
Journal of Parallel and Distributed Computing 140 (2020) 37–51

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Prime clock: Encoded vector clock to characterize causality in
distributed systems
Ajay D. Kshemkalyani ∗, Min Shen, Bhargav Voleti
Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA

a r t i c l e i n f o

Article history:
Received 9 July 2019
Received in revised form 21November 2019
Accepted 13 February 2020
Available online 22 February 2020

Keywords:
Causality
Vector clock
Prime numbers
Encoding
Happened-before relation

a b s t r a c t

The vector clock is a fundamental tool for tracking causality in distributed applications. Unfortunately,
it does not scale well to large systems because each process needs to maintain a vector of size n, where
n is the total number of processes in the system. To address this problem, we propose the prime clock,
which is based on the encoding of the vector clock using prime numbers and uses a single number to
represent vector time. We propose the operations on the encoded vector clock (EVC). We then show
how to timestamp global states and how to perform operations on the global states using the EVC.
Using a theoretical analysis and a simulation model, we evaluate the growth rate of the size of the EVC.
The EVC is seen to grow very fast and hence it does not appear to offer a general purpose practical
replacement of vector clocks. To address this drawback, we propose several scalability techniques for
the EVC that can allow the use of the EVC in practical applications. We then present two case studies
of detecting memory consistency errors in MPI one-sided applications and of dynamic race detection
in multi-threaded environments, that use a combination of two of these scalability techniques. The
results show that the EVC is not just a theoretical concept, but it is applicable to practical problems
and can compete in terms of both space and time requirements with other known protocols.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The ordering of events and states is a fundamental operation
in the analysis of distributed executions. It is used in distributed
applications such as checkpointing and rollback recovery, mutual
exclusion, debugging, and replication-based data stores [22,36].
For example, in replication-based data stores, the ordering of
reads and updates to a shared object is required to determine the
object’s most recent value. Logical clocks have been proposed to
order events without the need for tightly synchronized physical
clocks. These logical clocks order events based on the causal-
ity relation on events, defined by Lamport [27]. The ordering
of events based on the causality relation is also required for
enforcing causal consistency in data stores. Thus, tracking causal-
ity and evaluating causality between different events and be-
tween different states of a distributed execution is a fundamental
challenge.

The simplest form of logical clocks, proposed by Lamport [27],
uses a scalar clock at each process in the system. If two events are
related by causality, their scalar clock values are so ordered. How-
ever, the causality relation between events cannot be inferred

∗ Corresponding author.
E-mail address: ajay@uic.edu (A.D. Kshemkalyani).
URL: http://www.cs.uic.edu/~ajayk (A.D. Kshemkalyani).

from the values of the scalar clocks of events. To overcome this
drawback, vector clocks have been proposed [10,28]. The vector
clock is a fundamental tool for tracking causality in distributed
applications. Unfortunately, vector clocks do not scale well to
large systems because each process needs to maintain a vector of
size n, where n is the total number of processes in the system.
This has been shown to be a lower bound [5]. Several works
in the literature attempted to reduce the size of vector clocks
[25,29,38,39], but they had to make some compromises in accu-
racy or alter the system model, and in the worst-case, were as
lengthy as vector clocks.

To address the above scalability problem, we propose the
encoding of the vector clock using prime numbers to use a single
number to represent vector time. Thus, we get the properties
of the vector clock by maintaining only a single number – a
big integer – at each process. We propose the tick, merge, and
comparison operations on the encoded vector clock (EVC). We
then show how to timestamp global states and how to perform
operations – namely, the union, intersection, common causal past
computation, and comparison – on the global states using the
EVC. All these operations on the EVC values of events and on
EVC values of global states have equal or lower time complexity
than the corresponding operations on traditional vector clocks
in the uniform cost model. As the EVC values are big integers,
we also express the time complexities of the operations on EVCs
in the logarithmic cost model. However, these complexities are

https://doi.org/10.1016/j.jpdc.2020.02.008
0743-7315/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2020.02.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.02.008&domain=pdf
mailto:ajay@uic.edu
http://www.cs.uic.edu/~ajayk
https://doi.org/10.1016/j.jpdc.2020.02.008

38 A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51

incomparable with the complexities of operations on traditional
vector clocks in the uniform cost model.

Although the EVC is a single big integer rather than a vector of
integers, the drawback of the EVC is that it grows very fast. Using
a theoretical analysis and a simulation model, we evaluate the
growth rate of the size of the EVC. Assuming that the integer data
type used by programming languages is represented in 32 bits,
we compute how many system events it takes until the size of the
single big integer number EVC at some process becomes 32n. Our
simulation results confirm the intuition and theoretical analysis
that the single number EVC grows very fast. Thus, although the
EVC is mathematically elegant, it does not appear to offer a
general purpose practical replacement of vector clocks due to its
high growth rate.

To overcome the drawback that the EVC grows very fast, we
then propose four techniques. These are: (i) ticking the clock only
at application-relevant events, (ii) the use of detection regions
within which the EVC is tracked, (iii) resetting the EVC when the
size of the EVC at some process reaches a predefined threshold
such as 32n or when a global synchronization point is reached,
and (iv) using logarithms of the EVC rather than the EVC itself.
Depending on the application, a judicious use of these scalability
techniques can control the size of the EVC and guarantee that the
size of the EVC never exceeds the size of the traditional vector
clock. We then present two case studies: (i) detecting mem-
ory consistency errors in MPI one-sided applications [8,9], and
(ii) dynamic race detection in multi-threaded environments [32],
that use a combination of two of the proposed scalability tech-
niques. The results show that the EVC in conjunction with the
scalability techniques is not just a theoretical concept but it is
applicable to practical problems and can compete in terms of
both space and time requirements with other known protocols.
In conjunction with resetting, the EVC is seen to be designed
with scalability and adaptability to very different scenarios. We
believe these achievements are promising and can be the starting
point for a number of developments that can help introduce new
theoretical and practical tools to more efficiently tackle several
problems in distributed systems, that require causality analysis
as part of their solutions.

An earlier version of this paper appeared as [21]. The present
paper is a revision that contains new material including theo-
rem/claims with proofs, a theoretical analysis of the growth rate
of the EVC, and sections on the system model and on related
works. A simulation section to evaluate the growth of the EVC
and the case study of detecting memory consistency errors in MPI
one-sided applications are based on [23].

In Section 2, we give the system model and present prelimi-
naries. In Section 3, we give the encoding of the vector clock, and
the operations on the encoded vector clock. In Section 4, we give
mechanisms to timestamp global states and operations on the
global states using EVC. In Section 5, we give simulation results
on the growth of the EVC. In Section 6, we propose scalability
techniques for EVC. In Section 7, we give our two case studies. In
Section 8, we discuss related work. We give concluding remarks
in Section 9.

2. System model

A distributed system is modeled as an undirected graph (P, L),
where P is the set of processes and L is the set of communication
links connecting them. Let n = |P| and let d denote the degree
of the graph. Between any two processes, there may be at most
one logical channel over which the two processes communicate
asynchronously. A logical channel from Pi to Pj is formed by paths
over links in L. We do not assume FIFO logical channels; thus the
messages may be delivered out of order. Let c denote the number
of logical channels in the system.

The execution of process Pi produces a sequence of events Ei =

⟨e0i , e
1
i , e

2
i , . . .⟩, where eki is the kth event at process Pi. An event at

a process can be an internal event, a message sending event, or a
message reception event. Let E =

⋃
i∈P {e | e ∈ Ei} denote the set of

events in a distributed execution. The causal precedence relation
between events induces an irreflexive partial order on E. This
relation is defined as Lamport’s ‘‘happened before’’ relation [27],
and denoted as →. An execution of a distributed system is thus
denoted by the tuple (E, →). Lamport designed the scalar clock,
which is a function C that assigns integer timestamps to events
such that if e → f , then C(e) < C(f). However, the drawback of
scalar clocks is that C(e) < C(f) does not imply that e → f .

Mattern [28] and Fidge [10] designed the vector clock which
assigns a vector V to each event such that: e → f ⇐⇒ V (e) <

V (f). This is called the strong clock consistency condition. Thus, the
vector clock overcomes the drawback of the scalar clock. Each
process Pi maintains a vector clock V . Events are timestamped
by the current clock value. The vector clocks, initialized to the
0-vector, are updated by the following rules.

