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a b s t r a c t

We present a global snapshot algorithm with concurrent initiators, with termination detection in an
anonymous asynchronous distributed message-passing system having FIFO channels. In anonymous
systems, process identifiers are not available and an algorithm cannot use process identifiers in its
operation. Such systems arise in several domains due to a variety of reasons. In the proposed snapshot
algorithm for anonymous systems, each instance of algorithm initiation is identified by a random number
(nonce); however, this is not used as an address in any form of communication. In the algorithm,
each process can determine an instant when the local snapshot recordings at all the processes have
terminated. This is a challenging problemwhen an algorithm cannot use process identifiers and a process
does not know the number of processes in the system or the diameter of the network and cannot
use a predefined topology overlay on the network, because there is no easy way to identify the global
termination condition. The message complexity of our algorithm is (cn2), where c is the number of
concurrent initiators and n is the number of processes in the system, which ismuch better than that of the
algorithm by Chalopin et al. (2012) [6]. Further, the algorithm by Chalopin et al. also requires knowledge
of the network diameter.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Snapshot recording in distributed systems finds applications
in several important problems, such as checkpointing and
rollback recovery, detection of stable properties, and debugging of
distributed programs. Existing algorithms for snapshot recording
explicitly use process identifiers for their operation and hence they
do not work for anonymous systems. In this paper, we present a
global snapshot recording algorithm for anonymous systems that
works with concurrent initiators, and also detects termination of
the global state recording activities.

In an anonymous system, an algorithm cannot use process
identifiers [3]. In such systems, a process may be unwilling to
disclose its process identifier due to privacy reasons or processes
in the distributed system may be coming together from different
domains, and there is no guarantee that the process identifiers
are unique. In some cases, the system may be dynamic with
users/processes continuously joining or leaving the system and it
may not be possible to know who the current users/processes are.
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Some distributed applications like web servers and peer-to-peer
file systems require preserving the anonymity of users, and forbid
the use of any form of identity in the distributed computation [9].
In systems such as sensor networks, the mass-produced sensing
agents are generally not equipped with identifiers.

The global snapshot problem requires recording the states of
all the processes and all in-transit messages in channels in a
consistent manner [7]. A snapshot consists of ⟨


i{LSi},


i,j{SCi,j}⟩,

where LSi is the local state of process Pi and SCi,j is the state
of the channel Ci,j from process Pi to process Pj. The recording
should be consistent so as to reflect a system state that could have
been reached in the execution. Chandy and Lamport presented
the seminal algorithm to record a consistent snapshot [7]. It
was followed by many algorithms (e.g., [1,2,4,10,13–15,18]) that
modified the system assumptions; see [11,12] for a survey.
However, there are only two algorithms that can deal with
concurrent initiators — the Spezialetti–Kearns algorithm [19] and
the very recent Chalopin et al. algorithm [6]. The Chalopin et al.
algorithm is designed to record snapshots in an anonymous
system.

There are two typical phases in obtaining a global snapshot
in traditional snapshot recording algorithms: locally recording
the snapshot at every process (which is the main challenge) and
distributing the recorded global snapshot to all the initiators.
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Table 1
Comparison of algorithms. n is the number of processes, c is the number of concurrent initiators, β is the diameter of the network.

Feature Chandy–Lamport
algorithm [7]

Spezialetti–Kearns
algorithm [19]

Chalopin et al.
algorithm [6]

Proposed algorithm

Message complexity O(n2) O(n2) O(cn2
+ βn3) O(cn2)

Message space complexity O(n2) O(cn2) O(cn2
+ βn3) O(c2n2)

Concurrent initiators allowed No Yes Yes Yes
Global termination detection
by all nodes

No No Yes Yes

Anonymity No No Yes Yes
Other assumptions None None Diameter β must be known

to all nodes
None
In the Chandy–Lamport algorithm, the cost of the first phase
is O(n2) messages, while the cost of the second phase is O(n3)
messages, where n is the number of processes in the system.
All processes are informed of the state of every other process
in the second phase to ensure that all processes get the desired
information about the global snapshot. This algorithm cannot
handle concurrent initiators.

In the Spezialetti–Kearns algorithm [19], in the first phase, each
process takes a local snapshot (local state and incident channel
states) and collects information about neighboring concurrent
initiators using process identifiers. The cost of this phase is
O(n2) messages. In the second phase, the collected information is
distributed to all initiator processes using process identifiers for
direct and transitive communication. When there are c concurrent
initiators, the cost of the second phase is O(cn2) messages. The
Spezialetti–Kearns algorithm uses process identifiers explicitly,
and hence, it is not suitable for anonymous systems.

