peer-to-peer (P2P) systems and supercomputer clus-
ter systems. The corresponding algorithms could be used to de-
tect a stable predicate, but they have message complexities of
Ω(N logN), where N is the number of processes in the entire sys-
tem.

When the number of processes becomes large and the events
are locality driven, users can sometimes be more interested in the
state of a local region rather than that of the entire network. The
reasons can be that (i) it is too expensive to do a global predicate
detectionwithin a large-scale system, or that (ii) properties of local
interactions can only be captured by predicates over local regions.
Consider the number of patients in a particular emergency room
within a WSN monitored hospital environment, or the number of
hostile entities in a particular region in a WSN monitored battle-
field. In such cases, it makes sense to detect predicates based on a
part of the system rather than its entirety. To address such situa-
tions, we propose the concept of locality-aware predicates (LAP).
Locality-aware predicates are similar to classical predicates. They
can also be classified as conjunctive/relational based on the func-
tion on the variables involved in the predicate, or stable/unstable
based on their detectability. The difference lies in that locality-
aware predicates detect a predicate in a sub-network of the sys-
tem. We call this sub-network an ‘‘area of interest’’. The notion of
locality-aware predicates, in the form of ‘‘linear distributed predi-
cates’’, was put forward by De Rosa et al. [11]—however, that paper
formalized and gave an algorithm to detect a predicate only within
a linear chain or ring topology, which is insufficient to represent a
local region. Also, they assumed FIFO channels, whichmakes it im-
practical to apply their algorithm in networks such asWSNswhere
communication channels are not reliable.

We focus on detecting stable locality-aware predicates in this
paper, and design an algorithm to detect both stable conjunctive
LAP and stable relational LAP. In our proposed solution to detect a
stable locality-aware predicate, the user interactswith one process
in the area of interest and specifies the range of the area as well as
the predicate to be detected. The detection is a 3-stage procedure.

1. The interacted process initiates the construction of an overlay
network that corresponds to the local region specified by the
user (Algorithm 1 in Section 4). This incurs a one-time cost for
establishing the local region.

2. A distributed snapshot within this region is recorded (Algo-
rithm 2 in Section 5) each time the region is to be consistently
observed.

3. The recorded snapshot is used for the detection of the predicate
(Algorithm 3 in Section 6).

A brief abstract of this work was recently announced [32].

Contributions

1. This paper motivates and proposes the concept of locality-
aware predicates in large-scale networks.

2. This paper proposes the first algorithm to detect stable LAP for
such networks and assumes non-FIFO channels. The algorithm
candetect both stable conjunctive LAP and stable relational LAP.
The algorithm is highly efficient and the message count, mes-
sage space, storage cost, and bandwidth complexities are scale-
free, i.e., they are independent of the size of the entire network.

3. To design the above algorithm, the paper alsomakes the follow-
ing incidental contributions.
(a) The paper presents the first distributed algorithm to create a

breadth-first search tree (BFST) for a specified regionwithin
a network.

(b) The paper presents the first distributed algorithm to record
a consistent snapshotwithin a specified region of a network.

The message count, message size, storage cost, and bandwidth
complexities of both these algorithms are also scale-free.
Table 1
Summary of notations used.

(P ,L) Undirected network graph defined by the set of processes P and
set of edges L

N N = |P |, the number of processes in the system
Lij Lij ∈ L is an unidirectional edge from process Pi to Pj
Cij Cij is a logical communication link (over a path in L) from Pi to Pj
ehi The hth event e executed by process Pi
Ei Ei = ⟨e0i , e

1
i , e

2
i , . . .⟩

(E,≺) E =

i,1≤i≤N e ∈ Ei; ≺ is the ‘‘happens before’’ or causality relation
on E

Sti State of Pi , which is the result of the seq. of events it executed up to
the current instant t

mij Message sent from Pi to Pj
send(mij) The send event for messagemij
recv(mij) The receive event for messagemij
SC tu

ij The in-transit message set = {mij | send(mij) ∈ Sti ∧ recv(mij) ∉ Suj }
K Consistent cut K ⊆ E such that if e ∈ K then ∀e′

≺ e, e′
∈ K

(P ′,L′) A sub-graph of (P ,L)
K ′ Consistent sub-cut of a distributed execution over sub-graph

(P ′,L′)

Pr , Pi Pr is the initiator of LAP detection; Pi is any process
d Degree of the graph (P ,L), defined as the maximum of all the

processes’ degrees
k The radius of the local region of interest, measured as the number

of hops from Pr
n The number of processes in the local region of interest, and is

upper-bounded by dk
Q A LAP Q = (φ, k, Pr), where φ is a predicate, k and Pr are defined

above

Organization

Section 2 gives the system model and a background on predi-
cate detection as well as snapshot algorithms. Section 3 discusses
the challenges inmodeling and detecting locality-aware predicates
and why a three-stage detection process is necessary. Section 4,
which focuses on the first stage, introduces howwemodel the area
of interest and proposes the algorithm to construct an overlay net-
work that represents this area. Section 5, which focuses on the sec-
ond stage, presents howwemodify the existing algorithms to solve
the new problem—to construct a snapshot within the area of inter-
est in a large-scale non-FIFO network. Section 6, which focuses on
the third stage, presents the algorithm to detect stable conjunctive
LAP and stable relational LAP. Section 7 analyzes the complexities
of these algorithms in terms of the number of messages, the mes-
sage sizes, and the storage and bandwidth costs. Section 8 briefly
discusses some special cases of detecting stable LAP. Conclusions
and future work are discussed in Section 9.

2. Preliminaries

In this section, we introduce the concepts that are related to our
work and define the terminology that will be used in later sections.
Table 1 summarizes the important notations.

2.1. System model

A distributed system ismodeled as an undirected graph (P ,L),
where P is the set of processes and L is the set of communication
links connecting them. Let N = |P | and l = |L|, and let d de-
note the degree of the graph, defined as the maximum degree of
any process in the graph. The execution of process Pi produces a
sequence of events Ei = ⟨e0i , e

1
i , e

2
i , . . .⟩, where ehi is the hth event

at process Pi. An event at a process can be a message send, a mes-
sage receive, or an internal event. Let E = ∪i,1≤i≤N e ∈ Ei denote
the set of events executed in a distributed execution. The causal
precedence relation between events induces an irreflexive partial
order on E. This relation is defined as Lamport’s ‘‘happens before’’

M. Shen et al. / J. Parallel Distrib. Comput. 74 (2014) 1971–1983 1973
relation [26], and denoted as ≺. An execution of a distributed sys-
tem is thus denoted by the tuple (E,≺).

The state of a process Pi at instant t , denoted as Sti , is the result of
the sequence of all the events executed by Pi up to instant t . For an
event e and a process state Sti , e ∈ Sti iff e belongs to the sequence
of events that have taken process Pi to state Sti .

A channel Cij is a logical communication channel from process
Pi to Pj. We define Cij to exist if and only if there is a path from
Pi to Pj in L. Since the graph is undirected, Lij ∈ L ⇒ Lji ∈ L
and Cij exists iff Cji exists. Two processes Pi and Pj are neighbors if
Lij ∈ L. Neighbors can communicate via single-hop communi-
cation, whereas non-neighbors communicate via multi-hop com-
munication using logical channels. This distinction is useful for
capturing communication cost accurately in large-scale networks
such as modular robotics and wireless sensor networks (WSNs).
We do not assume FIFO logical channels in this paper even though
physical links between neighbors in L are FIFO. A message sent
along channel Cij is denoted as mij and has two associated events
send(mij) and recv(mij) happening at processes Pi and Pj, respec-
tively. The state of a channel SC tu

ij depends on the local states Sti and
Suj of the processes onwhich it is incident and is defined as follows:

SC tu
ij = transit(Sti , S

u
j) = {mij | send(mij) ∈ Sti ∧ recv(mij) ∉ Suj }.

The superscripts of Sti and SC tu
ij are not written when they are not

important to the context.
A consistent cut [4] K is a subset of E such that if e ∈ K then

for ∀e′
≺ e, e′

∈ K . We can define a consistent sub-cut K ′ of a
distributed execution as a consistent cut over a sub-graph (P ′,L′)
of (P ,L). To show that a sub-cut K ′ is consistent, it is sufficient to
show:
1. for all messages whose source and destination are processes

within sub-graph (P ′,L′), there is no orphanmessagemij such
that recv(mij) ∈ K ′

∧ send(mij) ∉ K ′;
2. if ehi ∈ K ′, then for ∀j < h, eji ∈ K ′.

Less formally, a consistent sub-cut K ′ is a consistent cut with
respect to the sub-graph (P ′,L′) it resides on.

2.2. Predicate detection

There are several predicate classes studied in the literature
(see the survey [23]). We briefly summarize several of the more
important classes.