1. Before an internal event happens at process Pi, V [i] =

V [i] + 1 (local tick).
2. Before process Pi sends a message, it first executes V [i] =

V [i]+1 (local tick), then it sends the message piggybacked
with V .

3. When process Pi receives a message piggybacked with
timestamp U , it executes
∀k ∈ [1 . . . n], V [k] = max(V [k],U[k]) (merge);
V [i] = V [i] + 1 (local tick)
before delivering the message.

The vector clock is a fundamental tool to characterize causality
in distributed executions [22,36]. Each process needs to maintain
a vector of size n, where n is the total number of processes in
the system, to represent the local vector clock. Unfortunately,
this does not scale well to large systems. Several works in the
literature attempted to reduce the size of vector clocks [25,29,
38,39], but they had to make some compromises in accuracy or
alter the system model, and in the worst-case, were as lengthy as
vector clocks. To address this problem, we propose the encoding
of the vector clock using prime numbers to use a single number
to represent vector time.

3. Encoded vector clock

Charron-Bost has shown that to capture the partial order
(E, →), the size of the vector clock is the dimension of the partial
order [5], which is bounded by the size of the system, n. She men-
tioned that vector clocks could be encoded using prime numbers.
We propose and develop the technique for the vector clock to
be encoded into a single number using n distinct prime numbers.
The encoding of vector clocks using primes was used for detecting
locality-aware conjunctive predicates in large-scale systems [37].
A vector clock containing n elements, V = [v1, v2, . . . , vn], can be
encoded by n distinct prime numbers p1, p2, . . . , pn as:

Enc(V) = pv1
1 ∗ pv2

2 ∗ · · · ∗ pvn
n

However, only being able to encode a vector clock into a single
number is insufficient to track causal relations. We develop the
EVC technique to show how to implement the basic operations of
a vector clock. The EVC at each process Pi is initialized to 1. For
a vector clock to work, it needs three basic operations: local tick,
merge, and compare. Below, we implement these basic operations
using EVC.

A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51 39

Table 1
Correspondence between vector clocks and EVC.

Operation Vector clock Encoded vector clock

Representing clock V = [v1, v2, . . . , vn] Enc(V) = pv1
1 ∗ pv2

2 ∗ · · · ∗ pvn
n

Local tick V [i] = V [i] + 1 Enc(V) = Enc(V) ∗ pi
(at process Pi)

Merge Merge V1 and V2 yields V Merge Enc(V1) and Enc(V2) yields
where V [j] = max(V1[j], V2[j]) Enc(V) = LCM(Enc(V1), Enc(V2))

Compare V1 < V2: ∀j ∈ [1, n], V1[j] ≤ V2[j] Enc(V1) ≺ Enc(V2): Enc(V1) < Enc(V2)
and ∃j, V1[j] < V2[j] and Enc(V2) mod Enc(V1) = 0

1. Initialize ti = 1.

2. Before an internal event happens at process Pi,
ti = ti ∗ pi (local tick).

3. Before process Pi sends a message,
it first executes ti = ti ∗ pi (local tick),
then it sends the message piggybacked with ti.

4. When process Pi receives a message piggybacked with timestamp s, it executes
ti = LCM(s, ti) (merge);
ti = ti ∗ pi (local tick)
before delivering the message.

Fig. 1. Operation of EVC ti at process Pi .

3.1. Encoded vector clock operations

Local Tick: Whenever the logical time advances locally at Pi, the
local component of the vector clock needs to tick. This increases
the local component in the vector by 1:

V [i] = V [i] + 1

While using EVC, this operation is equivalent to multiplying
the EVC timestamp by the local prime number pi,

Enc(V) = Enc(V) ∗ pi

Merge: Whenever one process sends a message with a piggy-
backed vector clock timestamp to another process, the recipient
of the message needs to merge the piggybacked vector clock
timestamp with its own local vector clock. For two vector clock
timestamps

V1 = [v1, v2, . . . , vn] and V2 = [v′

1, v
′

2, . . . , v
′

n]

merging them yields:

U = [u1, u2, . . . , un], where ui = max(vi, v
′

i)

The encodings of V1, V2, and U are:

Enc(V1) = pv1
1 ∗ pv2

2 ∗ · · · ∗ pvn
n

Enc(V2) = p
v′
1

1 ∗ p
v′
2

2 ∗ · · · ∗ pv′
n

n

Enc(U) =

n∏
i=1

p
max(vi,v′

i)
i

We do not have access to the vector components vi and v′

i (i =

1 . . . n) to generate Enc(U). Furthermore, it would be better to
merge Enc(V1) and Enc(V2) into Enc(U) without knowing the
n prime numbers. (One advantage of this is protection against
attacks.) We can compute Enc(U) using the Fundamental Theo-
rem of Arithmetic which states that any positive integer can be

represented as a product of prime numbers, and except for their
order, this representation is unique. In our context, any EVC can
be uniquely represented as
n∏

k=1

pvk
k , where vk is a non-negative integer.

Applying the definition of LCM (Lowest Common Multiple) in
terms of the Fundamental Theorem of Arithmetic, we have the
following claim.

Claim 1.

Enc(U) = LCM(Enc(V1), Enc(V2)) =

n∏
i=1

p
max(vi,v′

i)
i

So, by computing the LCM of two EVC timestamps, these
two timestamps can be merged without knowing the n prime
numbers.
Comparison: A mechanism to compare two vector clock times-
tamps is needed. Let VE denote the set of vector timestamps of
events. Then (VE , <) is isomorphic to (E, →) [10,28]. To compare
two distinct vector clock timestamps, a component-wise com-
parison between the corresponding elements of two vectors is
needed. The comparison has two results (the tests V1 < V2 and
V2 < V1 are symmetrical):

(i) V1 < V2 if ∀j ∈ [1, n], V1[j] ≤ V2[j] and ∃j, V1[j] < V2[j]
(ii) V1 ∥ V2 if V1 ̸< V2 and V2 ̸< V1

Let ENCVE denote the set of encoded vector timestamps of
events. To compare two (distinct) EVC timestamps, it is only
necessary to test if Enc(Vj) mod Enc(Vi) = 0. Thus,

(i) Enc(V1) ≺ Enc(V2) if
Enc(V1) < Enc(V2) and Enc(V2) mod Enc(V1) = 0

40 A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51

(ii) Enc(V1) ∥ Enc(V2) if
Enc(V1) ̸≺ Enc(V2) and Enc(V2) ̸≺ Enc(V1)

The correspondence between the three basic operations of the
vector clock and EVC is shown in Table 1. Thus, the encoded
vector clock ti (initialized to 1) is operated at process Pi as shown
in Fig. 1. To manipulate the EVC, each process needs to know only
its own prime and not the primes of other processes. Merging
two EVCs requires computing the LCM, which does not require
factorization (see Section 3.2.2). Our technique encodes vector
clocks of events and the encoded vector clock/timestamps of
events, (ENCVE , ≺) is isomorphic to (E, →) and to (VE , <).

The operations using EVC are illustrated in Fig. 2 using an
example execution over three processes.

We now prove that the EVC satisfies the strong clock con-
sistency condition. The proof uses the Fundamental Theorem of
Arithmetic.

Theorem 3.1. The EVC operation given in Fig. 1 satisfies the strong
clock consistency condition, namely, for distinct events e and f ,

e → f ⇐⇒ EVC(e) ≺ EVC(f)

⇐⇒
EVC(f)
EVC(e)

∈ N

Proof. (Part 1 (⇒)) Assume e → f . Consider the events e =

ek0 , ek1 , ek2 , . . . , ekj = f along any causal path from e to f .
We prove by induction that EVC(f) is divisible by EVC(e).
Induction hypothesis: EVC(ekx), for 0 ≤ x ≤ j, is divisible by

EVC(ek0).
The hypothesis is clearly true for the base case x = 0. Assume

the hypothesis for any x. To prove the hypothesis for x + 1, we
proceed as follows. Let the process at which event ekx+1 occurs be
l. Observe the following from the code of Fig. 1.

1. EVC(ekx+1) = EVC(ekx) ∗ pl, or
2. EVC(ekx+1) = LCM(EVC(ekx), EVC(g)) ∗ pl, where g is some

other event.