In this paper, besides requiring processes to collectively record
a global snapshot, we require that all the processes identify
an instant in physical time when the snapshot recording has
completed at all the processes in the system. This is useful
for applications when processes want to output the result of
the snapshot recording to the environment only after global
termination of the snapshot recording algorithm. In another
situation, an application may want to overwrite its latest
checkpoint with the recorded local snapshot state only when it
knows that all the processes have taken their local snapshot.
Problem Statement. Record a global snapshot with concurrent
initiators in an anonymous asynchronous distributed message-
passing system, where each process can determine an instant
when the local snapshot recordings at all the processes have
terminated, using a distributed algorithm. We assume that there
is no information available about the number of processes in the
system or the diameter of the network, and no predefined static
topology overlay is available.

This is really the concurrent snapshot initiation problem, and
the snapshot termination detection problem bundled together as a
single problem. Termination detection of distributed computations
has been studied independently in many works [5,12,17], but
not in conjunction with the snapshot recording problem, except
in the algorithm by Chalopin et al. [6]. The Chalopin et al.
algorithm records a global snapshot under concurrent initiators
and also determines the global termination of the snapshot
recording activity in an anonymous system, by superimposing the
termination detection algorithm of Szymanski et al. [20] on the
Chandy–Lamport snapshot recording algorithm. Their solution has
twomain drawbacks — it requires each node to know the diameter
β of the network, and it has a high message complexity of O(n3β).
We note that the authors [6] did not provide any statement or
analysis of their algorithm’s message complexity.

The proposed algorithm to record a global snapshot with
concurrent initiators and detect termination of the snapshot
recording activities in an anonymous system works as follows.
The algorithm is divided into two phases: in the first phase, each
process records a local snapshot and in the second phase, the
termination of all the local snapshot recordings is detected. In
particular, when a process invokes the request for a snapshot, it
generates a unique one-time random number, called nonce, and
propagates this nonce with its request. Each other process in the
system gets associated to exactly one nonce and all processes
associated to the same nonce will dynamically form a spanning
tree on-the-fly, whose root is the process that invoked the
snapshot. Once each process has collected certain information on
all incoming links/channels, its local snapshot is determined. Then,
for each spanning tree, the information propagates from the leafs
to the root to collect certain information about the termination
of the global snapshot recordings. Creating the spanning tree
allows processes to propagate the information towards the process
that invoked the snapshot without knowing it. Once the root
node has assembled this information, it generates a ‘‘terminated’’
message to propagate this information in the system. Systemwide,
all the nodes participate in an ingenious termination detection
algorithm to detect global termination using the information on
the ‘‘terminated’’ messages, about all the nonces they are aware of
in their local views.

Thus, the paper makes two main contributions:

1. The first is the idea to use nonce to ensure that processes
correctly and efficiently handle the messages corresponding
to all concurrent snapshot initiations and track information
for global termination detection. Specifically, when a node
has already received a snapshot recording message containing
a nonce, (a) it does not propagate the snapshot recording
messages corresponding to other nonce/initiators, but (b) it
tracks the presence of these other nonces received from
concurrent initiators for use in global termination detection.

2. The second contribution is to present a novel algorithm to
detect global termination that works even though processes
are anonymous, and without using any information about the
number of processes in the system or the network diameter or
any predefined static topology overlay.

Table 1 compares the performance and features of the
algorithms surveyed above. Themessage complexity gives the total
number ofmessages. Themessage space complexity gives the total
space requirement (in integers) of all the messages in the solution.
For a fair comparison of all the algorithms, we consider only
the cost of recording the local snapshots in the Chandy–Lamport
algorithm, and the cost of recording the local snapshots and
collecting the information about the various concurrent initiators
in the Spezialetti–Kearns algorithms. Thus, we do not consider
their costs of assembling and/or distributing the recorded local
snapshots. For the Chalopin et al. algorithm and the proposed
algorithm, costs include the costs of recording the local snapshots
and of global termination detection.

The rest of the paper is organized as follows: In Section 2, we
present a systemmodel and define notations. In Section 3, we dis-
cuss the challenges in solving the problem and present an outline
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of our algorithm. In Section 4, we present a snapshot recording
and global termination detection algorithm for anonymous asyn-
chronous distributed message-passing systems. In Section 5, we
prove the correctness of the algorithm. In Section 6,we analyze and
discuss its performance. Section 7 contains concluding remarks.

2. A systemmodel

We assume an anonymous asynchronous distributed message-
passing systemwhere processesmay run identical code and cannot
be identified in any communication by process identifiers. There
does not exist a common memory or a common clock and all
communication occurs by message passing only. A process in the
system can communicate only on the ports of its incident channels
to its immediate neighbors, which are identified using local port
numbers. A process can only use port numbers of its incident
channels to identify neighbors. The ports at a process v are denoted
as C1, C2, . . . , Cdegreev , where degreev is the number of immediate
neighbors of process v. In addition, there is a special port C0 at each
process that is used for sending a message to itself. Messages are
sent on C0 only when explicitly stated so.