One way of categorizing predicates is based on the function on
the variables/states involved in the predicate [6]:
1. A conjunctive predicate is a predicate that can be expressed as

the conjunction of local variables. For example, ψ = xi =

10∧yj > 20, where xi and yj are variables at processes Pi and Pj,
respectively, is a conjunctive predicate. However, determining
the number of tokens in a token-passing system is not.

2. A relational predicate is a predicate that is expressed as an
arbitrary relation on the variables in the system. χ = xi +

yj > 20 is a relational predicate. Termination, deadlock, and
determining the number of tokens are all relational predicates.

Another way to categorize predicates is based on their detectabil-
ity:
1. A stable predicate is a predicate that remains true once it

becomes true [4].
2. An unstable predicate is a predicate that is not stable and hence

may hold only intermittently [6].

A stable/unstable predicate can be either conjunctive or relational.
There is literature studying the detection of unstable conjunctive
predicates [16,17]. However, due to the exponential complexity,
few have studied the unstable relational predicate detection
problem.
Stable predicates

Detecting whether a certain stable predicate has become true
in an ongoing distributed computation is a fundamental problem
for many applications in distributed systems. Examples of stable
predicates include termination (the system is in a terminated state
with processes in an idle state and no messages in the channels),
deadlock (a subset of processes are involved in a circular wait),
and garbage collection (an object is a garbage if it has no pointer
to it). The ability to detect a stable predicate is vital to application
development, including debugging, monitoring, and control. The
stable predicate detection problem has been well-studied and
many solutions have been proposed for solving the general
problem (e.g., [2,4,24,25]) as well as the special cases (e.g., [14,19,
27,31]). Stable predicate detection also received attention in recent
years (e.g. [8,29]).

2.3. Snapshots in systems with non-FIFO channels

Snapshots have been used to detect stable predicates. A snap-
shot of a distributed system consists of a consistent collection of lo-
cal states of processes and a consistent view of the corresponding
channel states. The first paper formalizing and solving the global
snapshot problem by Chandy and Lamport [4] assumes FIFO chan-
nels. Its key idea is as follows. The initiator of a global snapshot
recording records its local state and diffuses control messages,
called markers, on all channels in the system. A non-initiator pro-
cess records its local state for the snapshotwhen it receives the first
marker. The messages received in the duration between the local
state recording and the arrival of a marker on an incoming chan-
nel are recorded as the state of that channel in the global snapshot.
The diffusion of the markers contributes to a O(N2)message count
complexity, where N is the total number of processes in the entire
system.

Since the Chandy–Lamport algorithm, recording the snapshot
in systems with non-FIFO channels has also been studied [7,18,25,
28,34]. The details can be referred from a survey [22]. The Lai–Yang
algorithm [25] and the Mattern algorithm [28] are non-freezing or
non-inhibitory [7,34], i.e., the algorithms and their control mes-
sages do not introduce waits in the underlying computation ex-
ecution which is being observed and snapshotted/recorded. The
algorithm by Helary [18] is inhibitory in contrast. As freezing al-
gorithms are highly undesirable because they interfere with the
underlying computation, henceforth, we do not compare our algo-
rithm with that of Helary.

In recent years, the snapshot problem in large-scale distributed
systems, such as P2P networks and supercomputer clusters, has
also been studied [15,21,35]. The corresponding algorithms could
be used to detect stable predicates, but they have message
complexities ofΩ(N logN).

Two techniques from the above papers, the white/red coloring
by Lai and Yang [25] for recording process states, and the vector
counter by Mattern [28] for recording channel states, are adapted
in our stable LAP detection algorithm.

White/red coloring has these basic rules:

1. A process is initially white and immediately becomes red after
it takes a local snapshot.

2. A white (or red) process sends white (or red) colored messages.
3. Upon receiving a red message, a white process takes a local

snapshot.

Essentially, a process piggybacks a one bit status information on all
outgoing communication messages. This indicates whether or not
the process has taken its local snapshot. After every process takes
a snapshot of its local state, the set of those local states forms a
consistent cut.

1974 M. Shen et al. / J. Parallel Distrib. Comput. 74 (2014) 1971–1983
The vector counter technique is for recording channel states.
This technique requires each process to separately count the num-
ber ofwhitemessages that it has sent to any other process in a local
vector. Every process also counts the number ofwhitemessages re-
ceived from all other processes in one variable. First, a controlmes-
sage circulates through every process, via either a convergecast in
a tree topology or a circulation around a ring topology, to calculate
the total number ofwhitemessages sent to each process. After this,
the control message is broadcast to all processes, and each process
waits until it has received all in-transit white messages according
to the corresponding white message counter in the vector. All the
white messages received by Pj from Pi after Pj turns red form the
channel state SCij.

These existing solutions are insufficient for solving the problem
of capturing a snapshot under the context of detecting a locality-
aware predicate. We expand on this in the next section.

3. Locality-aware predicates

3.1. Motivation

Locality-aware predicates aim at specifying predicates for a
local region in a large-scale locality driven network such as
modular robotics or WSNs. In such a system, the state of a local
region, rather than of the entire system, can be of more interest.
This is because: (i) the number of processes in the system is large,
thus knowing the state of the entire system can be quite expensive;
(ii) the processes’ interactions are local, driven by neighborhood
proximity; and (iii) the properties of these interactions can only be
captured by predicates over local regions.

Consider the following examples. In a token-passing system, the
detection of a predicate, Φ = number of tokens is greater than 5,
defined for the global system might not contain any useful
information, since the system contains many processes and the
total number of tokens can easily exceed 5. However, ifΦ is defined
on a local region, then the detection of this predicate provides
insight towards this particular region, and thus better captures the
interactionswithin the local region. To detect an explosion event in
aWSN deployed field, we need to detect both the temperature and
the sound level, as ‘‘temp > 150 C

sound > 60 dB’’. Assuming

each sensor can only sense one parameter, this statement is a
predicate specified on the local variables of multiple sensors. To
make the detection of such a predicate meaningful, the processes
whose local variables satisfy this predicate should be close to each
other. If the above predicate is detected in sensors which are far
apart, then that may not imply that an explosion occurred. In a
large-scale locality-driven system, such asWSNs, users are usually
interested in such kinds of properties within a certain region.
Further examples are the number of patients in a specific area in a
WSN monitored hospital environment, and the number of hostile
entities in a certain region in a WSN monitored battlefield.

3.2. Detecting locality-aware predicates

When using snapshots to detect predicates, we need to build
a consistent cut among the processes over which the predicate is
to be detected. For locality-aware predicates, the set of processes
over which we detect the predicate is not the entire network. One
trivial solution is to take a global snapshot and detect the locality-
aware predicate based on a subset of this snapshot. However, the
complexity of such a solution is affected by the size of the network.
To better solve this problem, we need to design algorithms that are
scale-free, meaning that the size of the entire systemdoes not affect
the complexity of the algorithms. For this purpose, we need to take
the snapshot only within the area of interest.
Table 2
Comparison of features of algorithms for detecting stable predicates in large-scale
distributed systems.

Feature Non-
freezing

Non-FIFO
channel

Locality
awareness

Scale-
free

Chandy–Lamport [4]
√

× No ×

Modified C–L
(Section 3.2)

√
× Spanning tree ×

Mattern’s non-FIFO
Snapshot [28]

√ √
No ×

LDP-Basic [11]
√

× Linear chain
√

LDP-Snapshot [11] × × Linear chain
√

LAP Algorithms
√ √

BFST or any tree
√

One seemingly possible solution to design a scale-free algo-
rithm for recording a snapshot within the area of interest would
be to run the Chandy–Lamport snapshot algorithmwith hop count,
that is, to count the number of hops the marker message has tra-
versed from the initiator and stop sending markers once the hop
count reaches a certain value. We term this algorithm as themodi-
fied Chandy–Lamport (modified C–L) algorithm. It has three draw-
backs.

1. The overlay network that this algorithm constructs is a span-
ning tree. If we want to cover all processes within a certain dis-
tance from the initiator, a spanning tree is not sufficient since
the spanning tree does not find the shortest paths.

2. Using the modified C–L snapshot algorithm will require the
communication channels to be FIFO. This is not practical in net-
works such as WSNs.

3. Most importantly, the modified C–L algorithm can go wrong
with the recorded process states and the recorded channel
states within the area of interest. This is because it is unable
to track messages that transitively traverse outside the area of
interest and potentially reenter the area. Fixing this problem re-
quires taking a system-wide global snapshot, which will make
the solution non-scale-free.

In essence, the modified C–L algorithm cannot construct a consis-
tent sub-cut over the area of interest in a scale-free manner.