In both cases, EVC(ekx+1) is divisible by EVC(ekx). By the induction
hypothesis, EVC(ekx) is divisible by EVC(e) and by transitivity,
VC(ekx+1) is divisible by EVC(e).

(Part 2 (⇐)) Assume e ̸→ f , and let event e occur at process
Pi. Let e′ be the latest event at Pi such that e′

→ f . If such an
e′ does not exist, set it to the dummy initial event e0i , which
by definition is assumed to happen before all actual events at
all processes. Clearly, e′

→ e. Let EVC(ei) =
∏n

k=1 p
vk
k and let

EVC(e′

i) =
∏n

k=1 p
v′
k

k . We have p
v′
i

i < pvi
i due to a local tick

at Pi for each event from e′

i to ei. Consider the events e′
=

ek0 , ek1 , ek2 , . . . , ekj = f along any causal path from e′ to f . Our
proof proceeds by induction.

Induction hypothesis: For any EVC(ekx), where 0 ≤ x ≤ j, the
largest factor that is a power of pi is p

v′
i

i .
The hypothesis is clearly true for the base case x = 0. Assume

the hypothesis for any x. To prove the hypothesis for x + 1, we
proceed as follows. Let the process at which event ekx+1 occurs
be Pl. Note that l ̸= i because of our choice of e′. Observe the
following from the code of Fig. 1.

1. For a send or internal event ekx+1 , EVC(ekx+1) = EVC(ekx)∗pl.
As pl ̸= pi, from the induction hypothesis, the largest factor
of EVC(ekx+1) that is a power of pi is p

v′
i

i .
2. For a receive event ekx+1 , denote the corresponding send

event as s, and the event preceding the receive event as r ′.

EVC(ekx+1) = LCM(EVC(s), EVC(r ′)) ∗ pl

=

n∏
k=1

p
max(vsk,v

r′
k)

k ∗ pl

Irrespective of whether ekx is s or r ′, it follows from the
induction hypothesis and the definition of e′ that for both
EVC(s) and EVC(r ′), their largest factor that is a power of pi
is less than or equal to p

v′
i

i . That is, p
vsi
i , p

vr
′

i
i ≤ p

v′
i

i . As one
of s and r ′ is ekx and pl ̸= pi, hence, the largest factor of
EVC(ekx+1) that is a power of pi is p

v′
i

i .

As a consequence of the proof by induction, the largest factor
of EVC(f) that is a power of pi is p

v′
i

i < pvi
i . Stated equivalently,

p
v
f
i

i < p
vei
i .

We are now ready to show that EVC(f)
EVC(e) ̸∈ N . From the Funda-

mental Theorem of Arithmetic, we have

EVC(f)
EVC(e)

=
p

v
f
1

1 ∗ . . . ∗ p
v
f
i

i ∗ . . . ∗ pv
f
n

n

p
ve1
1 ∗ . . . ∗ p

vei
i ∗ . . . ∗ pven

n

=
p

v
f
1

1 ∗ . . . ∗ p
v
f
i−1

i−1 ∗ p
v
f
i+1

i+1 ∗ . . . ∗ pv
f
n

n

p
ve1
1 ∗ . . . ∗ p

vei−1
i ∗ p

vei −v
f
i

i ∗ p
vei+1
i ∗ . . . ∗ pven

n

As p
v
f
i

i < p
vei
i , the denominator has a factor p

vei −v
f
i

i that does not
divide any of the prime factors of the numerator. Hence, EVC(f)

EVC(e)
̸∈ N . □

3.2. Complexity

We compare the vector clock with the EVC in time and space
complexity. Each process only needs to store and transmit a single
number EVC.

Theorem 3.2. A vector clock with n entries and a maximum of α

events in each entry has bit complexity O(n log2 α) whereas an EVC
has bit complexity Ω(n · α).

Proof. The bit complexity of the vector clock is self-evident.
The EVC uses an initial sequence of primes, one per process,

and powers them to the event count at each process. We give a
non-tight lower bound on the EVC size by using the same smallest
prime (2) for each process. Clearly, 2v1 ∗ 2v2 ∗ . . . ∗ 2vn < 2v1 ∗

3v2 ∗ . . . ∗ pvn
n =

∏n
i=1 p

vi
i . As

2v1 ∗ 2v2 ∗ . . . ∗ 2vn = 2
∑n

i=1 vi ≤ 2n·α <
∏n

i=1 p
α
i ,

we can establish in general a lower bound for n processes and up
to α events per process as 2n·α . Thus, EVC has a bit complexity
Ω(n · α). □

Viewing Theorem 3.2 differently, for a system with n pro-
cesses, if EVC is allowed to use n · 32 bits, then 32 events across
n processes each (32n events) would fill the available 32n bits.
Here, the Ω(n · α) bound acts as an upper bound O(n · α) for the
number of events that can be registered. In contrast, vector clocks
with 32n bits can register up to 232 events per process, so for a
total of n · 232

= 4294967296n events.
However, if we assume that the local space for storing and

transmitting the EVC number is bounded, in conjunction with
resetting the EVC, then the storage cost and message space over-
head is O(1) in the uniform cost model.

In general, we analyze the complexity of vector clocks and EVC
assuming bounded storage using the uniform cost model, which
is suitable for analysis when the numbers fit into a single machine
word. We analyze the complexity of EVC assuming unbounded

A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51 41

Fig. 2. Illustration of using EVC. The vector timestamps and EVC timestamps are shown above and below each timeline, respectively. In real scenarios, only the EVC
is stored and transmitted.

storage using the logarithmic cost model, which assigns a cost to
every machine operation that is a function of the number of bits
involved, and is suitable when the numbers are unbounded. The
logarithmic cost model is used to compute the bit complexity. For
a EVC value H , we use h to denote the number of bits or digits
in H . Thus, h = logH . Note that H is at least 2n·α and thus h is
greater than n · α and hence much higher than n.

3.2.1. Local tick
• Unbounded numbers: If we assume the EVC has unbounded

storage, the bit complexity of multiplying two numbers of
size H is O(h2) using naive multiplication. This becomes
O(h(log h)(log log h)) using the Schonhage–Strassen or other
modern algorithms. However, for the local tick, the prime
number that the EVC value H is being multiplied with is
assumed to have bounded storage (fits in one machine
word). Hence, the multiplication has bit time complexity
O(h) in the logarithmic cost model.

• Bounded numbers: If we assume the EVC has bounded
storage, the multiplication of EVC with the prime number
has O(1) time complexity in the uniform cost model.

3.2.2. Merge or computing LCM
To compute LCM(a, b), we have:

LCM(a, b) =
a ∗ b

GCD(a, b)
Here, GCD is the Greatest Common Divisor. By applying the

Euclidean algorithm, we can compute GCD(a, b) without factoring
the two numbers. The time complexity is the number of steps in
Euclid’s algorithm, multiplied by the computational cost of each
step. Let h̄ be number of digits of the smaller number in base 10.
(Note that h̄ and h are of the same order.) It is well known that
the number of steps required is never more than five times the
number h̄ [13,15,26].

• Unbounded numbers: In the logarithmic cost model, it is
well known that the overall bit time complexity of the Eu-
clidean algorithm for GCD is O(h2) [7,17] by employing the
Euclid algorithm together with a classical mod operation.
This can be reduced using recursive reduction techniques,
and be brought down to O(M(h) log h), where M(h) is the
bit complexity of multiplication of two h-bit integers [7].
The best-known bound for M(h) is O(h(log h)(log log h)), as
derived from modern transform and convolution techniques
based on the Schonhage–Strassen or other algorithms for
fast large integer multiplication [7,30]. Thus, the complexity
of the recursive GCD algorithms is:

O(h(log2 h)(log log h))

This results in quasilinear algorithms for the GCD and LCM.

• Bounded numbers: In the uniform cost model, each step of
the Euclid algorithm takes constant time. The total running
time for GCD is O(h̄); this can be expressed as O(1) because
h̄ is bounded by the word size. So we can compute GCD and
LCM in O(1) time.

3.2.3. Compare
• Unbounded numbers: The complexity of a mod operation

modulo H is asymptotically the same as a size-H multi-
ply. The time to check Env(V2) mod Enc(V1) = 0 is the
same time taken to multiply two large numbers of h bits.
The best-known bit complexity can be calculated using the
Schonhage–Strassen bound, as O(h(log h)(log log h)) [7].