The system is modeled as a graph (N, E), where N is the set
of processes and E is the set of links or channels. We assume
bidirectional channels connecting the processes. Each port is
thus bidirectional. We also assume failure-free execution like
the Chandy–Lamport algorithm and all other snapshot recording
algorithms — thus, processes and links do not crash during
algorithm execution. Communication over the channels is FIFO. A
process does not know the number of processes in the system or
the diameter of the network.

We also assume that during the execution of the algorithm,
processes do not join or leave the system. If a process were to
join the system during the execution of an instance (invocation) of
the algorithm, it will interfere with the correct operation because
the process’s data structures may not be properly initialized. If
a process were to leave the system during the execution of an
instance (invocation) of the algorithm, it will interfere with the
correct operation because it may break the spanning tree that the
algorithm dynamically built or messages may not get forwarded
properly. A node that wants to join or leave can wait until the
execution is over.

Recording of a local snapshot at a process involves recording
of the local state of the process, and recording of the states of all
incoming channels at that process. A global snapshot is a consistent
collection of all local snapshots [7]. For sake of presentation, we
assume that every initiator invokes global snapshot collection
only once; however, our algorithm can be naturally extended to
recording repeated snapshots in the face of concurrent initiators
by using a new set of variables for every subsequent instance of
the global snapshot initiation and a snap_no variable on messages
to identify the instance of the global snapshot.

3. Towards global snapshot recording for anonymous systems

3.1. Challenges and basic idea

In anonymous systems, process identifiers are not available
for the operation of an algorithm and for the message exchanges
with other processes [9]. This complicates the design of snapshot
algorithms under multiple concurrent initiators when termination
detection of the algorithm by every process is required in
anonymous systems. We identify two main challenges.
1. (Recording with concurrent initiators.) How to record the dis-
tributed snapshot with concurrent initiators in an anonymous
system becomes a challenge because processes cannot use pro-
cess identifiers of initiators to determine whose snapshot col-
lection recording request amessage represents; neither is there
the knowledge of the number of concurrent initiators.

2. (Global termination detection.) How to let each process
detect global termination of the distributed snapshot recording
algorithm in an anonymous system becomes a challenge
because an algorithm cannot use process identifiers for
processes to communicate with each other, and a process
does not know the total number of processes or the number
of concurrent initiators in the system or the diameter of the
network, and cannot use a predefined static topology overlay.
Thus, there is no easy way to identify the global termination
condition.

Recording with concurrent initiators
We address the first challenge in the following manner. Each

of the unknown number of initiators simply diffuses its markers
in the system, akin to the Chandy–Lamport algorithm. With
concurrently initiated diffusions, markers from different initiators
will ‘‘cross’’ each other in opposite directions along some edges.
All markers are treated alike, irrespective of who the initiator
was, in the recording of the local states and channel states.
Logically though, the system can be viewed as being partitioned
into different regions or domains. Within each domain/region,
the local snapshots are clearly consistent. The consistency of
local state recordings at the two ends of an inter-domain edge
is guaranteed because the recordings are concurrent (due to the
markers on the inter-domain edge having crossed each other in
transit in opposite directions); inter-domain channel states are
also recorded correctly (consistent with the local state recordings)
because allmarkers are treated alike. Hence, snapshots of each pair
of adjacent regions are also consistent with respect to each other.

Global termination detection
To address the second challenge, a first approachmight be to let

each process, after its local snapshot recording termination, initiate
a diffusion of ‘‘terminated’’messages in the system informing other
processes that it is terminated. This incurs a cost of n3 messages.
However, this approach will not work because each process needs
to be uniquely identified, and each process should also know
when to stop expectingmore ‘‘terminated’’messages (this requires
knowledge of n). A second approach might be for each process
to circulate a ‘‘terminated’’ message around a predefined ring
and wait until it gets back its own initiated message. However,
this approach will not work because each process needs to be
uniquely identified, and the approach also uses a predefined
overlay topology. We could choose an appropriate termination
detection algorithm from the literature (see surveys in [12,17]);
however, no algorithm seems suitable because they all require
knowledge of n or of the network diameter β or superimpose a
static overlay topology such as a ring or a tree, or have high serial
time overhead.

We propose a two-pronged approach.

• First, we detect termination of the snapshot recordings within
each region/domain, at the initiator within that region. This
does not require any added information because we exploit the
spanning tree naturally induced by the edge along which the
firstmarker is receivedby eachnode. As part of this step,we also
collect at each initiator, information about each neighboring
region. This requires each region to be colored uniquely. To
accomplish this, we let each initiator choose a unique color for
itself.
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Table 2
Messages used in the algorithm.