Besides the Chandy–Lamport snapshot algorithm, all the exist-
ing non-FIFO snapshot algorithms [15,18,21,25,28,35] cannot be
directly applied to solve the problem in a non-FIFO network. There
are two reasons. First, most of the existing algorithms rely on a
spanning tree overlay network [18,25,28] or an even more rigid
overlay network such as a hypercube [15,21,35]. Second, when
capturing the process states and the channel states, the existing
algorithms are designed for the entire network and will cause the
complexity to be non-scale-free.

So, a new solution is needed. It needs to be scale-free, capable
of constructing an overlay network that represents the area of
interest, and effectively and efficiently takes a snapshot within the
area of interest. In addition, it detects a predicate within the area
of interest. We design such a solution as a three-stage procedure,
as outlined in Section 1.

We now compare features of potential solutions to solve the
problem of detecting a stable LAP in Table 2. We compare the
Chandy–Lamport snapshot algorithm [4], the modified C–L al-
gorithm, and Mattern’s non-FIFO snapshot algorithm [28]. We
also compare with the two algorithms, LDP-Basic and LDP-
Snapshot [11], that can detect a locally distributed predicate (LDP)
within a linear topology only. Both these algorithms work only if
the communication is single-hop to direct physical neighbors, and
the underlying channels are FIFO. LDP-Basic can only detect a sta-
ble predicate that does not depend on channel states, while LDP-
Snapshot uses freezing to detect a stable predicate thatmaydepend
on channel states. Lastly, we compare with our proposed solution,
which we term as LAP algorithms. The Lai–Yang algorithm [25]

M. Shen et al. / J. Parallel Distrib. Comput. 74 (2014) 1971–1983 1975
Fig. 1. Four types of messages.

requires unbounded memory to track all past messages, whereas
the Helary algorithm [18] is freezing; both these algorithms have
highly undesirable features and hence are not considered.

Some classification to design our solutions (LAP algorithms)
is introduced next. When taking a snapshot, we need to ensure
there is no orphan message [23] present in the snapshot. For the
processes within the area of interest, messages can be categorized
into 4 types, as illustrated in Fig. 1.

1. Messages transmitted entirely within the area of interest,
2. Messages whose source and destination are within the area of

interest, but some of the transmitting intermediate processes
are outside the area,

3. Messages sent from within the area of interest to some pro-
cesses outside it,

4. Messages sent from outside the area of interest to some pro-
cesses within it.

Since our goal is to take a snapshot for processeswithin the area
of interest, type 3 and 4 messages can be ignored when checking
for orphan messages. This is because whether such messages are
orphan messages depends on the states of processes outside the
local region. So, theoretically we need to check that there are no
orphan messages only among type 1 and 2 messages. To classify a
message as one of the four types, the algorithm needs to know the
source and destination processes, and whether they belong to the
area of interest. Although a scale-free solution of space complexity
O(d)might seem possible by simply tracking whether each neigh-
bor of a process in the area of interest is also in the area of interest,
this will not work because channel statesmay not be captured cor-
rectly. This is because each pair of processes Pi and Pj communicate
over a logical channel Cij. Even though Pi and Pj may be in the area
of interest, theymay not be neighbors in (P ,L); and therefore it is
necessary to know whether each other process is in the area of in-
terest. Furthermore, a message sent along Cij may traverse outside
the area of interest over physical links and hence it is necessary to
record the states of logical links rather than physical links in the
area of interest.

4. Modeling area of interest

The key aspect of specifying a locality-aware predicate is to
specify the area of interest. So the first stage of the solution is to
construct a topology that can represent the area of interest. We
want to detect the predicate in an area centered at the process Pr
the user interacts with and the ‘‘radius’’ of the area is k, meaning
that processes in the area arewithin distance k in termsof the num-
ber of edges from Pr . This circular region is a natural model for the
area of interest, particularly in WSNs and modular robotics appli-
cations because it captures geographical proximity. To achieve this,
we need a topology that covers all the processes in such an area; a
simple spanning tree will not suffice because it may not include all
the processes within k hops from Pr ; see Fig. 2 for an illustration of
this concept. For this purpose, we use a local breadth-first search
tree (BFST) as the topology tomodel the local region. The local BFST
is rooted at process Pr with height k.

A distributed algorithm to construct a BFST was given by
Chandy and Misra [5]. However the BFST is constructed for the
entire network and their algorithm has an O(N2d) message count
complexity. To construct a local BFST, we face the challenge of de-
termining when the algorithm terminates. Trivial solutions such
as the asynchronous Bellman–Ford algorithm [23] do not have
any mechanism to determine when to terminate. Although the
Chandy–Misra algorithm [5] proposed a way to determine termi-
nation by counting the number of acknowledgments, we cannot
directly adapt that algorithm by using a hop restriction. This is be-
cause a process temporarily khops away from Pr may later discover
a shorter path. Thus, we need to design a solution that can correctly
and efficiently determine when the algorithm terminates. Com-
pared with the Chandy–Misra algorithm [5], our algorithm also
generates fewer acknowledgment messages. Besides that, our al-
gorithm is capable of determining the list of children for each
process in the local BFST when the algorithm terminates. This is
important for the later stages in our stable LAP detection solution.

We use two types of control messages in the algorithm
Local BFST (Pr , k), which is listed as Algorithm 1.
1. A message length (s, Pj, k) received at Pi indicates that there is

a path of length s from Pr to Pi with Pj being the predecessor of
Pi. The distance limitation k is also contained in this message.

2. Amessage ack (positive/negative, s, pids) acknowledges a length
message sent from Pj to Pi after a certain condition is met.
An ack can be either positive or negative, and also carries the
length parameter s of the corresponding length message. The
parameter pids is a set that contains the process identifiers of
some of the nodes in the sub-tree traversed. This parameter is
non-empty only on positive acks.

Each process Pi also maintains several local variables.
1. dist: the length of the shortest path from Pr to Pi known so far.

Pr initializes dist to 0, other processes initialize dist to ∞.
2. pred: the predecessor on the shortest path from Pr to Pi

known so far, and is initially undefined. The message length
(dist, pred, k) is received from pred.

3. num: the number of unacknowledged length messages, initial-
ized to 0.

4. child_list: a list of processes that become a child process of Pi in
the tree topology, initialized to the empty list.

5. T : a set of some of the process identifiers in the sub-tree,
initialized to ∅.

Correctness

Observation 1. Once a process receives a lengthmessage, the process
will always have some parent pred and will always be a part of the
local BFST.

Observation 2. For a process Pi in the local BFST, its neighbors that
are also in the local BFST are exactly those processes Pj to which Pi sent
a length message or from which Pi received a length message.

Observation 3. The variable dist is a strictly decreasing function and
can change at most k times.

Theorem 1. Algorithm 1 identifies all the processes in the local BFST,
defined as a BFST rooted at Pr with height k.

1976 M. Shen et al. / J. Parallel Distrib. Comput. 74 (2014) 1971–1983
a b

Fig. 2. Illustration of covering an area centered at P0 with radius 2. Bold edges are tree edges. (a) A spanning tree might exclude some processes such as x and y because it
does not find shortest paths. (b) A local BFST includes all the processes.
Algorithm 1 Local BFST (Pr , k)
i. Pr initiates the construction of local BFST:
1. dist = 0, pred undefined, child_list empty, T = {i};
2. send (1, Pr , k) to all neighbors;
3. num = # of neighbors;

ii. Pi receives length(s, Pj, k) from Pj:
4. if (s < dist) then
5. if dist = ∞ then
6. T = T

{i};

7. if (num > 0) then
8. send ack(negative, dist,∅) to pred;
9. pred = Pj; dist = s; child_list = ⟨⟩; num = 0;
10. if (s + 1 ≤ k) then
11. send a message length(s + 1, Pi, k) to

every neighbor except Pj;
12. num = # of neighbors −1;
13. if (num == 0) then
14. send ack(positive, dist, T) to pred;
15. T = ∅

16. else
17. send ack(negative, s,∅) to Pj;
18. remove Pj from child_list;

iii. Pi receives ack(∗, s, T ′) from Pj:
19. T = T

T ′

20. if (s ≠ dist + 1) then
21. discard the ack message
22. else
23. num = num − 1;
24. if (ack is positive) then
25. add Pj to child_list;
26. if (num == 0) then
27. if (pred ≠ Pi) then // non-root
28. send ack(positive, dist, T) to pred;
29. T = ∅

30. else // for Pr
31. broadcast terminate(T) on local BFST;
32. terminate the algorithm;

iv. Pi receives terminate(X) from Pj:
33. X identifies the process set in the area of interest;
34. propagate the terminate(X) on local BFST;
35. terminate the algorithm.

Proof. Define min_dist(Pi) as the length of the shortest path
from Pr to Pi. We say that a process gets engaged by a message
length(x, ∗, ∗) if x < dist at the process. By Observation 1, the
process will be part of the local BFST. We prove the theorem by
induction onmin_dist(Pi), using the hypothesis, ‘‘Ifmin_dist(Pi) =

x ≤ k, then Pi is included in the local BFST’’.
min_dist(Pi) = 1: Pr sends length(1, Pr , k) to all its neighbors.