• Bounded numbers: In the uniform cost model, the time
complexity to check Env(V2) mod Enc(V1) = 0 is O(1).

3.2.4. Storage
• Unbounded numbers: The storage complexity is O(h) in the

logarithmic cost model.
• Bounded numbers: In the uniform cost model, the stor-

age complexity is O(1). The only drawback for assuming a
bounded space for storing the numbers is that eventually
it will overflow. When overflow happens, we can adapt the
vector clock resetting techniques [2,44] or the EVC resetting
technique [32] which enable us to reuse the smaller num-
bers. The clock resetting algorithm [44] will incur an O(c)
message count complexity and an O(d) storage cost at each
process.

In Table 2, we compare the time complexity of the three basic
operations (local tick, merge, compare), and the storage cost, for
vector clock and EVC. Note that the logarithmic cost model for
computing the complexities for the unbounded EVC storage case
is different from the uniform cost model used to compute the
complexities for the bounded EVC storage case and for vector
clocks.

3.3. Resilience to churn

Churn refers to the dynamic joining and departure of pro-
cesses. EVCs (and the operations on them) can operate correctly
without any change and without any overhead in the face of
churn, because the prime number of each process is independent
of the others, and the EVC timestamp of an event also encodes its
causal history into a single number. Optimizations, such as reduc-
ing the EVC values by a factor corresponding to the component
of the departed process, require an engineered solution.

In comparison, vector clocks can also handle churn but may
require some adaptation of the basic protocol and/or the opera-
tions and incur a corresponding overhead. In the simple approach,

42 A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51

Table 2
Comparison of the time complexity of the three basic operations and the space complexity, for vector clock and EVC.

Vector clock Encoded vector clock Encoded vector clock
(bounded storage) (unbounded storage) (bounded storage)
(uniform cost model) (logarithmic cost model) (uniform cost model)

Local tick O(1) O(h) O(1)

Merge O(n) O(h(log2 h)(log log h)) O(1)

Compare O(n) O(h(log h)(log log h)) O(1)

Storage O(n) O(h) O(1) + O(d) (with resetting)

when a process joins, the vector size is increased and when a
process departs, the vector size is not reduced [10]. Approaches
that reduce the vector size when a process departs incur a change
to the protocol [34,40].

4. EVC timestamps of cuts

4.1. Cuts

A cut is a prefix of the execution (E, →) and the state after
the events of a cut represents a global state [4]. A downward
closed prefix of (E, →) represents a consistent global state, and
is a meaningful observable state of the execution [4]. The set
of consistent cuts CCuts forms a lattice (CCuts, ⊂) under the set
inclusion relation [28]. Vector timestamps are assigned to cuts in
order to reason with cuts [18,28].

Let ↓ e = {f | f → e
⋀

f ∈ E} ∪ {e} denote the causal history
of event e. ↓ e is a consistent cut. In general, the union of the
causal histories of any subset X of events is a consistent cut. Thus,
cut(X) =

⋃
e∈X ↓ e is consistent even if the events in X form a

cut that is not consistent.
The surface of a cut S(cut) is the set that contains the last

event of the cut cut at each process. Formally, S(cut) = {eki | eki ∈

cut
⋀

ek+1
i ̸∈ cut}. For a cut cut , we define ĉut =

⋃
ei∈S(cut)

↓ ei to
be the smallest consistent cut that is larger than or equal to the
cut cut . If cut is consistent, then cut = ĉut , whereas if cut is not
consistent, then cut ⊂ ĉut .

4.2. EVC timestamp of a cut

Vector timestamp of a cut cut , V (cut), is defined as

∀k ∈ [1, n], V (cut)[k] = V (ek)[k], for ek ∈ S(ĉut)
= max

ei∈S(cut)
V (ei)[k]

Let event ei ∈ S(cut) occur at process Pi and let the vector
timestamp of ei, V (ei) = [vi

1, v
i
2, . . . , v

i
n]. Likewise, let event

êi ∈ S(ĉut) occur at process Pi and let the vector timestamp of
êi, V (êi) = [v̂i

1, v̂
i
2, . . . v̂

i
n]. We can then observe that

Enc(V (cut)) =

n∏
i=1

p
v̂ii
i

=

n∏
i=1

p
max(v1i ,v2i ,...,vni)
i

To compute Enc(V (cut)), we do not have access to the individ-
ual components of vector timestamps of events in S(cut). More-
over, it would be better to combine Enc(V (e1)), Enc(V (e2)), . . .,
Enc(V (en)) into Enc(V (cut)) without knowing the n prime num-
bers. Using the definition of LCM in terms of the Fundamental
Theorem of Arithmetic, we have the following claim.

Claim 2.

Enc(V (cut)) =

LCM(Enc(V (e1)), Enc(V (e2)), . . . , Enc(V (en))).

So, by computing the LCM of n EVC timestamps of events,
the encoded timestamp of the consistent cut can be computed
without knowing the n prime numbers. The LCM of n numbers
can be computed iteratively, and its complexity is n − 1 times
the complexity of a single LCM. By extending the results of
Section 3.2.2, the time complexity of computing the LCM of n
EVC timestamps is O(n×h(log2 h)(log log h)) assuming unbounded
storage for EVCs and O(n) assuming bounded storage for EVCs.

Example 1. For Cut A in Fig. 2, for events ei ∈ S(CutA), V (e1) =

[2, 0, 1], V (e2) = [1, 3, 0], and V (e3) = [0, 0, 1]. We have
V (CutA) = [2, 3, 1].

• Using prime numbers,
Enc(V (CutA)) = 2max(2,1,0)

×3max(0,3,0)
×5max(1,0,1)

= 4×27×

5 = 540.
• We have Enc(V (e1)) = 20, Enc(V (e2)) = 54, and Enc(V (e3))

= 5.
Without using prime numbers,
Enc(V (CutA)) = LCM(Enc(V (e1)), Enc(V (e2)), Enc(V (e3))) =

LCM(20, 54, 5) = 540.

Thus, Enc(V (CutA)) is the same value with and without using the
prime numbers.

4.3. EVC timestamp of cut representing common past

For a cut cut , we can define its common past CP(cut) to be the
execution prefix such that the prefix is in the causal history of ev-
ery element in S(cut). CP(cut) =

⋂
ei∈S(cut)

↓ ei [18]. The common-
past of a cut is useful for discarding obsolete information in
distributed databases, checkpointing, and designing protocols for
the replicated log and replicated dictionary problems [20,43]. We
define the vector timestamp of CP(cut), V (CP(cut)), as

∀k ∈ [1, n], V (CP(cut))[k] = min
ei∈S(cut)

V (ei)[k]

As before, let event ei ∈ S(cut) occur at process Pi and let
the vector timestamp of ei, V (ei) = [vi

1, v
i
2, . . . , v

i
n]. We can then

observe that

Enc(V (CP(cut))) =

n∏
i=1

p
min(v1i ,v2i ,...,vni)
i

To compute Enc(V (CP(cut))), we do not have access to the
individual components of vector timestamps of events in S(cut).
Moreover, it would be better to combine Enc(V (e1)), Enc(V (e2)),
. . . Enc(V (en)) into Enc(V (CP(cut))) without knowing the n prime
numbers. Using the definition of GCD in terms of the Fundamental
Theorem of Arithmetic, we have the following claim.

A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51 43

Claim 3.

Enc(V (CP(cut))) =

GCD(Enc(V (e1)), Enc(V (e2)), . . . , Enc(V (en))).

So, by computing the GCD of n EVC timestamps of events,
the encoded timestamp of the consistent cut can be computed
without knowing the n prime numbers. The GCD of n numbers
can be computed iteratively, and its complexity is n − 1 times
the complexity of a single GCD. By extending the results of
Section 3.2.2, the time complexity of computing the GCD of n
EVC timestamps is O(n×h(log2 h)(log log h)) assuming unbounded
storage for EVCs and O(n) assuming bounded storage for EVCs.

For unbounded storage, an alternate bound for GCD(a1, . . . ,
an), based on the Euclidean algorithm, also computes the GCD
iteratively but counts the total number of division operations. The
derivation leverages the fact that after each GCD calculation, the
GCD reduces by a factor of at least two, (else if it remains the
same, only one division is used). There are log2 a1 (rather than n)
terms in the series

∑log2 a1
k=1 log aik . The total number of division

operations is less than O((log a1)(log an)) or simply O(h2). As each
division costs O(h(log h)(log log h)), this bound is better if

O(h3(log h)(log log h)) < O(nh(log2 h)(log log h))

which may not be true for large numbers ai.