Message Sender Trigger Receiver Phase Purpose

MARKER Each node Initiator, others on receiving
first MARKER

Each neighbor I Initiate state recording; record
states of channels

ACCEPT Child node in
spanning tree

On receiving a MARKER Parent node which sent it a
MARKER

I Identify spanning tree edges

REJECT Child node in
spanning tree

On receiving a MARKER Non-parent node which sent
it a MARKER

I Identify non-spanning tree edges

INSWEEP Non-root tree node Receive INSWEEP from all
children nodes

Parent node II Collect colors of neighboring
regions

TERMINATE Each node Initiator on receiving
INSWEEP from all children
nodes, others on receiving
TERMINATE message

Each neighbor II Detect global termination of all
local snapshot recordings
• Next, the initiators execute a distributed computation to let
each process in the system know of the global termination
of the snapshot recordings within each region. The challenge
here is to accomplish this without knowing the total number
of concurrent initiators (regions), and restricting the available
information to the information about the color of a region and
colors of its neighboring regions. This idea is discussed further
in Section 3.2.

Note that, to handle global termination detection of the
snapshot algorithm with concurrent initiations, we do not
necessarily need the identifiers of the initiators. We only need
a capability to uniquely identify (color) each of the concurrent
initiations of the snapshot algorithm. We propose to identify each
instance of algorithm initiation by a process by a unique one-time
number generated on-the-fly, called a nonce. Nonces are randomly
selected from a very large state space (e.g., 128 bits) to maintain
uniqueness and are frequently used in network security to foil
‘‘replay attacks’’.We do not use a nonce of an initiator as an address
in any form of communication in the algorithm.

Though randomly chosen, the nonces are guaranteed to be
uniquewith an extremely highprobability and serve thepurpose of
providing a unique identity (color) to each initiator. When nonces
are drawn from a 128-bit field, a simple probabilistic analysis using
the well-known ‘‘birthday paradox’’ shows that even with 100
concurrent initiators in a very large-scale system, the probability
of a collision is nearly zero [16]. In the extremely low probability
that 2 nonces are identical, a process may deduce that global
termination has occurred even though it has not occurred.

3.2. Algorithm outline

For global snapshot recording, marker messages which carry
the nonce (color) of the initiator are diffused through the
system. We handle concurrent snapshot initiations efficiently
by suppressing redundant snapshot collections in the following
manner: a process does not take a snapshot or propagate a
snapshot request initiated by a process if it has already taken
a snapshot in response to some other snapshot initiator. When
a process receives the first marker for an initiator, it notes the
nonce in the marker and it belongs to the domain (or region) of
this initiator for this snapshot initiation. Later when this process
receives a marker on an incoming port which is carrying the
nonce of a different initiator,1 the process detects a concurrent
initiation of the snapshot algorithm by a different initiator and the
sender of the marker lies in a different domain. The process does
not take a new snapshot for this marker and does not propagate
this marker. However, when a process receives a marker for a

1 Such a process lies on the boundaries of two adjacent domains/regions.
different initiator on an incoming port, it completes the recording
of the state of the corresponding incoming channel. Thus, when the
snapshot algorithm is invoked by multiple concurrent initiators,
the system gets partitioned into multiple domains/regions and
snapshots recorded inmultiple domains can be combined to obtain
a consistent global snapshot. (See Theorem 1 in Section 5 as towhy
the global snapshot across multiple domains is consistent.)

Termination detection of the algorithm by every process is
a challenge when the process identifiers are not available. We
develop a termination detection scheme that entails the following
actions: First, an initiator usesmarkermessages to build a spanning
tree on all processes/nodes in its domain. Processes in the domain
propagate intra-domain termination related information on the
spanning tree to enable the initiator to detect the termination of
local snapshot activities at all the processes in its domain. The
colors of neighboring domains are also collected along with the
intra-domain local snapshot recording termination information.
Then a process detects the global termination of the snapshot
recording algorithm by having each initiator broadcast to every
process the nonce of its domain and the nonces of concurrent
initiations in its neighborhood that it knows about. Since we do
not know either n (the number of processes in the system) or c (the
variable number of concurrent initiators), we are still faced with a
big challenge, viz., that of knowing when to stop expecting more
broadcast ‘‘termination’’ messages. The information about nonces
of domains in which the snapshot recording has completed is used
in an ingenious way, using the fixed point theory on sets, to infer
global termination of the snapshot recording algorithm.

4. The algorithm

Algorithms 1 and 2 show the two phases of the snapshot
recording and termination detection algorithm, respectively. The
types of messages used in the 2 phases are described in Table 2.