The last engagement of any process Pi having min_dist(Pi) = 1 is
by the length(1, Pr , k) it receives. By Observation 2, Pi is included
in the local BFST.

min_dist(Pi) = x (x ≤ k− 1): Assume the induction hypothesis
is true.

min_dist(Pi) = x + 1 (x ≤ k − 1): By the induction hypothesis,
each process Pj such that min_dist(Pj) = x gets last engaged by a
message length(x, ∗, k), and by line (11), sends length(x+1, Pj, k) to
all its neighbors except pred, where min_dist(pred) = x − 1. Thus,
any process Pi such that min_dist(Pi) = x + 1 ≤ k will receive
at least one length(x + 1, ∗, k) message, and get last engaged by
the first such message. By Observation 2, Pi is included in the local
BFST.

Further, if min_dist(Pi) = k, by line (11), Pi will not send
any length(k + 1, Pi, k) messages, and no process Pj having
min_dist(Pj) > k will ever be engaged and will not be identified
as part of the local BFST. �

Algorithm1 is guaranteed to terminate correctly.When process
Pi sends the length messages to its neighbors, the counter num is
set to the number of length messages sent (line 12). Whenever an
ack is received, either positive or negative, the counter decreases
by 1 (line 23). Furthermore, each time Pi discovers a shorter
path, it will reset its counter to 0 (line 9). We also make sure
that Pi will only decrease its counter when the distance marked
in the ack message received matches Pi’s current dist (lines
20–21). By performing these operations, Pi can know whether
all length messages corresponding to its current dist have been
acknowledged. This is guaranteed to happen because for each
length message generated, exactly one ack message will be sent
back. When this happens, all the processes in the temporary sub-
tree rooted at Pi (this sub-tree might still change if any process
discovers a shorter path via some process outside this sub-tree)
also have their num being 0.When Pr ’s num becomes 0, the counter
num at all processes in the local BFST must have already turned
0. This ensures that all processes in the local BFST have been
discovered and every process in the local BFST has discovered the
shortest path, because otherwise there will be at least one process
whose num is not 0.

Upon termination at the root Pr , all processes in the area cen-
tered at Pr with radius k form a local BFST, and are also identified
at Pr . The identifiers of all the processes get collected in the T pa-
rameter at the root. Consider any Pi that has received some length

M. Shen et al. / J. Parallel Distrib. Comput. 74 (2014) 1971–1983 1977
a b c d

Fig. 3. Illustration of dynamic changes to child_list . (a) Initially Pj is Pi ’s child, with Pi ’s dist being 5 and Pj ’s dist being 6. (b) Pj discovers a shorter path with dist being 5 and
sends a length message to Pi . (c) Pj discovers a shorter path with dist being 4 and sends a length message to Pi . (d) Pj discovers a shorter path with dist being 3 and sends a
length message to Pi . In (b) and (c), Pi can discover Pj is no longer its child and can safely remove Pj from its child_list in line (18). In (d), Pi becomes Pj ’s child and resets its
child_list in line (9).
message. Pi sends i ∈ T to the first parent Pj towhich it sends a pos-
itive ack. (Pj has a smaller dist value.) Pj will add i to its T variable
(line (19)). Observe from lines (13–14) and (26–28) and Observa-
tion 3 that Pj has not yet sent any positive ack, or if it has, it will
still send one more to a new parent. Pj’s T variable containing i is
now included in the first positive ack it sends to some parent, say
Pk. (Pk has an even smaller dist value.) Inductively, within k hops,
Pi’s identifier i reaches Pr on some positive ack, after which Pr ter-
minates. Thus, every process that has received a length message is
included in T at Pr .

Each process in this local BFST also knows its parent (pred)
and children (child_list) upon termination. Each process’ parent is
correctly identified because pred is always set to the predecessor
on the shortest path known so far. For the list of children, each time
a positive ack is received at Pi from Pj, Pj has already set its pred
to Pi. Thus, Pi adds Pj to its child_list . However, it is possible that Pj
later discovers a shorter path and sets its pred to a different process.
Thus Pi needs to remove Pj from its child_list . This is achieved in
our algorithm. Notice that when Pj discovers a shorter path, it will
send length messages to all its neighbors, except the predecessor
on the shorter path; thus, a length message gets sent to Pi. When
this happens, only one of 3 situations could occur, as illustrated
in Fig. 3(b–d). In each case, Pi can discover that it is no longer Pj’s
parent and can safely remove Pj from its child_list: this happens in
line (18) for cases (b,c) and in line (9) for case (d).

This guarantees that for any process Pi, its child_list contains all
and only all the processes that becomes Pi’s children.

When the root terminates, it needs to broadcast a terminate
message in the local BFST, in order for other processes in the lo-
cal BFST to learn of the termination. This is because they would
not otherwise know if a shorter path than that per their current
knowledge is still being searched. The non-root processes termi-
nate when they receive the terminate broadcast from their parent,
pred. All the local BFST processes also learn of which other pro-
cesses are in the local BFST when they receive the T parameter on
the terminatemessage.

We denote the total number of processes in the entire system
as N and the number of processes in the area of interest as n. The
complexity of Algorithm 1 is scale-free (to be shown in Section 7),
meaning that its complexity is affected only by n, k, and d, but not
by N . This is a feature shared by all the algorithms introduced in
this paper. Being scale-free is important to locality-aware predi-
cate detection because a locality-aware predicate models a prop-
erty within a local region. Having an algorithm with complexity
relative to N will make it non-scalable and thus not applicable in
large-scale distributed systems.Wewill give the detailed complex-
ity analysis in Section 7.

With Algorithm 1, we ensure that in the first stage we can dy-
namically construct an overlay network covering all the processes
in the area of interest with a relatively low cost. Note that Algo-
rithm 1 is not robust to churn because of the intricate interactions
among the various length and ackmessages.
5. Consistent sub-cut construction

Now, we assume that Algorithm 1 has already run and a local
BFST rooted at Pr is constructed. In the second stage, a snapshot
within the area of interest is taken. We base our algorithm
on top of the white/red coloring and vector counter techniques
discussed in Section 2.3. For capturing process states, thewhite/red
coloring technique is sufficient to identify pre-recording and post-
recording messages in non-FIFO systems. Also, it does not incur
any extra overhead besides associating a one bit data with the
messages. However, for capturing channel states, the vector counter
technique does not solve the problem in a scale-free manner. This
technique is designed for capturing channel states while taking
a global snapshot. It also ensures that all the in-transit messages
while taking the snapshot get delivered to the destination when
the algorithm terminates. Directly applying this technique will
incur an O(N) storage cost and bandwidth cost, thus causing the
solution to be non-scale-free. Instead ofmaintaining a sizeN vector
to countwhitemessages sent to/received from every process in the
system, each process Pi in the area of interest only maintains a size
n = |T | vector to count the white messages traversing on logical
channels to processeswithin the area of interest. Recall that T is the
set of processes in the local BFST, as computed by Algorithm 1. We
assume the n processes in T are Pl1 , Pl2 , . . . , Pln and Pr associates
this mapping, which maps the ID i of process Pi = Pla in the local
BFST to a virtual ID a in the range [1, n], with the terminatemessage
in Algorithm 1. Thus every process has a unique position in a size-n
vector. This is important for the local variables introduced later.

As we need a scale-free algorithm, no process can start coloring
the messages white at system initialization time because it does
not know the area of interest, and hence would have to track the
messages sent to all N processes. As the local BFST is formed on-
the-fly, we are faced with the challenge of identifying (i) when to
begin coloring the messages as white, (ii) when to begin counting
the white messages sent to each other process in the BFST, and
(iii) when to start counting the white messages received. These
operations are essential to ensure that the recorded channel states
are complete. We claim that no coordination is needed among the
processes in the local BFST to begin these operations.

Observation 4. A process in the BFST can begin coloring messages
sent to processes in the BFST aswhite and counting thewhitemessages
sent to (and received from) others in the BFST, at any time before
recording its local snapshot. The count of incoming white messages
should begin no later than receiving the first white message.

This follows from the fact that each logical channel is indepen-
dent and the message count is per logical channel. The above ob-
servation is implemented in the one-time pre-processing for the
algorithm.

So, for our algorithm, each process Pli maintains the following
local variables:

1. color li records the color of Pli as either white or red; initialized
to white.

1978 M. Shen et al. / J. Parallel Distrib. Comput. 74 (2014) 1971–1983
2. wmsg_sent li [1 . . . n] is a vector of size n. wmsg_sent li [j] counts
the total number of white messages sent to process Plj in the
local BFST.