Example 2. For Cut B in Fig. 2, for events ei ∈ S(CutB), we
have V (e1) = [3, 0, 1], V (e2) = [3, 4, 1], and V (e3) = [1, 3, 2].
V (CutB) = [3, 4, 2], whereas we have V (CP(CutB)) = [1, 0, 1].

• Using prime numbers,
Enc(V (CP(CutB))) = 2min(3,3,1)

×3min(0,4,3)
×5min(1,1,2)

= 2×1×

5 = 10.
• We have Enc(V (e1)) = 40, Enc(V (e2)) = 3240, and Enc(V (e3))

= 1350.
Without using prime numbers,
Enc(V (CP(CutB))) = GCD(Enc(V (e1)), Enc(V (e2)), Enc(V (e3))) =

GCD(40, 3240, 1350) = 10.

Thus, Enc(V (CP(CutB))) is the same value with and without using
the prime numbers.

Matrix clocks, first defined by Wuu and Bernstein [43], use a
n × n matrix M of clock values, where the M[j, k]th entry at Pi
denotes Pi’s knowledge of Pj’s knowledge of the latest local clock
value at Pk. Note that M[j], the jth row of the matrix timestamp
of an event e, corresponds to the vector timestamp of the event
at Pj in the surface of the cut ↓ e, denoted by V ((S(↓ e))j), and this
can be encoded by EVC as shown above. Thus, the matrix clock
can be encoded as a vector of length n of EVCs. The common past
of events (S(↓ e))j, for all j, identifies the execution prefix that is
known to all processes and thus can be discarded from the local
log at event e.

Example 3. For the event ewith EVC = 3240 in Fig. 2, Enc(M(e)) =

[40, 3240, 5]. We have V (↓ e) = [3, 4, 1], V ((S(↓ e))1) = [3, 0, 1],
V ((S(↓ e))2) = [3, 4, 1], V ((S(↓ e))3) = [0, 0, 1], whereas we have
V (CP(↓ e)) = [0, 0, 1]. By applying a logic similar to Example 2,
it follows that:

• Using prime numbers,
Enc(V (CP(↓ e))) = 2min(3,3,0)

× 3min(0,4,0)
× 5min(1,1,1)

= 1 ×

1 × 5 = 5.
• Enc(V ((S(↓ e))1)) = 40, Enc(V ((S(↓ e))2)) = 3240, Enc

(V ((S(↓ e))3)) = 5.
Without using prime numbers,
Enc(V (CP(↓ e))) = GCD(40, 3240, 5) = 5.

The EVC of the execution prefix that can be safely discarded is 5.

4.4. Other operations on cuts

Intersection and Union: For two vector clock timestamps of
(consistent) cuts cut1 and cut2, let

V (cut1) = [v1, v2, . . . , vn] and V (cut2) = [v′

1, v
′

2, . . . , v
′

n]

We have that

V (cut1
⋂

cut2) = [u1, u2, . . . , un], where ui = min(vi, v
′

i)

V (cut1
⋃

cut2) = [u1, u2, . . . , un], where ui = max(vi, v
′

i)

The encodings of V (cut1), V (cut2), V (cut1
⋂

cut2), and V (cut1
⋃

-
cut2) are:

Enc(V (cut1)) = pv1
1 ∗ pv2

2 ∗ · · · ∗ pvn
n

Enc(V (cut2)) = p
v′
1

1 ∗ p
v′
2

2 ∗ · · · ∗ pv′
n

n

Enc(V (cut1
⋂

cut2)) =

n∏
i=1

p
min(vi,v′

i)
i

Enc(V (cut1
⋃

cut2)) =

n∏
i=1

p
max(vi,v′

i)
i

To compute the encodings of the vector timestamps of the inter-
section and union cuts, we do not have access to the individual
components of the vector timestamps of cut1 and cut2. More-
over, it would be better to compute Enc(V (cut1

⋂
cut2)) and

Enc(V (cut1
⋃

cut2)) without knowing the n prime numbers. Us-
ing the definition of GCD and LCM in terms of the Fundamental
Theorem of Arithmetic, we have the following claim.

Claim 4.

Enc(V (cut1
⋂

cut2)) = GCD(Enc(V (cut1)), Enc(V (cut2)))

Enc(V (cut1
⋃

cut2)) = LCM(Enc(V (cut1)), Enc(V (cut2)))

So, by computing the GCD and the LCM of two EVC times-
tamps of cuts, the EVC timestamps of the intersection and the
union cuts, respectively, can be computed without knowing the
n prime numbers. The time complexity is O(1), namely the cost
of a single GCD or LCM operation, assuming bounded storage, or
O(h(log2 h)(log log h)) assuming unbounded storage to represent
the EVCs. This assumes the encoded vector timestamps of cut1
and cut2 are available. These should be available since we are
operating in the EVC domain.

Example 4. Consider the intersection and union of Cut A and Cut
C shown in Fig. 2. Using vector timestamps of cuts and prime
numbers, we have:

• V (CutA) = [2, 3, 1]; V (CutC) = [1, 3, 2].
• V (CutA

⋂
cutC) = [1, 3, 1]; V (CutA

⋃
CutC) = [2, 3, 2]

• Enc(V (CutA
⋂

CutC)) = 21
∗ 33

∗ 51
= 270;

Enc(V (CutA
⋃

CutC)) = 22
∗ 33

∗ 52
= 2700

Using the encodings of the vector timestamps of Cut A and Cut C
and without using prime numbers, we have by using the expres-
sion from Section 4.2, Enc(V (CutA)) = LCM(20, 54, 5) = 540 and
Enc(V (CutC)) = LCM(2, 54, 1350) = 1350. We then have:

• Enc(V (CutA
⋂

CutC)) =

GCD(Enc(V (CutA)), Enc(V (CutC)))
= GCD(540, 1350) = 270.

• Enc(V (CutA
⋃

CutC)) =

LCM(Enc(V (CutA)), Enc(V (CutC)))
= LCM(540, 1350) = 2700.

44 A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51

Table 3
Correspondence between operations on cuts using vector clocks and EVC.

Operation Vector clock Encoded vector clock

Cut ∀k ∈ [1, n], V (cut)[k] = maxei∈S(cut) V (ei)[k] Enc(V (cut)) =

(cut may not be consistent) LCM(Enc(V (e1)), Enc(V (e2)), . . . , Enc(V (en))),
∀k ∈ [1, n], V (cut)[k] = V (ek)[k] for ek ∈ S(cut) where ei ∈ S(cut)
(cut is consistent)

Common past ∀k ∈ [1, n], V (CP(cut))[k] = minei∈S(cut) V (ei)[k] Enc(V (CP(cut))) =

GCD(Enc(V (e1)), Enc(V (e2)), . . . , Enc(V (en))),
where ei ∈ S(cut)

If V (cut1)[j] = vj and V (cut2)[j] = v′

j , For Enc(V (cut1)) and Enc(V (cut2)),
Intersection V (cut1

⋂
cut2)[j] = min(vj, v

′

j) Enc(V) = GCD(Enc(V (cut1)), Enc(V (cut2)))
Union V (cut1

⋃
cut2)[j] = max(vj, v

′

j) Enc(V) = LCM(Enc(V (cut1)), Enc(V (cut2)))

Compare V (cut1) < V (cut2): Enc(V (cut1)) ≺ Enc(V (cut2)):
∀j ∈ [1, n], V (cut1)[j] ≤ V (cut2)[j] Enc(V (cut1)) < Enc(V (cut2))
and ∃j, V (cut1)[j] < V (cut2)[j] and Enc(V (cut2)) mod Enc(V (cut1)) = 0

Table 4
Comparison of the time complexity of the operations on cuts using vector clocks and EVC.

