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An important problem in pervasive environments is detecting predicates on sensed variables in an
asynchronous distributed setting to determine context and to respond. We do not assume the availability
of synchronized physical clocks because they may not be available or may be too expensive for predicate
detection in such environments with a (relatively) low event occurrence rate. We address the problem of
detecting each occurrence of a global predicate, at the earliest possible instant, by proposing a suite of three
on-line middleware protocols having varying degrees of accuracy. We analyze the degree of accuracy for
the proposed protocols. The extent of false negatives and false positives is determined by the run-time
message processing latencies.
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1. Introduction

A pervasive environment can be modeled as a networked
autonomous embedded system that interacts with the physi-
cal world through sensors and actuators. Such systems aim to
sense-monitor-actuate the physical world. A pervasive applica-
tion is context-aware in that it can adapt its behavior based on
the characteristics of the environment [2-4,10,13-15,27,29,31-
33]. A central issue is that of monitoring predicates (or properties)
defined on variables of the environment. In the general case, the
predicate is on a pattern of events and has two components - a
spatial component, and a temporal component on the monitored
variables. The temporal component specifies various timing rela-
tions, such as those in [5,6,18,28], on the observed values of the
variables. In this paper, we consider the “instantaneous” snapshot
of the variables, to capture their values at the same instant in phys-
ical time in the asynchronous message-passing distributed setting.

The existing literature on predicate detection for pervasive en-
vironments, e.g., [2-4,13,14,18,29,31-33], except for [ 15], assumes
that it can take instantaneous snapshots in the system. This is pos-
sible with physically synchronized clocks. There is a wide body
of literature on providing tight clock synchronization for wireless
sensor networks [30]. The use of synchronized clocks has the fol-
lowing limitations. (1) Clock synchronization does not come for
free as its costs are incurred by a lower layer. (2) The cost overhead
may be unnecessary when dealing with lifeform and object move-
ments, which are typically slow, compared to the order of preci-
sion provided by synchronized clocks. (3) Synchronized clocks also
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impose an inevitable skew €, which leads to imprecision in de-
tecting predicates in physical time. Predicate detection is prone to
false negatives and false positives when there are “races”. When
two or more events occur at different sites and it is not possi-
ble for a global observer to ascertain the physical time order in
which they occurred, a race takes place. It has been shown that
when the overlap period of the local intervals, during which the
global predicate is true, is less than 2e¢, false negatives occur [26].
(4) In very resource-constrained sensor systems or those in remote
environments, clock synchronization service may be unavailable.
(5) Furthermore, even if one of the many clock synchronization
protocols is available, it may be too expensive in terms of energy
usage in such systems and environments. (6) The use of physically
synchronized clocks imposes cross-layer dependence and hampers
portability. (7) Physically synchronized clocks also provide more
exposure to privacy concerns and security issues by requiring all
users to participate in the network layer synchronization proto-
col. A user may refuse to participate in clock synchronization.
Therefore, a companion paper [20] explored the option of using
lightweight middleware protocols, without accessing physically
synchronized clock service, to detect global predicates. A drawback
of those protocols is that a predicate gets detected after each sen-
sor has sensed one more event, its next, locally. So there may be
considerable delay. Immediate detection is desirable for applica-
tions that require real-time on-line actuation and raising alarms
[10]. Early detection was considered in [15]. Their algorithm de-
tects a conjunctive predicate only after all but one sensors have
sensed one more event, their next, locally.

In this paper, we complement the study of [20] by proposing
a suite of clock-free algorithms to detect global predicates
immediately. We characterize and qualify the error as a function
of the message transmission delay in reporting sensed values. We
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express the accuracy of our algorithms in terms of a parameter
A. Define A as the upper bound on the asynchronous message
transmission delay for a system-wide broadcast. A includes the
delays for queueing in local outgoing and incoming buffers,
retransmission if needed for reliability, propagation, process
scheduling and context switching, until the received message is
processed. None of the algorithms need to know or use A in the
code! Actually, the accuracy is determined by the actual message
transmission delay Agquq in any particular race condition, and
Agenat < A. Thus, the accuracy of the algorithms is adaptable to
the actual operating conditions of the sensor network and can be
much better.

The skew that governs the imprecision using physical clocks
is of the order of microsecs to millisecs if software protocols
are available. (Hardware solutions achieve nanosec skews but
are impractical in sensornets). Although A, that determines the
accuracy of our algorithms, is of the order of hundreds of millisecs
to secs in small-scale networks, such as smart offices and smart
homes, it may be adequate when the number of processes is low
and/or the rate of occurrence of sensed events is comparatively
low. This is the case for several environments such as office, home,
habitat, wildlife, nature, and structure monitoring. Lifeform and
physical object movements are typically much slower than A. And
in the wild, remote terrain, nature monitoring, events are often
rare, compared to A. Thus, we may not need the precision (in
urban settings or the wild) or be able to afford the associated
cost (in the wild) of synchronized physical clocks. Further, clock
synchronization may not be usable even in urban environments
due to privacy concerns.

Predicate types: Our algorithms can detect conjunctive and rela-
tional predicates ¢ [9]. ¢ is conjunctive if = A¢;, where ¢; is de-
fined on variables local to a single sensor i. For example, ¥ : number
of persons in room > 3 A temp > 30C. When i becomes
true, it triggers setting the thermostat to 25C. Here, v is a conjunc-
tive predicate. ¢ is relational if it is an arbitrary logical expression
on system-wide variables. For example, x:x; 4+ y; > 20, where x;
and y; are the number of people in adjoining rooms i and j, respec-
tively. When x becomes true, turn on the “Capacity exceeded” sign.
Here, x is a relational predicate. The characterization of the accu-
racy of detection is the same for conjunctive and relational pred-
icates but the level of accuracy is lower for relational predicates.
Relational predicates are harder to detect because it requires ex-
amining the state lattice to consider “combinations of states”
which can together satisfy the predicate. This requires non-
polynomial time, which we explicitly avoid. See also [20].

Note that the relational predicate ¢ is an arbitrary Boolean
expression. Thus, a predicate like “for all i in site a, there exists a j
in site b, such that i and j satisfy a predefined function f” can also
be evaluated by evaluating f for all i in a and for all j in b.

Summary of contributions:

1. We present a suite of three algorithms: a simple clock-free
algorithm, an interval-vector based algorithm, and a consensus
based algorithm, to immediately detect each new occurrence
of a global predicate on variables tracking sensed physical
world properties. We do not use physical clocks because they
are not affordable or available or needed in certain pervasive
environments.

2. The algorithms examine approximations to the actual states
that did occur in the physical world execution, without
incurring the costs of building a state lattice. We characterize
the extent of the errors in detecting a predicate. This is the
first work that provides guarantees for the novel problem of
immediate and repeated predicate detection.

3. In the consensus based algorithm, in addition to the traditional
positive and negative outcomes, we introduce a borderline bin
to catch most of the race conditions. The application can deal
with borderline outcomes as it deems appropriate, based on its
semantics.