3. wmsg_to_recvli is an integer variable which accumulates the
count about the total number of white messages it should
receive (from processes that are also in the local BFST) in order
to complete the recording of channel states for the consistent
sub-cut.

4. wmsg_recvdli is an integer variable which counts the number
of white messages received (from processes that are also in the
local BFST).

There are three types of control messages in the algorithm:

1. An INIT message gets broadcast within the area of interest via
edges of the local BFST constructed in the first stage. It initiates
the algorithm and serves as a red communication message in
case some process in the local region has not received any
communication messages from other processes in the same
local region.

2. A Cvg_Acc_Whitemessage convergecasts thewmsg_sent vector.
3. A Bcast_Acc_White message broadcasts the wmsg_sent vectors

accumulated at the root.

In addition to these controlmessages, eachprocesswill also receive
white or red communication messages which they also need to
handle accordingly.

Our algorithm is listed in Algorithm 2. The one-time pre-
processing after the local BFST is constructed involves the follow-
ing action.

• As part of the initialization, recall that in Algorithm 1, the
root broadcasts the terminate(T) on the local BFST to inform
the processes of the IDs of the processes in the local BFST. As
each process gets engaged by the broadcast, it now initializes
the size-n vector wmsg_sent[1 . . . n], starts coloring messages
white, and counting the number of such messages sent to each
other process in the local BFST, and received from processes
in the local BFST. (If a white message is received before the
terminate(T) broadcast is received, thewmsg_recvdlj variable is
updated right away.)

For each snapshot to be collected after the pre-processing step,
the algorithm is executed in five phases:

1. The root of the local BFST initiates a one-to-all broadcast of
an INIT control message along the BFST edges to inform all
processes in the tree about the commencement of taking the
snapshot.

2. The number of white messages sent along each logical channel
whose both end-points are incident on processes within the
local BFST is determined in this phase along with recording the
local snapshot. First, upon receiving the INIT control message
or a red computation message, a white process turns red and
records its local state. A process might have already turned
red before receiving the INIT message; in this case, it simply
ignores the INIT message. Second, when a leaf node Pli turns
red, it initiates a convergecast to component-wise accumulate
the wmsg_sent li [1 . . . n] vector in the local BFST.

3. After executing the second phase in which Cvg_Acc_White(W)
accumulates the wmsg_sent li vectors of all nodes in the local
BFST at the root, the root initiates a Bcast_Acc_White(W) to
inform each process in the local BFST of the number of white
messages sent to it up to the snapshot recording.

4. As each process gets engaged by the Bcast_Acc_White, it saves in
wmsg_to_recvli = W [i] the number of whitemessages it should
receive in order to complete channel state recording.
5. The channel states are recorded in this phase. When a red
process Pli receives a white or an uncolored message from
Plj (which is also in the local BFST), Pli adds such a message
to the channel state SClj li and increments wmsg_recvdli if the
message was white. Once Pli determines thatwmsg_to_recvli =

wmsg_recvdli , it terminates the algorithm locally. It is now ready
to participate in the LAP evaluation (Algorithm 3).

Algorithm 2 Construction of Consistent Sub-cut(Pr , k, φ)
Initialization: Pli initializes the algorithm at the end of Algorithm 1:
1. Pr : On broadcasting terminate(T), initializewmsg_sent[1 . . . n],

start coloring messages white and start counting white
messages sent to processes in T . Also operatewmsg_recvd.

2. Pli ∈ local BFST: On receiving terminate(X), initialize
wmsg_sent[1 . . . n], start coloring messages white and start
counting white messages sent to processes in T . Also operate
wmsg_recvd.

i. Pr starts collecting the snapshot:
1. send an INIT (φ)message to all processes connected by local

BFST edges and to Pr itself;

ii. White process Pli receives an INIT or a red communication
message from Plj :

2. colorli = red;
3. if (Pli ≠ Plj) then
4. send an INIT message to all children in local BFST;
5. record local state pertinent to φ;
6. if (Pli is a leaf node in local BFST) then
7. initiate convergecast Cvg_Acc_White(wmsg_sent[1 . . . n]);

iii. Pli receives Cvg_Acc_White(W [1 . . . n]) from Plj :
8. participate in convergecast by accumulating the W vectors

from all children in local BFST and its ownwmsg_sent
vector recorded in the local snapshot;

9. if Pli ≠ Pr then // non-root
10. send Cvg_Acc_White(W) to parent;
11. else
12. initiate broadcast Bcast_Acc_White(W);

iv. Pli receives an Bcast_Acc_White(W)message from Plj :
13. wmsg_to_recvli = W [i];
14. if Pli is not a leaf node then
15. propagate Bcast_Acc_White(W) to child nodes;

v. Red process Pli receives a white or uncolored messagemsg
from Plj :

16. if (Plj is in local BFST) then
17. record msg as part of channel state SClj li ;
18. if (msg is white) then
19. wmsg_recvdli++;
20. if (wmsg_to_recvli = wmsg_recvdli) then
21. terminate the algorithm locally.

Correctness

To prove that Algorithm 2 is correct, we need to show that
the process states do not contain an orphan message and that the
channel states are complete.

• Since a white process records its local state upon receiving the
first red communication message or the INIT message, there
will be only white communication messages in its recorded
local state. Also, since a white process turns red after recording
its local state, all the send events of white messages would have

M. Shen et al. / J. Parallel Distrib. Comput. 74 (2014) 1971–1983 1979
been recorded. Thus, the process states do not contain orphan
messages.

• Since the algorithm does not terminate locally at a red process
until it has received the correct number of white messages
on each incoming channel from any other process also in the
local BFST (line 20), this guarantees that the channel states are
complete.
In our algorithm, as themessages are coloredwhite and counted
only after the local BFST is formed, no additional overhead is re-
quired before the detection of a stable LAP. However, the first
snapshot recorded by our algorithm may record some in-
complete channel states. This is because some (uncolored)
message generated before the pre-processing step may get
delivered to the destination after the snapshot and channel
state recording is completed at the destination. Such a poten-
tially incomplete channel state recording can be avoided by in-
troducing a small delay between the initialization step and step
(i). This is because (even with non-FIFO channels,) messages
will eventually be delivered. In wireless transmission protocols
such as IEEE 802.11 [20], although the value of the ACK time-
out is not defined in the specification, the general setting is
SIFS + ACK + Round Trip Propagation Delay [9], which is usu-
ally tens of microseconds. Repeated invocations of Algorithm
2 are often needed to test for a stable LAP, and are sequential
and spaced apart. Hence, for the second and subsequent invoca-
tions, the possibility of an incompletely recorded channel state
becomes zero very quickly.

Observe that the definition of a consistent sub-cut (Section 2.1)
is not concerned with transitive inconsistencies caused by Type-
2 messages of Fig. 1. However, observe that we can easily modify
Algorithm 2 to prevent inconsistencies caused by Type-2messages
as follows: instead of coloring with two colors, sub-cut snapshot
sequence numbers are needed. The message coloring rule is
modified to use sequence numbers. All the processes in the system
follow this rule but only the processes in the local BFST execute
Algorithm 2.

After running Algorithm 2, the snapshot within the area of
interest is recorded. This provides the foundation for detecting
locality-aware predicates.

6. Detecting locality-aware predicates

The third stage of detecting locality-aware predicates (LAP) is
to actually detect the predicate based on the recorded distributed
snapshot. Section 6.1 formally defines a LAP and gives examples.
Section 6.2 presents the algorithm for detecting stable LAP, and
discusses how it can be adapted for conjunctive LAP and for
relational LAP.

6.1. Formal definition

Definition 1. A LAP Q = (φ, k, Pr) is a predicate φ over the states
of processes within the local BFST rooted at Pr with height k.

• If φ is conjunctive, then LAP Q is conjunctive.
• if φ is relational, then LAP Q is relational.

Examples of conjunctive LAP
• Q1 = (φ, 3, Pr), where φ = ∧flagPi , for Pi in a height-3 local

BFST rooted at Pr .
Q1 is true if each process in Pr ’s local region with radius 3 has
set its flag.

• Q2 = (φ, 5, Pr), where φ = ∧terminatedPi , for Pi in a height-5
local BFST rooted at Pr .
Q2 is true if each process in Pr ’s local region with radius 5 has
terminated.
• Q3 = (φ, 5, Pr), where φ = ∧tempPi > 50, for Pi in a height-5
local BFST rooted at Pr .
Q3 is true if each sensor in Pr ’s local region with radius 5 has
a temperature reading greater than 50° F in a WSN monitored
field.

Examples of relational LAP
• Q4 = (φ, 5, Pr), where φ =

Pi∈local BFST tokenPi ≥ 3.

Q4 is true if there are at least 3 tokens among processes within
an area of radius 5 from Pr .