1. Phase I (Algorithm 1): In Phase I, an initiator generates a unique
one-time number (a nonce), which uniquely identifies this initi-
ation, and the processes collectively record a global snapshot by
propagating marker messages through the distributed system.
Marker messages carry the nonce (color) of the initiator. The
purpose of the nonce is to differentiate itself from other concur-
rent initiations. The nonce is not used to identify processes or to
send messages using the nonce as the destination. A spanning
tree induced by the markers within a region is also explicitly
identified for use in Phase II.

When a process receives the first marker message, it records
its local state, sends out a marker message on each outgoing
port, and stores the nonce of the initiator, received in the
marker message, in its variable region_color to denote that it
belongs to the domain/region of this initiator. When a process
receives a subsequentmarker for a different initiator, it includes
the nonce in the marker into its set Neighborhood_Color_Set
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to capture this concurrent initiation. Neighborhood_Color_Set
tracks colors of neighboring regions of the region under
consideration. The processing of a marker is along the lines of
the Chandy–Lamport algorithm, with the following change: A
spanning tree is identified in the sub-graph of nodes having
the same region_color . The parent of a node in the spanning
tree is the node (port) from which the first MARKER of this
color is received. An ACCEPT or a REJECT message is sent
in response to the MARKER message, depending on whether
this is or is not the first MARKER of this nonce/color seen,
respectively. If an ACCEPTmessage is received, the sender node
is a child of the receiver node in the spanning tree; if a REJECT
message is received, the sender node is not a child of the
receiver node in the spanning tree. These messages are useful
to build the spanning tree used in Phase II (Algorithm 2) to
construct Neighborhood_Color_Set at the initiator, and to detect
termination of the local snapshot recordings at all the nodes
within the region. After local snapshot recording at a process
has completed, it calls the procedure LOCAL_SNAP_COMPLETE,
given in Algorithm 2.

2. Phase II (Algorithm 2): This phase consists of two subphases.
(a) In the first subphase, an inward sweep from the leaf

nodes of the spanning tree within each region (i.e., pro-
cesses on the boundaries of two adjacent domains/regions)
towards the initiator (root) of that region is performed
along the spanning tree. As leaf nodes in a spanning
tree execute LOCAL_SNAP_COMPLETE, they propagate IN-
SWEEP message towards the root of the spanning tree,
and use the variable Neighborhood_Color_Set to accumu-
late the nonces/colors of the neighborhood regions. At the
initiator node, Neighborhood_Color_Set is collected. In LO-
CAL_SNAP_COMPLETE, an initiator determines termination
of all the snapshot recording activities within its region, and
determines the colors of its neighborhood regions.

(b) In the second subphase, termination of all the snapshots
within a region is broadcast in the system using the TER-
MINATE message, and all the nodes collectively deter-
mine when the global snapshot has terminated. For this,
the variables Universal_Color_Set , Terminated_Color_Set ,
and Neighborhood_Color_Set are used. Universal_Color_Set
tracks all the colors (instances of initiations) seen. This in-
cludes concurrent initiations. Terminated_Color_Set tracks
colors of regions in which snapshot recording has termi-
nated. When a node becomes aware of a newly termi-
nated region with a nonce x′, it adds x′ on the TERMI-
NATE message to Terminated_Color_Set . It also adds x′ and
Neighborhood_Color_Set (contained in the parameter NCS)
on the TERMINATE message to the Universal_Color_Set .
Universal_Color_Set now contains colors of all terminated
regions and the colors of their neighbors. IfUniversal_Color_
Set equals Terminated_Color_Set , then global termination in
all regions is detected. The equality implies that fixed point
of ‘‘the neighboring regions of the terminated regions have
also terminated’’ has been reached.

There is a major difference from the Spezialetti–Kearns
algorithm. In Phase II, the Spezialetti–Kearns algorithm uses
the process identifiers of the concurrent initiators to exchange
collected snapshots among the concurrent initiators. However,
we use an anonymous algorithm wherein we rely on the three
sets Terminated_Color_Set , Universal_Color_Set and Neighborhood_
Color_Set to detect global termination of the snapshot recording
algorithm. Note that we do not use process identifiers or colors
to direct communication in the algorithm. All communication is
based on the local neighborhood view obtained through the local
ports. Different invocations of the algorithm by the same node can
use different nonces.
Broadcasting the TERMINATE message

Within each region, TERMINATE messages are broadcast
in Algorithm 2 on the spanning tree created in Algorithm
1. Across regions, the TERMINATE messages are sent on all
the incident inter-region edges, as identified in the variable
Neighboring_Region_Ports. More specifically, TERMINATE mes-
sages are initiated by the initiator in each region, in LO-
CAL_SNAP_COMPLETE. An initiator broadcasts the TERMINATE
message along spanning tree edges in its region. Each node that
receives TERMINATE forwards it along the remaining tree edges in
its region, identified by Children ∪ {parent} \ {sender}, and across
inter-region edges, identified by the local port numbers in the local
variable Neighboring_Region_Ports (line 21 of Algorithm 1). When
a node in the adjacent region receives this TERMINATE message, it
also forwards it along the (remaining) tree edges in its region and
along any inter-region edges. So in this adjacent region, the TERMI-
NATEmessage propagates along the tree edges, and can hop across
to further distant regions.