In Section 2, we give the system and execution model. In
Section 3, we give three algorithms for approximate snapshots
to detect the predicate of interest immediately. The first is a
simple clock-free algorithm, the second is based on “interval
vectors” which are a form of logical clock, and the third is a
consensus based algorithm. Although the first two algorithms
are simple, they are able to detect predicates that held at any
instant in time, immediately and in a repeated manner. This
is unlike the algorithms of [11,12] which detect predicates one
time only (see [22]) and after a potentially long delay, under
the Possibly and Definitely modalities. Further, those algorithms
can detect predicates on in-network variables only, and not on
sensed physical world variables. They can detect only conjunctive
predicates and not relational predicates. The consensus based
algorithm builds on our first two algorithms. In Section 4, we
analyze the performance of the algorithms. In Section 5, we present
an application scenario and give a concluding discussion.

2. System and execution model

Sensor-actuator networks and pervasive environments are
distributed systems that interact with the physical world in
a sense-and-respond manner [16]. The world plane consists of
the physical world entities and the interactions among them.
The network plane consists of sensors and actuators and the
communication network connecting them. For the network plane,
we adapt the standard model of an asynchronous message-passing
distributed execution (see [19,20,23]). Each sensor-actuator is
modeled as a process Pi(i € [1---n]); the local execution is a
sequence of alternating states and “relevant” events that trigger
state transitions. The local execution at P; is se/s/e?s? - - -. The
global execution is the set of local executions, one per process. Let
P be the set of all processes. An event is a sensing (observation)
event or an actuation event of the world plane by the network plane,
or a message send event or a message receive event in the network
plane. Assume a maximum of p sensing events at any process. The
communication between any pair of processes is FIFO. Messages (in
the network plane) assemble global properties from locally sensed
values, and actuate the controlled devices. The messages among
the network plane processes are control messages.

The happens before relation — on the set of events E is
defined as follows [24]. For events e,e; € E,e; —> ey if (i)
e and e, occur at the same process and e; occurs before e,; or
(ii) eq is a send event and e, is the corresponding receive event;
or (iii) there is an event e; such that e;, —> e3 and e3 —> e.
(E, —>) is a partial order. A global state is a collection of local
states, one per process. A consistent global state (CGS) is a global
state in which, for every receive event that occurs before a local
state, the corresponding send event also occurs before the local
state at the sending process [7].

Our algorithms work even if communication is unreliable by
way of message loss. Thus, a message may be lost but all delivered
messages are correct. A lost message may lead to a wrong inference
around the time that the message is lost, but it has no ripple effect
on future detection. Our characterization of the accuracy uses
a (bounded) A which can also include re-transmission attempt
latencies.

A sensing event occurs whenever a sensed value, whether
discrete or continuous, changes significantly. A sensed event is
modeled as e = (i, val, t;) to denote the sensor process, value
of the attribute sensed, and the physical time of occurrence. It
is a straightforward exercise to deal with multiple attributes per
process. For each process-attribute, an interval is represented by a
value, start time, and finish time as I = (val, &, t;). The interval
is implicitly defined by two consecutive events (i, vall, t1) and
(i, val2, t2) for that process-attribute, as: I = (val = vall, t; =
t1, & = t2). Our goal is to evaluate a predicate ¢ whenever the
global state changes.
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Problem. Detect each occurrence of a global (conjunctive or
relational) predicate ¢ on sensed attribute values of the world
plane, that held at some instant on a physical time axis, but without
using physically synchronized clocks in the network plane having
asynchronous message transmissions. Each detection must occur
on-line at the earliest possible instant on that same physical time
axis.

Predicate detection for distributed deterministic programs was
first addressed in [9] for relational predicates and in [11,12]
for conjunctive predicates. Drawbacks of [11,12] are manyfold.
(1) They cannot do immediate detection but rather need to
wait for an additional event at each process to occur before
being able to perform detection. (2) They cannot do repeated
detection because their algorithms hang after a predicate is once
detected (see [22] for a detailed discussion). (3) They detect
predicates only in the Possibly and Definitely modalities and not
those that held at an instant in physical time. (4) They cannot
detect predicates on sensed physical world values but only on in-
network variables, because they rely on passively piggybacking
timestamps on in-network messages to advance vector time, and
there are no in-network messages in sensornets (refer [20,23]
for a detailed discussion). (5) They can detect only conjunctive
predicates and cannot detect relational predicates. Predicates
detection for pervasive environments was addressed in [15,20].
The problem of repeated detection of a predicate, viz., detection of
each new occurrence of the predicate, was formalized and solved
for conjunctive predicates in [22].

Due to the inherent asynchrony of the control messages and
lack of a global observer, there are many possible observations of
the world plane execution. The distributed computing literature
has defined a lattice of global states and its sub-lattice of consistent
global states (CGSs) for executions of distributed programs with
semantic deterministic sends and receives [9]. This lattice has been
used to make assertions about ¢ under all possible runs of the
same deterministic distributed program. Due to variations in local
program scheduling and transmission and propagation times, the
same program passes through different paths in the state lattice
in different executions. The time cost of creating this lattice of
CGSs and of detecting a relational predicate ¢ is exponential,
O(p™) [9]. Our problem of sensing the physical world is different
in a subtle way. We are also hampered by the lack of a global
observer. However, we do not make assertions about “all possible
executions of the same deterministic distributed program” of the
world plane (see [20]), as the world plane does not admit reruns
and the world plane execution has nondeterministic factors like
human will and nature; there is only the actual nondeterministic
execution to make assertions about. The message-passing of the
world plane cannot be captured or mimicked by the network
plane because the message-passing of the world plane occurs over
what are termed as “covert” channels [16]. It is not known how
to track the communication over covert channels. The network
plane can only sense events and actuate the world plane interfaces.
The control messages of the network plane induce an artificial
(non-semantic) lattice of CGSs [20]. This lattice is artificial because
the receipt of the control messages has no semantic significance,
and is solely a function of transmission and propagation latencies
and local scheduling. We make approximations to the actual path
traced by the physical world execution, without constructing the
lattice and incurring that overhead.

Let Z = {L,...,I;} be a set of intervals, one per process.
Intervals in 7 overlap in physical time iff max;(l;.t;) < min;(l;.t;).
For this set of intervals, we define a number:

Definition 1. overlap(Z) = min;(l;.ty) — max;(l;.t;)

overlap gives the maximum overlap across all intervals in Z.overlap
is useful to characterize the accuracy of our protocols, as the

best approximation to physical time. As our model does not use
physically synchronized clocks, an event is a pair (i, val); and
neither do we know I.t; and I.t;.

In our algorithms, an event notification is sent (broadcast)
at each sensing event, which are the relevant events. These
event notifications are control messages. The receive events for
these control messages have no significance as far as the world
plane is concerned because control messages are unrelated to the
semantics of the world plane. Therefore, from the perspective of
the world plane, the number of CGSs induced is p". From the
perspective of the network plane, however, the number of CGSs
(induced on the events of the world plane) is given by using a
result of Charron-Bost [8]. The result states that for any poset,
(i) the number of consistent cuts is given by the number of anti-
chains of sizes 1 through n, and (ii) there is a bijective mapping
from the set of anti-chains to the set of consistent cuts. Therefore,
from the perspective of the network plane, the number of CGSs
(induced on the sensing events of the world plane) is given by
the sum of the number of anti-chains of sizes 1 through n, over
the set of sensing events S of the world plane in the partial order
(E, —>). Furthermore, for every anti-chain, there is a unique CGS
and vice versa. Note that S C E; E contains all the sensing events
(atomically with their event notification broadcasts) and the
receive events for the event notifications. The event notifications
help to build the partial order — and cut down the number of
CGSs from p", but the event notifications and their corresponding
receive events have no semantic significance to the world plane.
The receipt of event notifications in our algorithms, corresponding
toeventsinE \ S, helps to dynamically compose and observe CGSs,
without actually incurring the overhead of constructing the state
lattice. We classify a CGS corresponding to an anti-chain of size
1 as elementary, and a CGS corresponding to an anti-chain of size
greater than one as composite. This classification is useful in the
proof structure.