Vector clock Encoded vector clock Encoded vector clock
(bounded storage) (unbounded storage) (bounded storage)
(uniform cost model) (logarithmic cost model) (uniform cost model)

Computing timestamp O(n2) (cut may not be consistent) O(nh(log2 h)(log log h)) O(n)
O(n) (cut is consistent)

Computing common past O(n2) O(nh(log2 h)(log log h)) O(n)

Intersection and union O(n) O(h(log2 h)(log log h)) O(1)

Compare O(n) O(h(log h)(log log h)) O(1)

Thus, Enc(V (CutA
⋂

CutC)) is the same value with and without
using the prime numbers. Likewise for Enc(V (CutA

⋃
CutC)).

Comparison: The comparison of two distinct consistent cuts cut1
and cut2 in CCuts results in one of two outcomes: (i) cut1 ⊂ cut2
(or symmetrically, cut2 ⊂ cut1), or (ii) cut1 ̸⊂ cut2 and cut2 ̸⊂

cut1, i.e., cut1 ∥ cut2.
To compare two EVC timestamps of cuts cut1 and cut2, it

is only necessary to test if Enc(V (cut2)) mod Enc(V (cut1)) = 0.
Thus,

(i) Enc(V (cut1)) ≺ Enc(V (cut2)) if
Enc(V (cut1)) < Enc(V (cut2)) and
Enc(V (cut2)) mod Enc(V (cut1)) = 0

(ii) Enc(V (cut1)) ∥ Enc(V (cut2)) if
Enc(V (cut1)) ̸≺ Enc(V (cut2)) and
Enc(V (cut2)) ̸≺ Enc(V (cut1))

For unbounded storage, the time to check Env(V (cut2)) mod
Enc(V (cut1)) = 0 is asymptotically the same as the time

taken to multiply two large numbers of h bits. The best-known
bit complexity is based on the Schonhage–Strassen bound, as
O(h(log h)(log log h)). For bounded numbers, the time complexity
to check Env(V (cut2)) mod Enc(V (cut1)) = 0 is O(1).

The encoded vector clock timestamps of consistent cuts, de-
noted (ENCVCC, ≺), is isomorphic to (VCC, <), the vector clock
timestamps of consistent cuts, and to (CCuts, ⊂).

Table 3 gives the correspondence between the operations on
cuts using vector clocks and using EVC. In Table 4, we com-
pare the time complexities between the operations on cuts using
vector timestamps and using EVCs.

5. Simulation results

For n processes in the system and αi events at each process Pi,
the maximum EVC timestamp across all processes is O(

∏n
i=1 p

αi
i).

This is because at each event (send, receive, or internal) at Pi,
the EVC gets multiplied by pi, and in addition, at receive events,
an LCM computation over two EVCs may significantly increase
the EVC. From this observation and analysis towards the start of
Section 3.2 (Theorem 3.2), we can see that EVC timestamps grow
very fast. We ran simulations to test the growth rate of EVCs.
The simulations were done in Rust and used the GMP library. We
simulated distributed executions with a random communication
pattern. As parameters, we used the number of processes and
the probability of send (versus internal) events. The destination
of a message from a send event was chosen at random. We
timestamped events using EVCs, and measured the size of the EVC
in bits. We used the first n prime numbers for the n processes.

We define the overflow process to be that process which is
earliest to have its EVC size exceed 32n bits. The size 32n was
chosen for comparison because this is the constant size used
by traditional vector clocks, assuming each integer in the vector
clock is represented by 4 bytes.

A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51 45

Fig. 3. Number of events needed for EVC to reach a size of 32n as a function
of the number of processes n in the system.

5.1. Number of events until EVC size becomes 32n as a function of n

Fig. 3 shows the number of events executed in the system
until the EVC size reaches 32n bits at the overflow process, as a
function of n. We varied n from 10 to 100, and plotted the average
of 10 runs for each setting, assuming that prs, the probability of
send events (versus internal events), was 0.6. The plot turns out
to be almost a straight line.

For the range of n tested (10–100), typically 21 to 25 events
were executed at some process before the EVC size exceeded
32n at the overflow process. As this number in the interval
[21, 25] appears small, we conduct a worst-case strawman anal-
ysis to show that this number is reasonable. As prs = 0.6,
probability(send event) = probability(receive event) = 0.6/1.6.
We can approximate this as assuming that every third event is a
receive event. Now consider, for example, n = 60. The simulation
uses the 60 lowest prime numbers, and a significant number of
them need 8 bits for representation. At each event, we multiply
ti by pi, so the size of the EVC increases by 8 bits. In addition, at
every third event (a receive event), the size of the EVC can double
in the worst case due to the LCM operation. (Doubling of the size
of the EVC due to LCM computation is more likely in the initial
part of the execution because the LCM is likely to be computed
over relative prime numbers.) So the worst-case progression of
the size of the EVC in bits at a process Pi can be approximated as:

8, 16, 32 and 40 (event e3i),
48, 56, 112 and 120 (event e6i),
128, 136, 272 and 280 (event e9i),
288, 296, 592 and 600 (event e12i),
608, 616, 1232 and 1240 (event e15i),
1248, 1256, 2512 and 2520 (event e18i)

At the 18th event at Pi, the EVC size exceeds 60×32 = 1920 bits.
As per the simulation, the overflow happens at the 1250/60th
event, which is the 21st event, at the overflow process, so this
worst-case analysis is reasonably accurate.

This analysis indicates that receive events cause the EVC to
grow very fast due to the LCM computation.

5.2. Size of EVC as a function of number of events

In our next experiment, we measured the size of the EVC
in bits as a function of the number of events executed in the

Fig. 4. Scatter-plot of the size of EVC in bits as a function of the number of
events in the system. n = 30.

Fig. 5. Scatter-plot of the size of EVC in bits as a function of the number of
events in the system. n = 60.

Fig. 6. Scatter-plot of the size of EVC in bits as a function of the number of
events in the system. n = 100.

46 A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51

Fig. 7. Total number of events until EVC size reaches 32n bits, for different n
and different percentages of internal events.

system. Figs. 4, 5, and 6, show the scatter-plots for a system with
n = 30, 60, 100 processes, respectively. For these executions, prs,
the probability of send event (versus internal event) was chosen
as 0.5. In these plots, the number of events on the X-axis is such
that the size of the EVC in bits is always less than that of the
traditional vector clocks. The Y -axis shows the size of the EVC in
bits until the size equals 32n. The maximum size 32n was chosen
because this is the constant size used by traditional vector clocks,
assuming each integer in the vector clock is represented by 4
bytes.

Consider for example, Fig. 5, which uses parameters n = 60
and prs = 0.5. There were about 1800 events in the systemwide
execution (or an average of 1800/60 = 30 events at a process)
until the EVC size reached 1920 (= 60 × 32) bits at the overflow
process.

5.3. Number of events until EVC size becomes 32n as a function of
ratio of event types

We also varied the percentage of internal events (where the
total number of events included send, receive, and internal
events), and varied n, and observed the total number of events
in the system until the EVC size reaches 32n bits at the overflow
process. The observations are plotted in Fig. 7. For a given n,
as the percentage of internal events increased, symbolizing an
increasingly smaller proportion of receive events (and hence
fewer LCM computations), the rate of increase of the total number
of events until the EVC size reached 32n bits kept increasing. In
particular, when probability(internal event) > 0.8, there was a
more noticeable rate of increase of the total number of events
(until the EVC size reached 32n bits at the overflow process). This
shows that as the proportion of send events and corresponding
receive events decreases progressively, particularly below 10%,
due to the fewer resulting LCM computations at receive events,
the EVC grows much less rapidly, thereby resulting in a much
larger number of system events until the EVC size reaches 32n
bits. This corroborates the earlier observation that receive events
cause the EVC to grow very fast due to the LCM computation.

Consider, for example, the value for n = 60, probability(internal
event) = 0.9 which implies that probability(receive event) = 0.05.
We again conduct a strawman analysis. We assume the prime
numbers take up to 8 bits representation. As before, let us assume
each LCM computation causes the EVC size (in bits) to double
because the execution has just begun and the LCM is likely to be

computed over relative prime numbers. Then, the receive event
occurs every 20 events, at which time the EVC size increases by
a factor of 2. So the worst-case progression of the size of the EVC
in bits at a process Pi can be approximated as:

8, . . . , 152, 304 and 312 (event e20i),
320, . . . , 464, 928 and 936 (event e40i),
944, . . . , 1088, 2176 and 2184 (event e60i)

At the 60th event at Pi, or equivalently at around the 60 ×

60 = 3600th event in the execution, the EVC size exceeds
60 × 32 = 1920 bits. As per the simulation graph (Fig. 7), the
overflow happens at around the 6000th event in the execution,
and this can be justified by applying a correction to the worst-
case strawman analysis. Note that in the simulation, there is a
delay for the message transmission. Hence, in the small initial
window (before steady state) that the results in Fig. 7 depict,
actually probability(receive event) < 0.05 and hence there are
more than 20 non-receive events per receive event. Hence, there
are more than 60 events at the overflow process Pi and hence
more than 3600 events in the system until overflow occurs. This
supports the simulation result of 6000 events.