• Q5 = (φ, 6, Pr) = average_of _tempPi ≥ 50, for Pi in the local
BFST rooted at Pr .
Q5 is true if (in aWSNmonitored field) the average temperature
sensed within an area of radius 6 from Pr is larger than 50° F.

6.2. Stable LAP detection algorithm

In order to detect a stable LAPQ = (φ, k, Pr) in the system, a set
of process states satisfying Q needs to be found. To achieve this:

1. The set of states needs to form a consistent sub-cut. By running
Algorithm2 fromSection 5, every process in the local BFSTholds
a local state which is part of a consistent sub-cut.

2. The predicate φ needs to be evaluated over the set of states. To
achieve this, we execute Algorithm 3 which collects the set of
states recorded in the consistent sub-cut, and then evaluates φ
over this set.

Algorithm 3 is a convergecast within which the set of states
recorded in the consistent sub-cut over the area of interest is col-
lected at Pr using the tree edges in the local BFST. The convergecast
uses the Statemessage type. Each process Pi in the local BFSTmain-
tains the following variables:

• vi: the variable(s) of the locally recorded snapshot state relevant
to the evaluation of φ is/are stored;

• Vi: accumulates the snapshot states reported byprocesses in Pi’s
sub-tree within the local BFST;

• #childreni: the number of children nodes in the local BFST; and
• child_count i: the number of children from which a State

message has been received.

Detection begins at leaf processes which have terminated Algo-
rithm 2. These leaf processes in the local BFST initiates the con-
vergecast by reporting the locally recorded state variable vi to their
parents in a Statemessage. When an intermediate node Pi receives
a State message, it accumulates the contained states from its sub-
tree. When a Statemessage has been received from all the children
and Algorithm 2 has also terminated locally, Pi adds its own local
snapshot state vi to Vi. If Pi is not the initiator Pr , then Pi sends a
State(Vi) message to its parent in the local BFST. However, if Pi was
the initiator Pr , it evaluates the predicate φ over the set of states V .
The algorithm is listed in Algorithm 3.

Adaptation to conjunctive LAP
The local variable vi can be recorded as a Boolean for a conjunc-

tive predicate. The local variable Vi that accumulates the states of
processes within the sub-tree rooted at Pi can be represented as
a Boolean to correspond to the (partial) evaluation of φ (over the
sub-tree). This is because the evaluation of a conjunctive predicate
is based on an aggregation operation, namely the AND operator.

• Aggregation operations are defined as those operations that are
associative, thereby allowing the input to be processed in any
order, and do not require all the input to be present before
evaluation begins.

The size of a State message is thus O(1).

1980 M. Shen et al. / J. Parallel Distrib. Comput. 74 (2014) 1971–1983
Table 3
Complexity measures in degree-d bounded network.

Metric Local BFST (Algorithm 1) Consistent sub-cut (Algorithm 2) Stable LAP aggregation based φ
(Algorithm 3)

Stable LAP non-aggregation based φ
(Algorithm 3)

Message count O(nkd) O(n) O(n) O(n)
Message size O(n2) O(n2) O(n) O(nk)
Storage cost O(n) O(n) O(1) O(n)
Bandwidth cost O(n) O(n) O(1) O(n)
Algorithm 3 Stable LAP Detection Algorithm for Q = (φ, k, Pr)
(code for Pi)
i. When Pi, which is a leaf node, terminates Algorithm 2:
1. send State({vi}) to parent; terminate;

ii. Pi receives State(X) from child Pj:
2. child_counti = child_counti + 1;
3. Vi = Vi

X;

4. if (child_counti = #childreni) then
5. await (local termination of Algorithm 2);
6. Vi = Vi

{vi};

7. if Pi ≠ Pr then // non-root
8. send State(Vi) to parent in local BFST; terminate;
9. else
10. evaluate φ(Vi); terminate.

Adaptation to relational LAP
The local variable Vi may be as large as the number of nodes

in the sub-tree rooted at Pi, and hence varies from 1 to n.
However, many relational predicates have their evaluations based
on aggregation operations, e.g., addition, minimum, maximum, and
average functions, and hence Vi is of size 1. Only for relational
predicateswhose evaluation is not based on aggregation operations,
e.g., the median or the mode of a set of values, the size of Vi could
be as large as n. The above observations on the size of Vi also hold
for the size of the State message. The number of State messages is
n − 1.

We propose a classification of predicates as follows:

• Incremental predicate: This is a predicate whose satisfaction can
be determined for at least one input without evaluating the
predicate fully over all variables.
All conjunctive LAPs, such as Q1,Q2,Q3 are incremental predi-
cates. Some relational predicates that are non-conjunctive, such
as Q4, are also incremental predicates.

• Non-incremental predicate: This is a predicate whose satisfac-
tion for every input can be determined only after evaluating it
fully over all variables.
Some relational predicates, such as Q5, are non-incremental
predicates.

Depending on the locally recorded snapshot values, the eval-
uation of relational predicates that are incremental may be de-
termined without considering all the variables. If Algorithm 3 is
modified to performan iterative deepening breadth-first collection
of the recorded vi, i.e., a layer-by-layer reporting of the vi’s to Pr ,
the number of messages used is Ω(1); however, it will use O(nk)
number of messages.

7. Complexity analysis

We evaluate the complexities of our algorithms using four
metrics:

• message count: count of the total number of messages gener-
ated by the algorithm.
• message size: the total size of all the control messages gen-
erated by the algorithm. It can be formalized as

i (# type

i messages ∗ size of type i messages).
• storage cost: the space complexity at each process. Since Pr is

responsible for storing the final results in Algorithm 3, we do
not take Pr into consideration for this measure.

• bandwidth cost: bandwidth usage of a channel measures the
total size of messages sent along that channel. The maximum
bandwidth usage among all channels in the system is the band-
width cost of the algorithm.

As mentioned before, all the algorithms share the scale-free
feature. The complexities are evaluatedwithin a degree-d bounded
network. The results are shown in Table 3.

7.1. Algorithm 1 (local BFST)

Message count complexity: The local variable dist at each process
in the area of interest can hold a value only within the range [0, k].
As per Observation 3, the local variable dist strictly decreases.
Each time process Pi’s dist decreases, it will send at most di − 1
lengthmessages to its neighbors. Thus, each process can only send
lengthmessages to its neighbors up to k times. Each lengthmessage
has one ack message. This gives a message count complexity of
O(k

n
i=1 di). In a degree-d bounded system, this isO(nkd). Further,

there are n − 1 terminatemessages.
Message size complexity: The size of length control messages is

O(1). The sum of sizes of ackmessages is bounded by nk2d because
the identifier of a node at distance j contributes to the T parameter
j times. The size of a terminate is n. So the message size complexity
is O(nk2d + n2) = O(n2).

Storage cost complexity: During the execution of Algorithm 1,
each process has to maintain a child_list which is of O(d) size. In
addition, at the end of the algorithm, the root of the local BFST
broadcasts the identifiers of all the processes in the local BFST using
the terminate (T)message. This incurs an O(n) storage cost at each
process in the local BFST. So, the total storage cost is O(n).

Bandwidth cost complexity: The value of each process’ local
variable dist can be only between 0 to k. Each time a process’ local
dist decreases, it will send a message to all its neighbors. Since dist
strictly decreases, each process can only send up to k messages
to each neighbor via the same channel. The size of length is O(1).
For the ack message, although its size is O(n), the total size of ack
messages sent by a single process is also O(n) since no process
identifier will be sent more than once. So the bandwidth cost is
O(n + k) = O(n).

7.2. Algorithm 2 (consistent sub-cut)

Message count complexity: The INIT message is broadcast within
the local BFST only once, thus causing a O(n) complexity. The
modified vector counter technique uses another convergecast
(Cvg_Acc_White) and broadcast (Bcast_Acc_White), thus causing
another O(n) complexity. So the total message count complexity
is O(n).

Message size complexity: The INIT control message has size
O(1). The two types of control messages – Cvg_Acc_White and
Bcast_Acc_White – both have sizes of O(n). So, the message size
complexity is O(n2).

M. Shen et al. / J. Parallel Distrib. Comput. 74 (2014) 1971–1983 1981
Table 4
Complexity comparison between LAP algorithms and some existing algorithms to detect stable predicates.

Metric Message count Message size Storage Bandwidth

Chandy–Lamport [4] (only snapshot recording considered) O(N2) O(N2) O(N) O(1)
Mattern’s non-FIFO snapshot [28] (only snapshot recording considered) O(N) O(N2) O(N) O(N)
LDP-Basic [11] (recording and predicate evaluation) O(dk−1) O(kdk−1) O(k) O(dk−2)

LDP-Snapshot [11] (recording and predicate evaluation) O(d2k−2) O(kd2k−2) O(k) O(dk−1)

Stable LAP initialization cost (Algorithm 1) O(nkd) O(n2) O(n) O(n)
Stable LAP (aggregation based) (Algorithm 2 + 3) O(n) O(n2) O(n) O(n)
Stable LAP (non-aggregation based) (Algorithm 2 + 3) O(n) O(n2) O(n) O(n)
Storage cost complexity: Each process maintains a size-n vector
wmsg_sent li . So the storage cost is O(n).