3. Approximate snapshots

3.1. Simple clock-free algorithm

Algorithm 1 Simple Clock-Free Algorithm: Code at P; to detect a
predicate using event notifications.

int: array Value_Vector[1...n]

When event e = (i, val) occurs at P;:

(1) transmit to sink (or broadcast to P; € P \ {P;})
event notification (i, val)

(2) (if broadcasting is being used) Evaluate_State(i, val)

On P; receiving event notification e = (z, val) from P,:
(1) Ewvaluate_State(z, val)

Evaluate_State(z, val) at P;:

(1) Value_Vector[z] <— val

(2) if ¢((Vj)Value_Vector[j]) = true then
(3) observed Value_Vector satisfies ¢
(4) raise alarm/actuate

Algorithm 1 gives a simple clock-free algorithm for evaluating
¢. Each time a new value is sensed by a sensor, it is transmitted
to a sink which is one of the n nodes (or a system-wide
broadcasting policy can be used). Whenever Evaluate_State is
invoked, it is executed atomically with its invocation. A node
tracks the latest sensed value reported by P, in Value_Vector|z]. For
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Fig. 3. Overlap, an “inevitable” false negative.

now, assume that a distinguished node (sink) runs Evaluate_State
to evaluate ¢. (Note, ¢ can be a relational predicate, like
Z,’Z=1 Value_Vector[k] < 20.) However, if broadcasting is used,
all nodes can run Evaluate_State; we discuss the implications in
Section 3.2. If overlap > A, then the algorithm can detect that the
intervals overlap. Similarly, if overlap < — A, then the algorithm
can detect that the intervals do not overlap.

It is critical to analyze behavior in the face of race conditions,
i.e, when —A < overlap < A. We explain our results using some
examples for this range.

Examples. The examples use timing diagrams and show three
intervals X, Y, and Z, at processes P;, P;, and Py, respectively. These
intervals are such that ¢ is true over the sensed values in these
intervals, and false over other combinations of these and preceding
or succeeding intervals. The integer at the start of an interval is
the local sequence number of that interval. Messages in regular
lines are the notifications sent at the start of X, Y, and Z. Messages
in dotted lines are those sent at the start of the next intervals
following these - such messages are shown only when they are
relevant to the explanation of the example. If event notifications
are sent to a sink (instead of being broadcast), the sink could be P;,
P;, or Py.

In Fig. 1, P; and P; will be able to detect ¢. However, P cannot
detect ¢ because by the time it receives the value sensed by P;,
Py’s locally sensed value has changed. We will revisit this example
in Section 3.2 to show that P, will also be able to detect ¢ using
“interval vectors” in the next algorithm. In Section 3.3, we revisit
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Fig. 5. No overlap, a potential false positive.

this example to show that this detection can be identified as a true
positive by the consensus-based algorithm.

In Fig. 2, P; and P;, but not Py, will be able to detect ¢. However,
even with the use of “interval vectors”, P, remains unable to
detect ¢.

In Fig. 3, none of the processes will be able to detect ¢, even
using our next algorithm using “interval vectors”. This is an “in-
evitable” false negative; ¢ cannot be definitively detected in our
model, even if it is conjunctive. (Further, even after using lat-
tice evaluation, we can only suspect that this overlap might have
occurred [20].)

In Fig. 4, none of the processes will be able to detect ¢. However,
with the use of “interval vectors”, we will observe in Section 3.2
that P; will be able to detect ¢.

In Fig. 5, P; and P; will detect ¢, resulting in a false positive. This
appears inevitable due to the message pattern. However, we will
show in Section 3.3 that using consensus, this case can be identified
as a potential false positive and thus be eliminated.

In Fig. 6, none of the processes detect ¢, resulting in a true
negative. A false positive is not possible.

In Fig. 7, P; detects a false positive. However, we will see in
Section 3.2 that using “interval vectors”, this false positive can be
eliminated.

Theorem 1. For a single observer in a system without any synchro-
nized clocks, for the detection algorithm in Algorithm 1, we have for
any T for which ¢ is true:

1. overlap > A = ¢ is correctly detected

2. 0 < overlap < A = any outcome is possible

3. 0 > overlap > — A — any outcome is possible

4. overlap < —A = ¢ is correctly detected as not holding

Proof. 1. Consider the duration [max;(l;.t;), max;(l;.t;) + Al.
During this duration, the values Value_Vector|z], for all z, are
received at the sink or observer. Furthermore, these values are
not overwritten until after max;(l;.t;) + A. Therefore, in this
duration, there is at least one instant when Value_Vector([z](Vz)
is available, and ¢ can be correctly evaluated over this vector of
values.
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2. Let tigsr (€ [max;(l;.ts), max;(l;.t;) + A]) be the instant at which
the last of the values in Value_Vector[z], for all z, are received
at the sink or observer. Two cases are possible at the sink or
observer.

(a) The values Value_Vector|z], for all z, are not overwritten
until after t;,;;. Therefore, there is at least one instant when
Value_Vector[z](Vz) is available, and ¢ can be correctly
evaluated over this vector of values. If ¢ holds, we have a
true positive.

(b) At least one of these values Value_Vector|z], for all z,
is overwritten before they are all received. Therefore,
there is no instant when Value_Vector[z](Vz) is available.
Even if Value_Vector[z](Vz) held in this duration, it is not
observable, and ¢ cannot be correctly evaluated over this
vector of values. If ¢ holds, we have a false negative.

3. Consider the duration [max;(l;.t;) — |overlap|, max;(l;.t;)]. Let P;
be any process whose interval ends at max;(I;.t;) — |overlap|. Let
k = argmax;(l;.t;). There are two cases. P;'s new value, which
negates ¢, may or may not have reached the sink before Py’s
value reaches the sink.

(a) In the former case, there is no instant when Value_Vector|[z]
(Vz) is available at the sink. Hence ¢ is not evaluated over
the value vector, resulting in a true negative.

(b) In the latter case, there is an instant when Value_Vector[z]
(Vz) is available at the sink. Hence ¢ when evaluated over
the value vector, results in a false positive.

4. Consider the duration [max;(l;.t;) — |overlap|, max;(l;.t;)]. Let
P; be any process whose interval ends at max;(I;.t;) — |overlap|.
Let k = argmax;(li.t;). The new value of P;, which negates
¢, reaches the sink/observer before max;(l;.t;) at which Py’s
interval begins. When the event notification from Py arrives at
the sink, P;’s value has already changed at the sink. Therefore,
there is no instant when Value_Vector[z](Vz) is available at the
sink, and ¢ is correctly detected as not holding for this value
vector. 0O

From the application’s perspective, we can classify the outcome
of detection or non-detection as follows.