6. Scalability

As seen in Section 5, the EVC timestamps grow very fast and
eventually they will exceed the size of vector clocks. However,
we can use several strategies to alleviate this problem and control
the maximum size of the EVC. In particular, these strategies can
be used to guarantee that the EVC size is always less than the
vector clock size.

6.1. Relevant events

It suffices if the local clock does not tick at every event but
only at events that are relevant to the application. Thus, the
EVC does not grow so fast. This strategy is explained in the
context of predicate detection [37]. The local clock should tick
only when the variables in the predicate alter the truth value of
the predicate. As another example, the local clock ticks only at
synchronization events in MPI application programs [8,9]; and at
the synchronization events, viz., lock, unlock, fork, and join events,
in dynamic race detection in multi-threaded environments [32];
see the case studies in Section 7.

6.2. Detection regions

In large-scale systems, the application requiring a vector clock
may be confined to only a subset of m processes, where m < n.
An example of this is locality-aware predicate detection [37]. The
subset of m processes forms a detection region. Processes within
the detection region maintain a single number for the EVC. More
importantly, for processes outside the detection region, we can
cut down the storage cost and make the solution more practical
for large-scale systems. For a process Pj outside the region, when
it first receives a message piggybacked with an EVC timestamp, it
simply stores this single number. Although Pj will not tick the EVC
locally since there is no corresponding component in the vector
clock for Pj, it may still receive multiple messages. Each time this
happens, Pj simply executes the merge operation by calculating
the LCM of two numbers. (Pj needs to store the EVC and to do the
merge because it may later send messages back into the detection
region, directly or transitively.)

A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51 47

6.3. Resetting EVC

We can adapt the clock resetting technique [44] to solve the
problem when the clock overflows. This technique divides the
execution of a distributed system into multiple phases. Each
time the clock overflows at any process, the resetting algorithm
terminates the current phase by sending control messages while
ensuring there is no computation message sending from the
current phase to the next phase, nor from the next phase to
the current phase. The reset protocol involves a period of send
inhibition of messages, and the local clock gets reset in a strongly
consistent (i.e., transitless) global state [1,19]. This technique
introduces false causality dependencies when comparing times-
tamps across phases. To deal with this, the phase number needs
to be maintained along with the EVC and an auxiliary function (to
be adapted from [44]) needs to be used. Alternately, the idea of
asynchronous and uncoordinated reset, as used in [2] for vector
clocks and in [32] for EVC can be applied.

It is up to the application to determine when the EVC over-
flows. If we say that the clock overflows when the size of the EVC
equals 32n bits at some process, then we can guarantee that the
size of EVC is always less than that of traditional vector clocks.

We can also reset the EVCs globally when there is a naturally
occurring global system state in which all previous events are
ordered (as per the ‘‘happened before’’ relation →) before all sub-
sequent events. For example, such global synchronization occurs
at a global barrier or fence instruction in MPI programs [14]; see
the case study in Section 7.1. The system state immediately after
a global synchronization is a transitless global state.

6.4. Using logarithms of EVC

As the EVC technique uses exponentiation, we propose the use
of logarithms to store and transmit the EVCs. This can result in
a significant reduction in the size of EVCs. We note that since
logarithms involve finite-precision arithmetic, their use is subject
to the introduction of errors due to the limited precision. In
related work [35], a detailed analysis of the error rates introduced
by the use of logarithms of concise version vectors was given. This
analysis showed that the error rates are quite low, and can be
further decreased by increasing the number of mantissa bits of
the logarithms.

7. Case studies

We review two case studies of the use of EVC. The first case
study is of detecting memory consistency errors in MPI one-
sided applications using EVC [8,9]. The second case study is of
the resettable EVC (REVC) with an application to dynamic race
detection in shared memory multi-threaded environments [32].

7.1. Detecting memory consistency errors in MPI one-sided applica-
tions

7.1.1. MPI one-sided communication
MPI one-sided communication, also known as MPI remote

memory access, does not require sends to be matched with
corresponding receive instructions [14]. Only one process takes
part in the data movement (using unilateral instructions such as
MPI_Put and MPI_Get rather than matching pairs of MPI_Send
and MPI_Receive). It decouples data transfer between processes
from synchronization between the processes. This eliminates
overhead from unneeded synchronization and allows for greater
concurrency. This also eliminates message matching and buffer-
ing overheads that are incurred in traditional two-sided commu-
nication, leading to significant reduction in communication costs.
These advantages of one-sided communication come at a cost —
the programs are more prone to synchronization bugs, such as
memory consistency errors.

7.1.2. Memory consistency errors in MPI one-sided communication
In simple terms, a memory consistency error is a write to

a location (through a local store instruction or through a re-
motely issued MPI_Put) that is concurrent with another write
or a read (through a local load instruction or a locally or re-
motely issued MPI_Get) to the same memory location at the
same process [6]. We elaborate on ‘‘is concurrent with’’ semi-
formally. The

hb
−→ ‘‘happened before’’ relation between events

a and b is the transitive closure of the union of the program
order and synchronization order. The program order at a process
specifies that a previous instruction is executed before a later
instruction. The synchronization order across processes orders
events by the order in which synchronization instructions are
executed (e.g., MPI_Send at a source process completes before
MPI_Receive at the destination process). The consistency order
co

−→ on events a and b guarantees that the memory effects of
a are visible before b [14]. This order is necessary because syn-
chronization instructions such as MPI_Win_lock/unlock order
memory accesses but do not synchronize processes. For example,
if a is nonblocking, and a and b both access overlapping buffers,
there is no consistency order because of a potential race condition
due to a being nonblocking. Now, the

cohb
−→ relation on events

is the transitive closure of the intersection of the
co

−→ and
hb

−→

relations [14]. If the
cohb
−→ does not hold between a pair of events,

that pair of events is concurrent under
cohb
−→. Thus, two memory

operations are concurrent if there are no
co

−→ and
hb

−→ between
them. If there are two concurrent events accessing the same
memory location and at least one of them is an update operation
(whether local or remote), then there is a memory consistency er-
ror in an MPI one-sided program execution. Note that a memory
consistency error may be of two types: either within an epoch at
the same process, or across processes.

Although MPI one-sided communication calls may cause
memory consistency errors with other such calls or load/store
operations, not every pair of operations will cause such errors.
This is because MPI applications use synchronization calls (such
as MPI_Barrier and MPI_Win_fence) to enforce

co
−→ and/or

hb
−→ between two operations. Only when two operations fall
within a concurrent program region may memory consistency
errors arise. A concurrent program region is defined as a group
of program regions across multiple (all) processes, that can be
executed concurrently without

co
−→ and

hb
−→ ordering relations,

i.e., program regions that are not ordered by
cohb
−→ [6]. Each

program region is formed of one or multiple epochs, where an
epoch is formed by a pair of one-sided synchronization calls.

7.1.3. The MC-Checker tool
MC-Checker [6] is a tool for identifying memory consistency

errors. Using trace files, it generates a dynamic data access DAG
whose nodes are the events and edges represent the ‘‘happened
before’’ relation. The DAG represents a set of concurrent regions.
A concurrent region begins and ends with a global synchroniza-
tion operation (such as MPI_Barrier and MPI_Win_fence). In
the general case, the set of concurrent regions forms a partial
order. However, the set of concurrent regions is totally ordered,
assuming a single MPI communicator. Each concurrent region
is modeled as a graph: the set of nodes are the events in MPI
one-sided programs and the edges are the

cohb
−→ relation. Each

concurrent region is (independently) analyzed to detect memory
consistency errors — such an error exists between each pair of
conflicting operations that are not ordered by

cohb
−→. MC-Checker

detects conflicting operations within each epoch of a program
region, and across processes within the concurrent region.