Although there is a spanning tree within each region, these
spanning trees cannot be combined easily to give a global spanning
tree. (This can be done by using an anonymous adaptation of
the Gallager–Humblet–Spira MST algorithm [8], but that requires
additional phases, incurring additional delay.)

Repeated snapshots

Several problems such as checkpointing and rollback recovery
and detection of stable properties, require repeated collection
of global snapshots which is achieved by serial invocations of
the snapshot algorithm. The nonce chosen by each initiator in
each serial invocation can be chosen dynamically on-the-fly. Serial
invocations of the algorithm can be assigned serial snapshot
numbers and a new set of data structures can be associated with
each invocation. An additional parameter such as snap_no can be
used on all messages to facilitate the variable to track the snapshot
number. Serial invocations of the algorithm, even by the same
initiator, will have distinct sets of data structures at the nodes for
the different serial (but possibly overlapping in time) instances of
the global snapshot.

Distributing the snapshot

We did not require processes to distribute the local snapshots
recorded; however, we required that in the algorithm, all the
processes identify an instant in physical time when the snapshot
recording has completed at all the processes in the system. If the
local snapshots are also to be distributed throughout the system,
this can be easily done by our algorithm. All the nodes would
select nonces for each instance of the snapshot algorithm. While
collecting the termination-related information using the INSWEEP
messages in a domain, the locally recorded snapshots would also
be collected. These could then be distributed using TERMINATE
messages.

5. Correctness proof

There are two components of the proof: consistency of the
recorded states, and detection of global termination.

5.1. Consistency

We give a proof of the consistency of the recorded snapshot in
Theorem 1.

Theorem 1. The global snapshot recorded by processes across
multiple domains/regions is consistent even when there are multiple
concurrent initiators.
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Algorithm 1 Recording distributed snapshots and constructing a spanning tree in each domain in an anonymous system under concurrent
initiators. Code at node i.
set of int: Children,Unrelated := ∅

set of int: Neighbors := set of outgoing ports to neighbors
set of int: Neighboring_Region_Ports := ∅

int: x, region_color
int: parent
set of int: Universal_Color_Set, Terminated_Color_Set,Neighborhood_Color_Set := ∅

(message types)
MARKER, ACCEPT, REJECT, INSWEEP, TERMINATE

1. When a node wants to initiate snapshot recording:
2. record local state
3. region_color := generate a nonce x
4. send a MARKER(x) on each (outgoing) port
5. parent := ⊤

6. Universal_Color_Set := Universal_Color_Set


{x}
7. initialize state(Ck) for all (incoming) ports Ck to empty set

8. When a node receives MARKER(x′) on an (incoming) port Cj:
9. if Pi has not recorded its state then
10. record local state
11. record state(Cj) as the empty set
12. send a MARKER(x′) on each (outgoing) port
13. send ACCEPT on (outgoing) port Cj
14. region_color := x′

15. Universal_Color_Set := Universal_Color_Set


{x′
}

16. parent := j
17. else
18. record state(Cj) := set of messages received along this (incoming) port after local

state was recorded and until this MARKER was received
19. send REJECT on (outgoing) port Cj
20. if region_color ≠ x′ then
21. Neighborhood_Color_Set := Neighborhood_Color_Set


{x′

}

22. Neighboring_Region_Ports := Neighboring_Region_Ports


{j}

23. When a node receives ACCEPT on an (incoming) port Cj:
24. Children := Children


{j}

25. if Children


Unrelated = Neighbors \ {parent} then
26. // node has received a MARKER on all (incoming) ports;
27. LOCAL_SNAP_COMPLETE

28. When a node receives a REJECT on an (incoming) port Cj:
29. Unrelated := Unrelated


{j}

30. if Children


Unrelated = Neighbors \ {parent} then
31. // node has received MARKER on all (incoming) ports;
32. LOCAL_SNAP_COMPLETE
Proof. Each of the unknown number of concurrent initiators
simply diffuses its markers containing its nonce in the system.
With concurrently initiated diffusions, markers from different
initiators will ‘‘cross’’ each other in opposite directions along
some edges. All markers are treated alike, irrespective of who the
initiatorwas, in the recording of the local states and channel states.
When a process receives the first marker, irrespective of the nonce
on the marker, it records its local state and propagates the marker
along the other incident channels. Thus, all processes will record
their local states.