Corollary 1. For a single observer in a system without any synchro-
nized clocks, for the detection algorithm in Algorithm 1, we have for
any T for which ¢ is true:

Table 1

Comparison of proposed algorithms.
Algorithm Features
Simple Value_Vector at sink (or at all) node(s);
Clock-Free Send to sink (or broadcast) event notification;
Algorithm Evaluate ¢ whenever Value_Vector changes
(Section 3.1)
Interval Value_Vector, Interval_Vector at all nodes +
Vector Broadcast Value_Vector, Interval_Vector+
Algorithm Evaluate ¢ by all nodes whenever
(Section 3.2) Interval_Vector changes
Consensus Interval Vector algorithm +
Algorithm Transmit (or broadcast) Consensus_Message+
(Section 3.3) Consensus evaluated at sink (or by all) node(s)

1. Positive detection —> overlap > — A
2. Negative detection =—> overlap < A.

When overlap in [—A, A], we cannot predict the outcome and
there will be potential false positives when overlap in [—A, 0] and
potential false negatives when overlap in [0, A]. Although we expect
that in pervasive environments, these cases are infrequent, we still
do not know the overlap and cannot identify these potential false
outcomes from the definitive outcomes.

We enhance this algorithm in two ways; see Table 1.

3.2. Improved Accuracy using Interval Vectors

We propose using an Interval_Vector, in conjunction with
the Value_Vector, to track more up-to-date sensed values in the
Value_Vector. This helps to reduce the number of potential false out-
comes. The vectors track the interval numbers and the correspond-
ing sensed value readings of the latest intervals being considered.
Interval_Vector[j] = k (at any process) is used to identify the kth
interval at process P;, that began when the kth event was sensed by
the sensor at P; and that would end at the k + 1th event sensed by
P;. Value_Vector[j] = x (at any process) is used to identify that the
value x held during the Interval_Vector[j]th interval at process P;.

Although the proposed interval vectors are similar to logical
vector clocks [25], there are several differences - for example,
(i) there is no underlying computation message exchange and all
event notifications using Interval_Vectors are control messages,
whereas logical vector clocks operate by piggybacking timestamps
on the underlying computation messages to advance vector time;
(ii) Interval_Vectors track the progress of the local interval counter
at each process by catching up or synchronizing on the latest
known intervals of other processes, and do not track the causality
induced by message communication; whereas the logical vector
clocks track the causality induced by message sends and receives;
(iii) on receiving an Interval_Vector, the local component of the
Interval_Vector does not advance; whereas on receiving a message
with a piggybacked timestamp, the logical vector clock advances
the local component. A variant of the interval vector was used
in [6]. A further discussion of interval clocks can be found in [20].

The algorithm is given in Algorithm 2. There is no improvement
in the characterization of the outcomes, over that given in
Theorem 1 and Corollary 1. However, we do get a quantitative
improvement by way of reducing false outcomes. Specifically, in
Theorem 1.2, the number of false negatives is decreased, and
in Theorem 1.3, the number of false positives is decreased, as
explained by the following examples.

Examples. In Fig. 1, P, can now detect ¢ using the Interval_Vector
to update the ith component of its Value_Vector. Thus, a
false negative gets eliminated. However, in Fig. 2, the use of
Interval_Vector cannot help P, in eliminating its false negative
conclusion. Similarly, in Fig. 3, the use of Interval_Vector cannot
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Algorithm 2 Interval Vector Algorithm: Code at P; to detect a
predicate using event vector notifications.

int: array Interval_Vector[1...n]
int: array Value_Vector[1...n]
boolean: new

When event e = (i, val) occurs at P;:
(1) Interval_Vector[i] + +
(2) Value_Vector[i] <— val
(3) broadcast to P; € P\ {P;}, event notification
(i, Interval_Vector, Value_Vector)
(4) Ewvaluate_State(i, Interval_Vector, Value_Vector)

On P; receiving event notification e = (z, IV, VV) from P,:
(1) Ewvaluate_State(z, IV, VV)

Evaluate_State(z, IV, VV) at P;:

(1) new «<—0

(2) forx=1ton

(3) if IV[x] > Interval_Vector[x] then

(4) new <«— 1

(5) Interval_Vector[x] <— IV[x]

(6) Value_Vector[x] <— VV[x]

(7) ifnew = 1orz = ithen

(8) if ¢ ((Vj)Value_Vector[j]) = true then
(9) observed Value_Vector satisfies ¢
(10) raise alarm/actuate

help any process in eliminating its false negative conclusion. But
in Fig. 4, the use of Interval_Vector allows at least one process, viz.,
P;, to eliminate its false negative conclusion.

In Fig. 5, the use of Interval_Vector cannot help P; or P; in
eliminating their false positive conclusion. However, in Fig. 7, the
use of Interval_Vector allows P; reading a false positive to eliminate
it.

Theorem 2. For a single observer in a system without any synchro-
nized clocks, for the detection algorithm in Algorithm 2, we have for
any T for which ¢ is true:

1. overlap > A = ¢ is correctly detected

2. 0 < overlap < A = any outcome is possible

3. 0 > overlap > — A = any outcome is possible

4. overlap < —A = ¢ is correctly detected as not holding.

Proof. 1. Same as for Theorem 1.1.

2. Same as for Theorem 1.2 except that some false negatives are
avoided in Case 2(b) because interval vectors allow transitive
information to aid in the early receipt of Value_Vector[z] (Vz).
In these cases, the existing values of Value_Vector[z] may not be
overwritten early enough, and a true positive results instead of
a false negative.

3. Same as for Theorem 1.3 except that some false positives are
avoided in Case 3(b) because interval vectors allow transitive
information to aid in the early receipt of P;’s new value, which
negates ¢, at the sink, before P;’s values reaches the sink. Hence
the false positive becomes a true negative.

4. Same as for Theorem 1.4. O

Corollary 2. For a single observer in a system without any synchro-
nized clocks, for the detection algorithm in Algorithm 2, we have for
any T for which ¢ is true:

1. Positive detection =—> overlap > — A
2. Negative detection = overlap < A.

3.3. Improved Accuracy through Consensus

Algorithms 1 and 2 have these drawbacks:

1. a positive detection may be false (with overlap € [— A, 0])
2. anegative detection may be false (with overlap € [0, A]).

Our next algorithm eliminates the first drawback, and reduces the
number of instances that suffer from the second drawback. Rather
than a positive and a negative bin, it creates three bins: positive,
negative, and borderline. Positives are all true with overlap €
(0, 00); borderline cases satisfy overlap € (—A, A); negatives are
true with overlap € (—oo, 0) or a few “inevitable” false cases with
overlap € (0, A). The application is free to classify the borderline
cases in either direction.

Observe in Algorithms 1 and 2, that the execution for each
sensed event is very simple, namely statements Evaluate_State .(2)
and .(1)-(8), respectively. The information to evaluate the state-
ment(s) is broadcast (assume so for Algorithm 1 also), hence it is
available to all the sensors without added message cost, for “almost
free”. As all the sensors execute the procedure instead of some sink,
we have multiple (n) observers. The execution of the statement(s)
is affordable, and all sensors get to know the outcome.