Bandwidth cost complexity: The INIT (of size O(1)), and the
Cvg_Acc_White and Bcast_Acc_White messages (of size O(n) each)
traverse the edges of the BFST once. So the bandwidth cost is O(n).

7.3. Algorithm 3 (stable LAP)

Recall that this algorithm works for aggregation based and
non-aggregation based LAP. Aggregation based predicates include
all conjunctive predicates and some non-conjunctive predicates.
Non-aggregation basedpredicates include the remaining relational
predicates.

Message count complexity: To detect the stable LAP, each process
in the local BFST sends a State message to its parent in the BFST.
So the message count complexity is O(n). This result holds for
aggregation based and non-aggregation based LAP.

Message size complexity: For aggregation based LAP, the State
message,which is sentn−1 times, is of sizeO(1). Thus, themessage
size complexity for aggregation based LAP is O(n).

For non-aggregation based LAP, for i ∈ [0, k−1], the dk−i nodes
in the local BFST that are k−i hops away from Pr cumulatively send
dk−i Statemessages of size di to their parents. Thus, the cumulative
size of all the State messages is

k−1
i=0 dk−idi = kdk = kn. Thus, the

message size complexity for non-aggregation based LAP is O(kn).
Storage cost complexity: For aggregation based LAP, the storage

cost complexity is O(1) because that suffices to store the local
variables vi, Vi, num_children, and child_count .

For non-aggregation based LAP, the space at Pi for Vi equals the
number of nodes in the sub-tree rooted at Pi. At a distance i from
Pr , this is dk−i. In the worst case, this is O(n).

Bandwidth cost complexity: One State message is sent on each
local BFST channel for both aggregation based LAP and non-
aggregation based LAP. The size of the State message is O(1) for
aggregation based LAP and O(n) for aggregation based LAP. Hence,
the bandwidth cost complexity for the two classes isO(1) andO(n),
respectively.

7.4. Comparison with other algorithms

From the previous analysis, we can see that all the algorithms
proposed in this paper are indeed scale-free. Taking the dominant
complexity of those algorithms, we compare them with the com-
plexities of some existing algorithms to detect stable predicates.
Table 4 shows the result.

Notice that both Chandy–Lamport’s and Mattern’s snapshot al-
gorithms have complexities that are affected byN . This is true even
when using these algorithms to detect LAP because these algo-
rithms do not have the features that a scale-free solution requires.
Further, only the cost of snapshot recording is listed; Mattern’s al-
gorithm has an added cost of spanning tree or ring creation, and
both these algorithms have another added cost of global state col-
lection for predicate evaluation, that they do not address.

In a degree-d bounded network, where n = dk−1, both LDP-
Basic and LDP-Snapshot have a similar complexity compared to LAP
algorithms. However, LDP-Basic and LDP-Snapshot cannot detect a
predicate within a local region that is more complex than a linear
topology and they cannot work in a systemwith non-FIFO channels
or using multi-hop channels, as outlined earlier in Table 2.

The costs of our LAP algorithms can be split into two parts. (1) A
one-time initialization cost (of Algorithm 1) for creating a BFST
for predicate detection for Q = (φ, k, Pr). (2) The recurring cost
incurred by Algorithms 2 and 3 each time the predicate Q needs to
be evaluated.

8. Special cases

Repeated detection

The algorithms for detecting locality-aware predicates we in-
troduced can also repeatedly detect LAP predicates within the
same region. To achieve repeated detection within the same re-
gion, Algorithm 1 needs to run only once for constructing the local
BFST. Each time a new detection begins, a new consistent sub-cut
needs to be constructed. Hence Algorithm 2 will run repeatedly;
we can alternate the roles of the two colors or cyclically use two
from a set of three colors.

Weaker stable predicates

The locality-aware predicates we discussed so far target stable
predicates. By detecting aweaker form of stable predicates, we can
further cut down the algorithm complexity.

A weaker form of stable predicates, named as strong stable
predicate, was defined in [31].

A strong stable predicate is a stable predicate that, if true on some
consistent cut, must remain true on all subsequent consistent
cuts. Termination and deadlock are strong stable, though dis-
tributed garbage collection is not [31].
Detecting a strong stable predicate requires recording only

consistent process states; observing the corresponding consistent
channel states is not necessary. So, to detect a locality-aware strong
stable predicate, we can simplify the second stage, namely that
of constructing a consistent sub-cut. Applying only the white/red
coloring technique is sufficient for detecting locality-aware strong
stable predicates. This reduces the message size complexity of
Algorithm2 toO(n), and its storage and bandwidth complexities to
O(1) (refer to Table 3). Consequently, the corresponding entries for
strong stable LAP (aggregation-based) and strong stable LAP (non-
aggregation based) in Table 4 will also reduce.

Modeling area of interest

If reduction of the initialization algorithm’s complexity is
needed, we can sacrifice the accuracy ofmodeling the area of inter-
est.We canuse a spanning tree instead of the local BFST, potentially
leaving someprocesseswithin the area of interest unconsidered, to
reduce the complexity of Algorithm 1. Comparing with the com-
plexities of Algorithm 1 discussed in Table 3, we can achieve O(nd)
message count complexity and message size complexity, and O(1)
complexity in storage cost and bandwidth cost if we construct only
a spanning tree. The changes to Algorithm 1 are as follows. In line
(4), replace the test by ‘‘dist = ∞’’; delete lines (7–8); in line (31),
replace ‘‘BFST’’ by ‘‘ST’’.

1982 M. Shen et al. / J. Parallel Distrib. Comput. 74 (2014) 1971–1983
9. Conclusions and future work

In this paper, we proposed the concept of a locality-aware
predicate. This type of a predicate models a predicate in an area of
interest. In a large-scale locality-driven network, such as modular
robotics or WSNs, the following factors:

1. The interactions being local and driven by neighborhood
proximity,

2. The high cost of doing a global predicate detection, and
3. The state of a local region better captures local interactions,

make locality-aware predicate detection a relevant and an inter-
esting problem. We showed how to model the area of interest as
a circular region (BFST rooted at Pr), and then proposed Algorithm
1 to efficiently construct the overlay network. This is the first dis-
tributed algorithm to construct a BFST within a local region in a
graph. We also designed Algorithm 2 to efficiently take a snapshot
within the area of interest in a non-FIFO network. This is the first
algorithm to construct a consistent sub-cut defined by a region
in a larger graph. We then defined two classes of locality-aware
predicates: (1) conjunctive LAP, and (2) relational LAP. Finally, we
gave an algorithm Stable LAP Detection for detecting both classes of
LAPs, based on the recorded snapshot. The complexity analysis of
all these algorithms showed their performance is scale-free. Hence,
these algorithms have great potential for observing local regions
within large-scale distributed systems such as modular robotics
and WSNs.

There are several other potential extensions of locality-aware
predicates, such as their adaptation to predicates of different
detectability, e.g., unstable predicates [33].We also plan to explore
locality-aware predicate detection in a weighted graph, thus being
able to specify more types of areas of interest. All these will
broaden the application of locality-aware predicates.

References

[1] M. Ashley-Rollman, M. De-Rosa, S. Srinivasa, P. Pillai, S. Goldstein, Declarative
programming for modular robots, in: IROS Workshop on Modular Robots,
2007, pp. 1–99.

[2] R. Atreya, N. Mittal, A. Kshemkalyani, V. Garg, M. Singhal, Efficient detection
of a locally stable predicate in a distributed system, Journal of Parallel and
Distributed Computing 67 (4) (2007) 369–385.

[3] Z. Butler, K. Kotay, D. Rus, K. Tomita, Generic decentralized control for a class of
self-reconfigurable robots, in: IEEE International Conference on Robotics and
Automation, 2002, pp. 809–816.

[4] K.M. Chandy, L. Lamport, Distributed snapshots: determining global states in
distributed systems, ACM Transactions on Computer Systems 3 (1) (1985)
63–75.

[5] K.M. Chandy, J. Misra, Distributed computations on graphs: shortest path
algorithms, Communications of the ACM (1982) 833–838.

[6] R. Cooper, K. Marzullo, Consistent detection of global predicates, in: Proceed-
ings of the ACM/ONRWorkshop on Parallel and Distributed Debugging, 1991,
pp. 163–173.

[7] C. Critchlow, K. Taylor, The inhibition spectrum and the achievement of causal
consistency, in: Proc. the 9th ACM Symp. Principles of Distributed Computing,
1990, pp. 31–42.