Next, we show that all messages are recorded correctly and
consistently. We term messages sent by a process before the
local state recording as prerecording messages and messages sent
after the local state recording as postrecording messages. When
a process records its local state (on receiving the first marker
along some channel), it forwards the marker on all other incident
channels.
• All prerecording messages are recorded in either the local state

or the channel state at the receiver.
Due to FIFO nature of each channel, any prerecording
message the process sent would reach the receiver before the
marker on that channel, and would either (i) be included in
the receiver’s local state if the marker along this channel is
the first marker it receives, or (ii) be included in the channel’s
(incoming) state if the marker along this channel is not the first
marker it receives.

• No postrecording message is recorded in either the process
state or the channel state at the receiver.

Due to FIFO nature of each channel, any postrecording
message the process sent would reach the receiver after the
marker on that channel.When a postrecordingmessage arrives,
the receiver would have already recorded its local state and the
state of that (incoming) channel; thus, neither of those states
would contain a postrecording message.

A process records a local snapshot as soon as it receives the
first marker, and finishes recording a channel state as soon as it
receives a marker on that channel. Therefore, it does not record
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Algorithm 2 Termination detection of distributed snapshot activities in an anonymous system under concurrent initiators. Code at node
i.
1. LOCAL_SNAP_COMPLETE:
2. if Children = ∅ then
3. if parent ≠ ⊤ then // non-initiator leaf node
4. send INSWEEP(Neighborhood_Color_Set) on (outgoing) port Cparent
5. else // initiator leaf node
6. send TERMINATE(x,Neighborhood_Color_Set) to itself on (outgoing) port C0
7. else
8. await INSWEEP from each (incoming) child port Cj, where j ∈ Children
9. for each INSWEEP(NCS) received do
10. Neighborhood_Color_Set := Neighborhood_Color_Set


NCS

11. if parent ≠ ⊤ then // non-initiator non-leaf node
12. send INSWEEP(Neighborhood_Color_Set) on (outgoing) port Cparent
13. else // initiator non-leaf node
14. send TERMINATE(x,Neighborhood_Color_Set) to itself on (outgoing) port C0

15. On receiving TERMINATE(x′,NCS) on (incoming) port Cj:
16. if x′

∉ Terminated_Color_Set then
17. Universal_Color_Set := Universal_Color_Set


NCS


{x′

}

18. Terminated_Color_Set := Terminated_Color_Set


{x′
}

19. if Universal_Color_Set = Terminated_Color_Set then
20. declare global termination
21. send TERMINATE(x′,NCS) to all (outgoing) ports in

Children


{parent}


Neighboring_Region_Ports \ {j}
any postrecordingmessage in the local state or channel state. Thus,
all process states and all channel states are recorded consistently,
irrespective of whether the channels are intra-domain channels or
inter-domain channels. �

As the global snapshot recorded by the algorithm is consistent,
it satisfies all the properties satisfied by a snapshot recorded by the
Chandy–Lamport algorithm.

5.2. Termination

Lemma 1. Local snapshot recording has terminatedwhenChildren


Unrelated = Neighbors \ {parent}.

Proof. Each neighbor is classified as a child node or a unrelated
node when an ACCEPT or a REJECT message, respectively, is
received from that node. The ACCEPT or REJECT is sent on FIFO
channels after a MARKER has been sent on the channel. Thus,
a MARKER has been received on each channel already, and the
local snapshot recording has terminated when the given condition
Children


Unrelated = Neighbors \ {parent} holds. �

Observation 1. For each snapshot initiation identified by a nonce,
the MARKER messages induce a spanning tree, where the parent of
a node in the spanning tree is identified by the first port along which
a MARKER message is received at the node.

Lemma 2. Snapshot recordings at nodes in the subtree rooted at a
node have completed when an INSWEEP message is received from all
the nodes in Children.

Proof. A node invokes LOCAL_SNAP_COMPLETE after the local
snapshot recording has completed. In LOCAL_SNAP_COMPLETE,
leaf nodes initiate sending INSWEEP messages to their parent
nodes in the spanning tree induced by the MARKERs. Thus, when a
node receives an INSWEEP message from all its child nodes, the
local snapshot recordings have completed at the child nodes. In
turn, this node now sends an INSWEEP to its parent. The lemma
now follows by using an inductive argument. �

Corollary 1. When an initiator sends a TERMINATE message on its
outgoing ports, snapshot recordings at all the nodes in the tree colored
by the initiator’s nonce have completed.
Proof. A direct consequence of Lemma 2. �

Lemma 3. At any node, Terminated_Color_Set ⊆ Universal_Color_
Set.

Proof. This follows from the processing that occurs on receiving
a TERMINATE message. Universal_Color_Set contains colors of
regions that are neighboring regions of regions whose snapshot
recordings have terminated, in addition to the colors of regions that
have terminated. �

Theorem 2. At anynode, Terminated_Color_Set = Universal_Color_
Set implies that global termination of the snapshot algorithm has oc-
curred.