However, due to Theorem 1.(2,3) and Corollary 1, and due
to Theorem 2.(2,3) and Corollary 2, each observer may arrive at
different outcomes. To see this, consider a worst-case scenario
where all the n sensors detect (almost) simultaneous state changes,
and execute the event broadcast in response. This is a n-way race
condition. Due to non-determinism of message transmission times,
each of the n processes will observe one of O(n!) possible orderings
of the n broadcasts. Assuming that overlap € (—A, A), there may
be potential false negatives and potential false positives, and these
will be different for the n observers.

Examples. In Fig. 2, Interval_Vector = [4, 7, 1] will be detected by
P; and P; but not Py; P, has a false negative.

In Fig. 4, Interval_Vector = [4, 7, 1] will be detected by P; but
not P; and Py; P; and Py have a false negative.

In Fig. 5, Interval_Vector = [4, 7, 1] will be detected by P; and
P; but not Py; P; and P; have a false positive.

So it appears we have entropy or chaos in the observations
among the n processes.

More generally, we have the following. The application is
observing a single instance of the real-world execution. There are a
maximum of np state transitions in the global execution for a global
observer, corresponding to the np sensing events. In the Simple
Clock-Free algorithm, there are also np global states observed by
any observer. However, there are two levels of approximations in
the observations.

1. Each of the n observer processes will observe its best approxi-
mation of the actual global states at each of the np events; each
of the n observers may see different approximations of the same
actual global state.

2. Further, the np approximations of the actual global states seen
by a observer process will be observed in an ordering that is
the best approximation to the actual ordering of the actual
global states at the np events. (That is, each of the n observers
may observe a different permutation of (its approximations of
the global states at) the np events, than each other or in the
actual execution. Thus, of the O( EZ!"));) valid permutations, there

is one permutation for the actual execution, and some n will be

observed.)
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Both levels of approximations are the best approximations that
can be made by the algorithm, and inevitable due to the
message transmission latencies that arise at run-time. The Interval
Vector algorithm has the same properties, but gives better
approximations as discussed in Section 3.2.

As there are only np true global states, that occur in one se-
quence, and the n observers are trying to all observe their ap-
proximations of the np states in an approximate serial order, we
propose to run a consensus algorithm among the n processes’ in-
ferences about their approximate observations. We note here that
the algorithm considers primitive CGSs as well as composite CGSs.

Consider any of the np sensing events e. The event notification
(EN) broadcast communicates it to all processes. Evaluate_State
gets executed at each process, based on the latest state information
at that process. So there are n evaluations system-wide of ¢ over
the most recent estimate (approximation) of the state immediately
following e. Globally for all np sensing events, there are np
evaluations.

However, due to asynchrony in message transmissions and
race conditions, the n evaluations may not see the same state. In
order for the witness observers to corroborate their observa-
tions of positives determined from Evaluate_State(IV), we use a
Consensus_Message(IV) that may be broadcast (or sent to a sink). To
determine the number of witnesses of the same state IV, each pro-
cess collates the received Consensus_Messages. Specifically, when
a process receives a Consensus_Message(IV), it maintains a count of
“confirmations” for that IV. Thus, it counts the number of witnesses
of any state by counting the number of Consensus_Messages it re-
ceives for that state’s IV. The algorithm is given in Algorithm 3.

o If ¢(e) is true, flag on the EN broadcast is set. When the
EN is received, and locally where e occurs, each P; tests
if it can confirm the IV of e using its local knowledge as
an approximation to e (Evaluate_State.(1-4)). P; can “locally
confirm” P,’s VV, even if IV # Interval_Vector - this is
useful [17] because if every P; “locally confirms” P,’s VV, it must
have occurred in physical time. If P; can confirm, it sends a
Consensus_Message(IV).

The n®p Evaluate_State executions for the np sensing events,
can trigger up to n’p Consensus_Messages globally.

e The receipt of an EN also creates a potentially new observation
point at a composite state formed by merging the received
EN’s IV and VV into the local Interval_Vector and Value_Vector,
representing the IVs and VVs received cumulatively so far
(Evaluate_State.(5-12)). A new (neither seen nor evaluated
locally so far) composite state is formed if and only if z_new =
1 Ai_new = 1 across all n iterations of the loop of line (6).
z_new = 1is needed to ensure that the message from P, brings
in new information. i_new = 1 is needed to ensure that a new
state, and not the same one as included in IV, has formed locally
at P, i.e., there has been progress at P; due to a local event or a
message receive from another process. If a new composite state
Interval_Vector forms in Evaluate_State.13 (this happens at most
n(n — 1)p times globally), and ¢ holds, a Consensus_Message is
sent.

Worst-case number of Consensus_Messages is 2n’p — np. By
combining sends (lines (4) and (16)), this is at most n?p.

Note, the Consensus_Message need not be broadcast. If it is
broadcast (including to the sender), all processes learn the results
for “almost free” and will see the same result. As explained
before, on receiving a Consensus_Message(IV), a process counts
the number of received Consensus_Messages for that specific IV
in the count field of type Interval_Vector_Record. The use of a
timer set to 2A in maintaining the list of Interval_Vector_Records
serves as a performance optimization mechanism and is described
later in Section 4.3. The idea is that from the time the first

Algorithm 3 Consensus Algorithm: Code at P; to detect a predicate
using consensus.

int: array Interval_Vector[1...n]
int: array Value_Vector[1...n]
type Interval_Vector_Record
array [1...n] of int: vector
int: count
Interval_Vector_Record: list Interval_Vector_History
boolean: flag, z_new, i_new

When event e = (i, val) occurs at P;:

(1) Interval_Vector[i] + +
(2) Value_Vector[i] < val
(3) if ¢((Yj)Value_Vector[j]) = true then
(4) flag «<— 1
(5) elseflag <— 0
)

broadcast to P; € P \ {P;}, event notification
(i, Interval_Vector, Value_Vector, flag)
(7) Ewvaluate_State(i, Interval_Vector, Value_Vector, flag)

On P; receiving event notification e = (z, IV, VV, b) from P,:
(1) Ewvaluate_State(z, IV, VV, b)

Evaluate_State(z, 1V, VV, b) at P;:
(1) if b = 1then

) if IV[i] = Interval_Vector[i] then

) VV of z is “locally confirmed” by i to satisfy ¢
4) broadcast to P; € P, Consensus_Message(z, IV, i)
) z_new,i_new <— 0

6) forx=1ton
)
8)
9)

0

if IV[x] > Interval_Vector[x] then
z_new <— 1
Interval_Vector[x] <— IV[x]

1 ) Value_Vector[x] <— VV[x]
11) else if IV[x] < Interval_Vector|[x] then
12) i_new <— 1
(13) ifz_new = 1 )\ i_new = 1then
(14) if ¢ ((Vj)Value_Vector[j]) = true then
(15) observed Value_Vector satisfies ¢
16)

broadcast to P; € P,
Consensus_Message(z, Interval_Vector, i)