[8] D. Darling, J. Mayo, X. Wang, Stable predicate detection in dynamic systems,
in: Principles of Distributed Systems: 9th International Conference, 2006,
pp. 161–175.

[9] J. del Prado Paven, S. Choi, Link adaptation strategy for IEEE 802.11 WLAN via
recorded signal strength measurement, in: IEEE International Conference on
Communications 2003 ICC’03, 2003, pp. 1108–1113.

[10] M. De-Rosa, S. Goldstein, P. Lee, J. Campbell, P. Pillai, Distributed watchpoints:
debugging large modular robotic systems, International Journal of Robotics
Research 27 (3) (2008) 315–329.

[11] M. De-Rosa, S. Goldstein, P. Lee, J. Campbell, P. Pillai, Detecting locally
distributed predicates, ACM Transactions on Autonomous and Adaptive
Systems 6 (2) (2011) 13:1–13:14.

[12] M. De-Rosa, S. Goldstein, P. Lee, P. Pillai, J. Campbell, Programming modular
robots with locally distributed predicates, in: Proceedings of the IEEE ICRA,
2008, pp. 3156–3162.

[13] M. De-Rosa, S. Goldstein, P. Lee, P. Pillai, J. Campbell, A tale of two
planners: modular robotic planning with LDP, in: 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2009, pp. 5267–5724.

[14] E. Dijkstra, C. Scholten, Termination detection for diffusing computations,
Information Processing Letters (IPL) 11 (1980) 1–4.
[15] R. Garg, V. Garg, Y. Sabharwal, Efficient algorithms for global snapshots in large
distributed systems, IEEE Transactions on Parallel and Distributed Systems 21
(5) (2010) 620–630.

[16] V.K. Garg, B. Waldecker, Detection of weak unstable predicates in distributed
programs, IEEE Transactions on Parallel & Distributed Systems 5 (3) (1994)
299–307.

[17] V.K. Garg, B. Waldecker, Detection of strong unstable predicates in distributed
programs, IEEE Transactions on Parallel & Distributed Systems 7 (12) (1996)
1323–1333.

[18] J. Helary, Observing global states of asynchronous distributed applications, in:
Proc. the 3rd Int’l Workshop on Distributed Algorithms, 1989, pp. 45–56.

[19] G. Ho, C. Ramamoorthy, Protocols for deadlock detection in distributed
database systems, IEEE Transactions on Software Engineering 8 (1982)
554–557.

[20] IEEE, IEEE 802.11: Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications, 2012.

[21] A. Kshemkalyani, Fast and message-efficient global snapshot algorithms for
large-scale distributed systems, IEEE Transactions on Parallel and Distributed
Systems 21 (9) (2010) 1281–1289.

[22] A. Kshemkalyani, M. Raynal, M. Singhal, An introduction to snapshot
algorithms in distributed computing, Distributed Systems Engineering 2 (4)
(1995) 224–233.

[23] A. Kshemkalyani, M. Singhal, Distributed Computing: Principles, Algorithms,
and Systems, Cambridge University Press, 2008.

[24] A. Kshemkalyani, B. Wu, Detecting arbitrary stable properties using efficient
snapshots, IEEE Transactions on Software Engineering 33 (5) (2007) 330–346.

[25] T.-H. Lai, T. Yang, On distributed snapshots, Information Processing Letters
(1987) 153–158.

[26] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM 21 (7) (1978) 558–565.

[27] K. Marzullo, L.S. Sabel, Efficient detection of a class of stable properties,
Distributed Computing 8 (2) (1994) 81–91.

[28] F. Mattern, Efficient algorithms for distributed snapshots and global virtual
time approximation, Journal of Parallel and Distributed Computing 18 (4)
(1993) 423–434.

[29] S. Peri, N. Mittal, Monitoring stable properties in dynamic peer-to-peer
distributed systems, in: FSTTCS 2005: Foundations of Software Technology
and Theoretical Computer Science, 2005, pp. 420–431.

[30] D. Rus, G. Chirikjian, Special issue on self-reconfiguring robots, Autonomous
Robotics 10 (1) (2002) 1–99.

[31] A. Schiper, A. Sandoz, Strong stable properties in distributed systems,
Distributed Computing 8 (2) (1994) 93–103.

[32] M. Shen, A. Kshemkalyani, A. Khokhar, Detecting tree distributed predicates,
in: 2012 41st International Conference on Parallel Processing Workshops
(ICPPW) Poster, 2012, pp. 598–599.

[33] M. Shen, A. Kshemkalyani, A. Khokhar, Detecting unstable conjunctive
locality-aware predicates in large-scale systems, in: 2013 12th International
Symposium on Parallel and Distributed Computing, ISPDC.

[34] K. Taylor, The role of inhibition in asynchronous consistent-cut protocols, in:
Proc. the 3rd Int’l Workshop on Distributed Algorithms, 1989, pp. 280–291.

[35] J. Tsai, Flexible symmetrical global-snapshot algorithms for large-scale
distributed systems, IEEE Transactions on Parallel and Distributed Systems 24
(3) (2013) 493–505.

Min Shen holds a B.S. in computer science from Nanjing
University. He is currently a Ph.D. student in the Depart-
ment of Computer Science at the University of Illinois at
Chicago, advised by Prof. Ajay Kshemkalyani. His research
interests include distributed algorithms, predicate detec-
tion and wireless sensor networks.

AjayD. Kshemkalyani received the B.Tech. degree in com-
puter science and engineering from the Indian Institute
of Technology, Bombay, in 1987, and the M.S. and Ph.D.
degrees in computer and information science from Ohio
State University in 1988 and 1991, respectively. He spent
six years at IBMResearch Triangle Parkworking on various
aspects of computer networks, before joining academia.
He is currently a professor in the Department of Computer
Science at the University of Illinois at Chicago. His research
interests are in distributed computing, distributed algo-
rithms, computer networks, and concurrent systems. In

1999, he received the US National Science Foundation Career Award. He previously
served on the editorial board of the Elsevier journal Computer Networks, and is cur-
rently an editor of the IEEE Transactions on Parallel and Distributed Systems. He has
coauthored a book entitled Distributed Computing: Principles, Algorithms, and Sys-
tems (Cambridge University Press, 2008). He is a distinguished scientist of the ACM
and a senior member of the IEEE.

http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref2
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref4
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref5
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref10
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref11
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref14
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref15
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref16
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref17
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref19
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref21
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref22
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref23
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref24
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref25
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref26
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref27
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref28
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref29
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref30
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref31
http://refhub.elsevier.com/S0743-7315(13)00205-0/sbref35

M. Shen et al. / J. Parallel Distrib. Comput. 74 (2014) 1971–1983 1983
Ashfaq Khokhar received his Ph.D. in computer engineer-
ing from the University of Southern California, in 1993.
After his Ph.D., he spent two years as a Visiting Assistant
Professor in the Department of Computer Sciences and
School of Electrical and Computer Engineering at Purdue
University. In 1995, he joined the Department of Electrical
and Computer Engineering at the University of Delaware,
where he first served as Assistant Professor and then as
Associate Professor. In Fall 2000, Dr. Khokhar joined UIC in
the Department of Computer Science and Department of
Electrical and Computer Engineering, where he currently

serves with the rank of Professor. Dr. Khokhar has published over 200 technical
papers and book chapters in refereed conferences and journals in the areas of wire-
less networks, multimedia systems, data mining, and high performance comput-
ing. He is a recipient of the NSF CAREER award in 1998. His paper entitled ‘‘S-to-P
Broadcasting in Message Passing MPPs’’ has won the Outstanding Paper award in
the International Conference on Parallel Processing in 1996. He has served as the
Program Chair of the 17th Parallel and Distributed Computing Conference (PDCS),
2004, Vice Program Chair for the 33rd International Conference on Parallel Pro-
cessing (ICPP), 2004, and Program Chair of the IEEE Globecom Symposium on Ad
hoc and Sensor Networks, 2009. He is a Fellow of the IEEE for his contributions
to multimedia computing and databases. His research interests include: wireless
and sensor networks, multimedia systems, data mining, and high performance
computing.

	Detecting stable locality-aware predicates
	Introduction
	Preliminaries
	System model
	Predicate detection
	Snapshots in systems with non-FIFO channels

	Locality-aware predicates
	Motivation
	Detecting locality-aware predicates

	Modeling area of interest
	Consistent sub-cut construction
	Detecting locality-aware predicates
	Formal definition
	Stable LAP detection algorithm

	Complexity analysis
	Algorithm 1 (local BFST)
	Algorithm 2 (consistent sub-cut)
	Algorithm 3 (stable LAP)
	Comparison with other algorithms

	Special cases
	Conclusions and future work
	References