Proof. At any node, Universal_Color_Set contains colors of all ter-
minated regions and the colors of their neighboring regions. Thus,
the set contains colors of all regions in which snapshot record-
ing is known to be terminated, and the colors of their neighbor-
ing regions (in which snapshot recording is not known to be ter-
minated). IfUniversal_Color_Set equals Terminated_Color_Set , then
global termination in all regions can be inferred. The condition im-
plies that there are no additional neighboring regions (in which
snapshot recording is not known to be terminated) of regions
whose snapshot recording is known to have terminated. If there
were any neighboring regions where snapshot recording is not
known to have terminated, their colors would be reported in the
NCS parameter on TERMINATE and added to Universal_Color_Set
but not to Terminated_Color_Set .

The equality implies that the fixed point of ‘‘the neighboring
regions of the terminated regions have also terminated’’ has
been reached. That is, the set of terminated regions equals the
set of terminated regions union the set of neighbors of the
terminated regions (where snapshot recording is not known to be
terminated). �

6. Complexity

Let c be the number of concurrent initiators, n the num-
ber of nodes, and e the number of channels (links) in the sys-
tem. Let nk denote the number of nodes in region k and let
Neighboring_Region_Portsk denote the setNeighboring_Region_Ports
at node k.
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6.1. Message complexity

Phase I: There are eMARKERmessages, and there are also e ACCEPT
or REJECT messages.
Phase II: There are ≤ n INSWEEP messages and c(

c
k=1(nk −

1)+
n

k=1 |Neighboring_Region_Portsk|) TERMINATEmessages. Per
color, there are

c
k=1(nk − 1) intra-region TERMINATE messages

and
n

k=1 |Neighboring_Region_Portsk| inter-region TERMINATE
messages. As the channels are bidirectional, the total number of
TERMINATE messages ≤ 2ce.
Total number of messages: The total number of messages is 2e+n+

c(
c

k=1(nk−1)+
n

k=1 |Neighboring_Region_Portsk|), which is less
than or equal to 2e + n + cn2. Asymptotically, this is max(O(e),
O(c(

c
k=1(nk − 1) +

n
k=1 |Neighboring_Region_Portsk|))), or

simply O(cn2).

6.2. Message space complexity

MARKER, ACCEPT and REJECT messages are of size O(1),
whereas INSWEEP and TERMINATE messages are of size O(c).
Therefore, the total message space complexity is 2e + cn +

c2(
c

k=1(nk −1)+
n

k=1 |Neighboring_Region_Portsk|). Asymptot-
ically, this is O(c2e) or O(c2n2).

6.3. Comments

When c = 1, the algorithm complexity defaults to that of the
Chandy–Lamport algorithm (which neither can handle concurrent
initiators nor detect global termination of the recording activities).

The message complexity of our algorithm is much lower than
the O(n3β) complexity of the Chalopin et al. algorithm [6], and
the message space complexity of our algorithm is lower than or
comparable to that of the Chalopin et al. algorithm. In addition, we
do not require processes to have any knowledge of the network
diameter unlike the Chalopin et al. algorithm.

7. Concluding remarks

We presented a global snapshot algorithm with concurrent
initiators, with termination detection of the snapshot recording in
an anonymous asynchronous distributedmessage-passing system.
Each instance of algorithm invocation by an initiator process is
identified by a large random number (nonce); however, this nonce
is not used as an address in any form of communication. Further,
the algorithmdoes not assumeknowledge of the network diameter
or the number of processes in the system, and does not assume any
predefined static topology overlay.

The algorithm handled concurrent snapshot initiations effi-
ciently by suppressing redundant snapshot collections. The al-
gorithm also performed termination detection of the snapshot
recording activities without knowing the number of concurrent
initiators, by using nonces in an ingenious way. The algorithm de-
fines three sets at each process for tracking nonces in the local
view, and applied the theory of fixed points of sets as the nonces
were diffused in the system and updated local views of the sets of
nonces and of the set of terminated processes. The fixed point the-
ory of sets applied to the sets of nonces in the local view was used
to detect the global termination of the snapshot recording activi-
ties.

We showed the correctness of the algorithm and derived
its message complexity and message space complexity. When
compared with the Chalopin et al. algorithm [6], our algorithm
has much lower message complexity and a lower or comparable
message space complexity. Furthermore, our algorithm does
not assume knowledge of the network diameter, which is
required by the Chalopin et al. algorithm. Our algorithm’s
complexity also compares favorably with other existing snapshot
recording/collection algorithms which use process identifiers in
their operations (hence are not anonymous) and do not perform
termination detection.
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