On P; receiving Consensus_Message(trigger, IV, s) from Ps:
(1) ifIV is a new interval vector then

(2) create record x of type Interval_Vector_Record

(3) x.vector <— IV

(4) x.count <— 1

(5) insert x in Interval_Vector_History

(6) start timer for 2 A for x

(7) else

(8) let x be record of IV in Interval_Vector_History

9) x.count + +

(10) if x.count = n then

(11) Corollary 3.1; raise alarm/actuate(true positive,IV)
(12) else

(13) Corollary 3.2; await more confirmations or timer pop

On P; getting a timer pop for Interval_Vector_History.x:
(1) Corollary 3.2; raise alarm/actuate(borderline,IV)
(2) delete record x from Interval_Vector_History

Consensus_Message for a new IV is seen, all Consensus_Messages for
that IV that are to arrive must arrive within 2 A.
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To characterize the extent to which the witness observers
corroborate their observations of positives determined from
Evaluate_State, we have introduced the “confirmation” count. If (all
|| at least one but not all //none) processes see the same state,
identified using its Interval_Vector, and ¢ is true in it, then we say
that that state is confirmed by (all // only some // none).

Definition 2. ¢(VV, IV) is:

1. confirmed by all iff count(IV) = n
2. confirmed by only some iff n > count(IV) > 0
3. confirmed by none iff count(IV) = 0.

In the ideal case (far-spaced global interval transitions, spaced
further than A apart, across all sensors), each of the np global states
following the sensed events will be observable by all processes.
For each such global state in which ¢ was true, there will be
n confirmations (one by each observer). If Consensus_Message is
broadcast, all processes learn about it. For the non-ideal case, the
number of confirmations is less than n. We have this result:

Theorem 3. For n observers in a system without any synchronized
clocks, for the detection algorithm in Algorithm 3, we have for any IV
for which ¢ is true:

1. overlap > A = ¢ is confirmed by all

2. 0 < overlap < A = ¢ is confirmed by all, only some, or none
3. 0 > overlap > —A = ¢ is confirmed by only some, or none
4. overlap < —A = ¢ is confirmed by none.

Proof. 1. Let k = argmax;(l;.t;). We have two cases.

(a) The CGS corresponding to IV is elementary. At Py, ¢
(Value_Vector) evaluates to true at the event occurring at
Ir.ts. The event notification reaches all processes within
Iy.ts + A and all processes will locally confirm the VV of
Py (Evaluate_State.(1)-(4)) because overlap > A and the
processes have not seen another event. At each of the n
local confirmations, a Consensus_Message for the IV of Py is
broadcast. Hence count (IV) = n at each observer.

(b) The CGS corresponding to IV is composite. In or before
the duration [I.ts, I.t; + A], all the processes will have
received the event notifications from P, and all other
processes. They will all detect a new composite state when
the last of these event notifications arrives. Note that no
process changes its state until after this duration finishes.
Hence, all processes detect the same new composite state.
When each process detects a new composite state and
evaluates ¢ over it (Evaluate_State.(13)-(16)), it broadcasts
a Consensus_Message for the IV of the composite state.
Hence count(IV) = n at each observer.

2. Let k = argmax;([;.t;). We have two cases.

(a) The CGS corresponding to IV is elementary. At Py, ¢
(Value_Vector) evaluates to true at the event occurring at
I.t;. The event notification reaches all processes within
Ir.ts + A. However, as A > overlap, some x processes,
x € [0,n — 1], may sense a new event before this
event notification arrives. These x processes will not be
able to locally confirm the VV of P, while the remaining
(n — 1) — x processes will locally confirm the VV of P,
(Evaluate_State.(1)-(4)) because they have not seen another
event. At each of the (n — 1) — x local confirmations,
a Consensus_Message for the IV of P, is broadcast. In
addition, P, locally confirms its own VV and broadcasts
a Consensus_Message for the corresponding IV. Hence
count(lV) = (n — x) € [1, n] at each observer.

(b) The CGS corresponding to IV is composite. In or before
the duration [Ii.ts, I.t; + A], all the processes will have
received the event notifications from P, and all other
processes. They will all detect a new composite state when
the last of these event notifications arrives. As overlap <
A, some x processes, where x € [0, n], may change
their state before the last of these notifications arrives,
and send their own ENs negating the state corresponding
to the IV. Hence, at most n — x processes detect the
same new composite state, while at least x processes will
detect some other state. When each of the at most n —
x processes detects the same new composite state and
evaluates ¢ over it (Evaluate_State.(13)-(16)), it broadcasts
a Consensus_Message for the IV of the composite state.
Hence count(IV) < (n — x) € [0, n] at each observer.

3. Let k = argmax;(l;.t;). Let | = argmin;(l;.ty). We have two
cases.

(a) The CGS corresponding to IV is elementary. This state may
form at Py if P/'s new changed value does not reach P at
I.ts. By the time the event notification from P, reaches P,
P; has sensed a new value. Hence, P; will not be able to
locally confirm the VV corresponding to the IV. However,
the other n — 2 processes may be able to locally confirm
the VV corresponding to the IV if they do not sense a new
local event before receiving the event notification from Py.
Hence, these other n — 2 processes besides P; will broadcast
the Consensus_Message if they can locally confirm the IV
(Evaluate_State.(1)-(4)). In addition, P, locally confirms
its own VV and broadcasts a Consensus_Message for the
corresponding IV. Hence, count(IV) € [0,n — 1] at each
observer.

(b) The CGS corresponding to IV is composite. By the time
the event notification from P, reaches P;, it has sensed a
new value. Hence, at P;, a composite CGS corresponding
to the IV will not be created. However, a composite CGS
corresponding to the IV may be created at processes besides
P, if (i) event notifications about the newly sensed values at
P; or other processes (that negate ¢) and denote a different
IV may not have reached the other processes; and (ii)
they themselves have not sensed a new value denoting a
different IV. Hence, these other processes besides P, may
broadcast the Consensus_Message if ¢ evaluates to true
(Evaluate_State.(13)-(16)). Hence, count(IV) € [0,n — 1]
at each observer.

4. Let k = argmax;(;.t;). Let I = argmin;(l;.ty). Before time
Ir.ts — A, P, has sensed a new event. This event notification
has reached P, before I.t;. Hence, the IV cannot be created by
P, and an elementary CGS for the IV cannot form. Similarly, by
the time P;’s event notification reaches any other process Py,
the new event notification from P; has reached that process
P, and overwritten the value corresponding to the IV under
consideration. Hence, the IV with P;’s value and P’s value
corresponding to the IV under consideration can never be
formed at any process P, or P;. Hence, no composite CGS can
form for the IV. Hence, no Consensus_Message is broadcast for
the IV, and count (IV) = 0 at each observer. O

In the proof of Theorem 3, note that there is no relationship
between the size of an anti-chain forming a CGS, and the number
of processes that can confirm the predicate in the CGS.

From the application’s perspective, we can classify the outcome
of detection or non-detection into three bins: positive, borderline,
and negative, as follows. We also classify the examples in Figs. 1-
7 in these bins. The figures do not show the Consensus_Messages
to avoid overcrowding, but visualize that the Consensus_Message is
broadcast at each execution of Evaluate_State in which ¢ is true.
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Corollary 3. For n observers in a system without any synchronized
clocks, for the detection algorithm in Algorithm 3, we have for any IV
for which ¢ is true:

1. Confirmed by all <= positive bin —>

true positive => overlap > 0.

Examples: Fig. 1.

2. Confirmed by only some <= borderline bin —

A > overlap > —A.

The application can choose to classify this case as either a
positive or negative, depending on application semantics. It is
better to err on the side of safety.

Examples: Figs. 2, 4 and 5.

3. Confirmed by none <= negative bin —>

(true negative (— overlap < 0) &

false negative having 0 < overlap < A).

Examples: Figs. 6 and 7; and Fig. 3, resp.

Thus, those states that are confirmed by all the observers
(and in which ¢ is true) correspond to Corollary 3.1. Those that
are confirmed by only some observers (and in which ¢ is true)
correspond to Corollary 3.2. Those that are seen by none of the
observers correspond to Corollary 3.3.

The algorithm gives the following advantages:

1. There are no false positives, and all interval overlaps with
overlap > A and some with overlap € [0, A) are explicitly
identified and declared.

Examples. In Fig. 1, IV = [4, 7, 1] will be confirmed by all,
i.e, by P;, P;, and Py.

2. Some of the cases having overlap € (—A, A) are explicitly
identified.

Examples. In Fig. 2, IV = [4, 7, 1] will be confirmed by P; and
P; but not Py; in Fig. 4,1V = [4, 7, 1] will be confirmed by P; but
not P; and Py; in Fig. 5,1V = [4, 7, 1] will be confirmed by P; and
P; but not P and would be a false positive if declared.

Such cases are placed in the bin “borderline” and the application
has the choice of raising an alarm or not.

Examples. Fig. 3 is an unfortunate false negative, but Theo-
rem 3.(2,3,4) shows that overlap € (—o0, A) must hold. Figs. 6
and 7 are identified as true negative.

For the borderline bin, the application can treat the cases with
overlap > 0 as negatives (because the overlap period was only a
small positive), or cases with overlap < 0 as positives (because the
interval “almost” overlapped). Essentially, all cases in this bin can
be treated alike.

It is important to understand that the algorithm implicitly
builds on-the-fly the lattice of those (up to n’p) states that the
nodes do actually observe collectively, based on the np events. It
also performs the corroborations among the n?p observations on-
the-fly.

Example. In Fig. 8, the global state passes through:
---[3,6,01,[4,6,0],[4,7,0],[4,7,1],[4,7,2],[4,8,2] - - -

Each sensed event triggers broadcast of the event notification,
indicated by the solid arrows. The ensuing execution of Evalu-
ate_State at each process (indicated by the circles) updates their
Interval_Vectors. Assume that ¢ is true in [4, 7, 1]. In this exam-
ple, each process is able to construct this state [4, 7, 1] as soon
as it receives the event notifications from the other two pro-
cesses. On constructing [4, 7, 1], Evaluate_State locally detects ¢
and broadcasts the Consensus_Message, indicated by dashed ar-
rows. Once IV ([4, 7, 1]).count = 3 for the Interval_Vector_Record

3 4
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I local sensed event

—broadcast of event notification
***** =broadcast of Consensus_Message

Fig. 8. Example of on-the-fly state construction and evaluation.

of Consensus_Message([4, 7, 1]) at a process, the vector [4, 7, 1]
is “confirmed by all” at that process and is hence a true pos-
itive. This will happen at all three processes. If at one process
IV([4, 7, 1]).count = 3, thenitis guaranteed that all processes will
eventually see the count 3 locally.

Now visualize that P; senses the next event (numbered “8”)
locally just before receiving the event notification from P, i.e., it
transitions from [4, 7, 0] to [4, 8, 0] instead of to [4, 7, 1]. Then
each process receives exactly 2 confirmations of [4, 7, 1] from
P; and Py, and this IV = [4,7,1] can be classified in the
“borderline” bin. Each process always receives the same number
of confirmations for any particular IV.

In another scenario, imagine all processes locally sense a
changed value in physical time immediately after P, begins interval
1. This will result in an “inevitable” false negative for IV = [4, 7, 1].

4. Performance

As a baseline for comparison, observe that np transmissions are
essential to report the sensed events to a sink even for centralized
on-line detection using physically synchronized clocks.

4.1. Simple Clock-Free Algorithm

The algorithm uses np event notifications.

o If sent to a sink, the messaging cost is the same as for centralized
on-line detection with physically synchronized clocks.

o If broadcasting is done instead of sending to one sink, every
process can know the impact of each sensed event (subject to
our approximation results). In a single-hop or small wireless
network, the broadcast is just a little more expensive. In a larger
network, the extra messaging goes up by a factor of 102 —inatree

configuration and by a constant factor in a linear configuration.

With broadcasting, the np transmissions result in n’p
executions of Evaluate_State across all the nodes, instead of np
at a single sink.
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4.2. Interval vector algorithm

The above analysis for the broadcast case applies except that the
broadcast of event notifications is of 2 vectors instead of 2 integers.

4.3. Consensus algorithm

The first phase costs the same as the Interval Vector algorithm,
which was analyzed in Section 4.2. We incur the following cost for
the second phase to run consensus. Across the n?p executions of
Evaluate_State, only for those d times in which ¢ is evaluated to true
(lines (1-3) and/or (13-14)), a Consensus_Message is transmitted.
The worst-case, when d = 2n?p — np or simply n’p (see
Section 3.3), is very unlikely. If Consensus_Message is broadcast
instead of transmitted to a sink, each node knows the precise
outcome. There is not much difference between a broadcast and
a “point-to-point” message in small networks (Section 4.1).

However, the expected case occurs when the predicate ¢
occasionally becomes true, and there are few race conditions
because human and physical object movements in pervasive
environments are typically much slower than the latencies that
determine A. (In related work [15], simulations and analytical
results for a smart office show that increasing message delays over
alarge range does not significantly increase probability of incorrect
detection.) In our expected case, d € [0, n?p] but d < n®p. There
will be d transmissions (or broadcasts) of Consensus_Message. As
d <« n?p, and we have np essential transmissions of event
notification messages for on-line detection even by a single sink
(even with synchronized clocks), the consensus phase is not
expected to increase the messaging cost noticeably! Yet, it offers
the advantage of eliminating false positives and of classifying
outcomes in the “borderline” bin.

In the worst-case, in which there are n?p transmissions of the
Consensus_Message, a node receives n’p Consensus_Messages; at
most n?p will have unique IV vectors. A naive approach to correlate
the IVs in these Consensus_Messages tracks n’p entries in the
Interval_Vector_History. This history can be a sorted list based on n
keys, where the ith key is the component IV [i]. Then the access cost
for inserting, deleting, and updating an index entry is n(log n’p) =
2nlog n+nlog p. Smart data structures can be used instead of the
list and we can perform garbage collection to reduce this number
significantly. In Fig. 3, we use a list and a simple observation to
age and purge the record of an IV within 2A time of its first
appearance in the list. The observation analyzes the slowest case.
Alocally sensed event causes Evaluate_State to detect ¢, broadcast
the event notification, and insert a record of the corresponding
IV in the local Interval_Vector_History. Within A time, the event
notification reaches all nodes, and their Interval_Vector is greater
than or equal to the broadcast 1V; if they also evaluate ¢ to be
true for the IV broadcast, they will also send a Consensus_Message
that must be received by others within another A period. Hence,
if any confirmations of an entry in Interval_Vector_History arrive,
they must within 2A of the insertion of the entry in the local
Interval_Vector_History.

5. Discussion

Application Scenario: Consider a big exhibition hall within a con-
vention center. The exhibition hall has k doors for entry-cum-exit,
and has a room capacity of 100 people. A sensor at each door
detects the movements of people in and out of the hall, by us-
ing RFID scanning of the convention badges (tickets). Each sen-
sor is modeled as a process P;, and tracks two variables: x;, the
number of people entered through that door, and y;, the num-
ber of people departed through that door. An event at a sensor is

the entry or exit of a person through the corresponding door. The
global relational predicate to be detected is 25;1 (x; —y;) > 100.
When the predicate becomes true, entry into the hall is not al-
lowed, until the predicate becomes false. Although physically syn-
chronized clocks could be implemented in this urban setting, their
overhead is not necessary because the precision they provide is
more than required for detecting human locomotion in this de-
tection problem. Immediate detection of the predicate is required
to prevent overcrowding and violating fire code norms. Other al-
gorithms [15,20] cannot detect this predicate until an additional
event is sensed at each of the sensors (doors). Due to concurrent
traffic through the multiple doors (representing a race condition)
and variations in the transmission delay, a false positive may oc-
cur when occupancy is below 101, while a false negative may oc-
cur when the occupancy is above 100. The consensus based algo-
rithm will be able to place such false positives and false negatives
in the borderline bin, and treat them as positives, to err on the safe
side.

In small sensor networks that use a shared medium, there is
a natural occurrence of total order and causal order among the
broadcasts [1]. Even if the shared medium is not present or these
message orders do not naturally occur, middleware could provide
these orders. Analyzing the impact of these orders on the detection
algorithm design and characterizing the errors is an open problem.
We did not make any assumptions about these orders to make the
results applicable to wired, wireless, and hybrid networks.

Our algorithms are distributed and symmetric, with low addi-
tional message overhead above that for centralized detection at a
single sink. Distribution and symmetry are more conducive to tol-
erating failures and allowing sensor node mobility with few adap-
tations. This deserves further study.

Our model allows communication failures by way of message
loss only. Except for potential false positives and false negatives
in the temporal vicinity of a message loss, there are no long-term
ripple effects on future detection.

To provide fault-tolerance, we can explore several directions,
e.g., refine the “borderline” bin. If the number of witnesses is closer
to 1, the outcome is likely a true negative; if closer to n, likely a true
positive. This is intuitively supported by probability. Or, depending
on the application, a borderline outcome can be classified as a
negative or a positive. For example, the predicate in the application
scenario earlier in this section may treat borderline outcomes as
positives to err on the safe side. Predicate 1 considered in Section 1
requires the firing of the rule only if the condition is stable. Hence,
a borderline detection of the condition should be treated as a
negative.

Table 2 compares the algorithms, and those in [20]. BC is the
acronym for a broadcast. Any and all nodes can act as sink. Note,
in the Interval Vector algorithm, a variable number of processes
may see the same positive. The Consensus algorithm declares a
positive if all see the same positive. Also, typically ¢ evaluates in
O(n). The algorithms in [20] cannot do immediate detection and
the detection latency is unbounded. This makes them unsuitable
for real-time applications to sense the physical world.

This is the first work that attempts immediate and repeated
detection of predicates (conjunctive and relational) that held
at an instant in physical time, over the sensed values of the
physical world. Our approach is to build approximations to the
actual states that the world execution passed through without
incurring the overheads of building the state lattice. Drawbacks of
the algorithms in [11,12] are that (i) they cannot do immediate
detection and rather, wait for the next event to occur at each
process before detection; (ii) they cannot do repeated detection
because their algorithms hang after a predicate is once detected
(see [22]); (iii) they detect predicates only in the Possibly and
Definitely modalities and not those that held at an instant in
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Table 2
Algorithms for detecting global predicates over sensed physical world properties.
Algorithm — Strobe vector Strobe scalar Simple clock-free Interval vector Consensus
properties |, algorithm? [20] algorithm [20] algorithm algorithm algorithm
Message 1BC of size O(n) 1 BC of size O(1) 1 msg of size O(1) 1BC of size O(n) 1 BC of size O(n)/event
complexity [event /event to sink /event [event +d messages (or BCs),
(can BC instead) where d € [0, n?p]
Processing 0(n?p)/node + 0(np)/node + 0(p)/node + 0(n?p)/node + 0(n?p)/node +
[0(np)+ (O(np) [0(n?p)+ (O(np) O(np) eval of ¢ at O(np) eval of ¢ O(np) eval of ¢/node +
eval of ¢)] at sink eval of ¢)] at sink sink (if BC, at all) at sink or at all 0(d) at sink (or at all)
Detection After intervals After intervals <A <A <2A
latency complete complete
Observer Yes Yes No No Yes
independence
Detection by No extra msg cost No extra msg cost Use BC instead of No extra msg cost No extra msg cost
all observers msg to sink
overlap > A True positive True positive True positive True positive True positive
overlap Some true positive; Some true positive; Some true positive; Some true positive; Some true positive;
€ (0,4) Some false negative Some false negative Some false negative Some false negative Some false negative®;
(better than SCF)* some in borderline
overlap True negative Some true negative; Some true negative; Some true negative; Some true negative;
€ (—4,0) Some false positive Some false positive Some false positive Some in borderline

overlap < — A

True negative

True negative

True negative

(better than SCF)¢

True negative

True negative

2 If this algorithm uses a borderline bin also, some of the false negatives (overlap € (0, A)) & some of the true negatives (overlap € (—A, 0)) go in it. For the remaining

false negatives, footnote (b) also applies.

b This algorithm cannot detect these as having occurred potentially, even for conjunctive ¢. (Lattice evaluation can classify these in borderline. For relational ¢, lattice
evaluation can combine cases in borderline to a positive occurrence of some one state from the combination of the cases.)

¢ More accurate, i.e., fewer false negatives and more true positives, than Simple Clock-Free.

4 More accurate, i.e., fewer false positives and more true negatives, than Simple Clock-Free.

physical time; (iv) they cannot detect predicates on sensed
physical world values but only on in-network variables; (v) they
detect only a conjunctive predicate and cannot detect a relational
predicate. Predicate detection for pervasive environments was
addressed in [15,20]. The algorithm in [15] detects a conjunctive
predicate only after all but one sensors have sensed one more
event, their next, locally. Further, it cannot do repeated detection
because its algorithm hangs after a predicate is once detected. As
[11,12,15] have different characteristics, we do not compare their
performance metrics.

The three algorithms presented in this paper are the seminal
results in this area of immediate and repeated predicate detection
in pervasive environments. This is also the first work to provide
guarantees on the performance. However, these algorithms offer
rather weak guarantees. It is an open problem to provide stronger
guarantees for the proposed algorithms, as also to devise newer
algorithms with stronger guarantees.
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