48 A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51

Typically, two-sided communication is used along with one-
sided communication in high-performance computing applica-
tions. In order to detect memory consistency errors, transitive
dependencies between processes, such as those induced by send
and receive operations by several different processes, need to be
captured. MC-Checker [6] suffers the drawback that it does not
take into account such transitive dependencies, because capturing
such dependencies would require building a complete DAG of
dependencies between events for analysis, which would require
maintaining vector clocks. However, vector clocks do not scale
and they impose high overheads; as a result MC-Checker did not
use vector clocks and this led to the introduction of false positives
in reporting memory consistency errors.

7.1.4. The MC-CChecker tool using EVC
The MC-CChecker tool [8,9] overcame this drawback by us-

ing the EVC, thereby eliminating the false positives reported by
MC-Checker while still maintaining low overheads. As the

cohb
−→

relation is specified only on synchronization events within and
across processes (these are the relevant events), the EVC scheme
also needs to timestamp only such events. MC-CChecker adapted
the EVC rules of Fig. 1 [21] to MPI one-sided communication
system as follows [8,9].

R1 For two consecutive synchronization events, if exi
cohb
−→ ex+1

i ,
then tx+1

i = txi ∗ pi.

R2. If exi is fence (or barrier) and eyj is the corresponding
fence (or barrier), then a message m from exi to eyj is
timestamped tm = txi . On receipt at Pj, t

y
j = LCM(tm, tyj).

R3/R4/R5. If exi is post/ complete/ send and eyj is the corre-
sponding start/ wait/ receive, then a message m from
exi to eyj is timestamped tm = txi ; and then a local tick is
executed at Pi. On receipt at Pj, t

y
j = LCM(tm, tyj).

For simplicity, it is assumed that post
cohb
−→ start and complete

cohb
−→ wait. Only synchronization operations are timestamped as
the goal is to represent an area (termed as a separate region)
formed between two consecutive synchronization operations, in-
cluding the former but excluding the latter; the timestamps of
all events within the separate region equal the timestamp of the
representing (former) synchronization event’s timestamp.

Along the lines of the test in [21], exi
cohb
−→ eyj if and only if txi

divides tyj . The two events are concurrent under
cohb
−→ if and only

if the EVC timestamp of neither event divides that of the other.
MC-CChecker considers concurrent regions like MC-Checker, but
using EVC timestamped information built after analyzing the
trace files. MC-CChecker loads concurrent regions one by one
from trace files. Once MC-CChecker loads one concurrent re-
gion, it detects memory consistency errors within each epoch
similar to MC-Checker. However, for errors across processes, it
examines the concurrency of each pair of separate regions for
each concurrent region. If two separate regions are executed
concurrently, MC-CChecker checks the accessed memory of each
pair of operations belonging to the two separate regions to flag
memory consistency errors (if the two operations are concurrent
under

cohb
−→, conflict, and access the same location).

7.1.5. Performance benefits of MC-CChecker using EVC
Experiments [8,9] run on HPC platforms using three different

MPI applications showed that MC-CChecker used low processing
time and memory usage, when checked for up to 128 processes.
The scalability study compared MC-CChecker using EVC and using

traditional vector clocks, for systems ranging from 512 up to 8192
processes. The study showed that with EVC, execution time and
memory usage are linear (with respect to n), whereas with tradi-
tional vector clocks, both execution time and memory usage were
significantly higher and increased in much larger proportion.

7.1.6. Analysis and summing up proof of concept
In this case study, the relevant events were the synchro-

nization events; only these were timestamped by MC-CChecker
using EVCs. Further, each concurrent region contained a program
region from a different process. All the concurrent regions were
totally ordered, assuming a single MPI communicator. (Without
this assumption, the concurrent regions form a partial order.) The
boundary between two adjacent concurrent regions was imple-
mented by global synchronization calls such as MPI_Barrier
and MPI_Win_fence. The start of each concurrent region corre-
sponded to a global synchronization where there was no concur-
rency between events in the previous concurrent region and in
the following one. Each concurrent region was a unit of computa-
tion [1,19], and the boundary between two adjacent/consecutive
concurrent regions corresponded to a global transitless state.
MC-CChecker safely reset the EVC of each process to 1 at the
start of each concurrent region. Using the combination of these
two scalability techniques, viz., tick at relevant event, and reset
at the start of each concurrent region, the size of the EVCs at
the processes remained small and grew linearly (with n), as the
MC-CChecker scalability study showed.

7.2. Dynamic race detection in multi-threaded environments

7.2.1. Resettable Encoded Vector Clock (REVC)
Pozzetti proposed and formalized the concept of Resettable En-

coded Vector Clock (REVC), a logical clock implementation, which
builds on the EVC to tackle its very high growth rate (and,
under given conditions, place an upper bound on its storage
requirements,) while maintaining the desirable properties of the
EVC [32]. REVC can be applied in both shared memory systems
and message passing systems to achieve a consistent logical clock.
The advantage of REVC’s growth rate with respect to EVC’s growth
rate was shown through practical examples. Then, a practical
application of the REVC to the dynamic race detection prob-
lem in multi-threaded environments using the RoadRunner [12]
dynamic analysis framework was shown. The tool built was com-
pared to the currently existing vector clock based tool DJIT+ [31]
to show how the REVC can help in achieving higher performance
with respect to the vector clock.

The core idea of the REVC is that of performing a reset op-
eration at an EVC location every time such value overflows a
predefined number of bits at that location. The reset operation
brings the EVC value back to the initial one, allowing the system
to continue its operations until the following overflow event.
The REVC exploits asynchronous local resets at each process.
Each time a local reset occurs, a new local frame is generated.
Experiments using several benchmark programs from benchmark
suites [3,16] showed that the growth rate of the REVC is lin-
ear with respect to the total number of events in the system
(as opposed to the exponential growth rate of the EVC). The
REVC framework also provides optimizations that have a bounded
memory solution for causality analysis, i.e., the number of frames
stored is bounded. The formulation of the REVC contains several
intrinsic trade-offs between space, time, and accuracy that can
be easily tuned by enabling or disabling optimization techniques,
and choosing between bounded and unbounded implementa-
tions. These configurations provide the REVC with a much higher
adaptability to different scenarios, which cannot be found in other
vector clock implementations.

A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51 49

7.2.2. Evaluation
The evaluation of the REVC with respect to the traditional

vector clock was shown for the dynamic race detection prob-
lem in multi-threaded environments [32]. Specifically, a modified
version of the DJIT+ protocol that exploits the REVC instead of
the vector clock to track causality relations among events was
built. The solution was analyzed and evaluated in terms of per-
formance, by comparing it to the other tools that have already
been developed for dynamic race detection. The tool built was im-
plemented as a backend tool in the dynamic analysis framework
RoadRunner [12]. In order to be able to provide a fair evaluation of
proposed system with respect to the traditional DJIT+ protocol, an
implementation of DJIT+ on the same framework was also devel-
oped. FastTrack [11], on the other hand, was already implemented
on top of RoadRunner, as it has been studied and developed by
the same team of Flanagan and Freund.

The applications that were chosen for evaluation were a subset
of the applications that are found in the DaCapo Benchmarking
Suite [3] and the Java Grande Benchmarking Suite [16]. Those two
suites are composed of Java programs that have been designed
to emulate non-trivial loads and be representative of intensive
calculations. The applications that were chosen exhibit multi-
threaded behavior and very diverse semantics, in order to be
able to test the system on a relatively complete set of programs
ranging from a very high usage of synchronization to a high
parallelization of the workload. Results showed that the REVC-
based application is able to outperform by up to 1.6 times the
traditional vector clock based DJIT+ protocol, even if it is not able
to achieve performance that is comparable to the state-of-the-
art FastTrack protocol that employs scalar clocks. (FastTrack is an
optimization over DJIT+ that is able to exploit primarily a scalar
clock representation, switching to vector clock only in the few
instances in which the information stored by the scalar clock is
not enough.) However, this result is a promising achievement as
it allows us to show that the EVC can have practical applications,
which are competitive for scenarios in which no alternatives to a
traditional vector clock implementation are available.

7.2.3. Analysis and summing up proof of concept
This case study used the two scalability techniques: ticking

at relevant events, and resetting the EVC. The relevant events
were the synchronization events, viz., the lock, unlock, fork, and
join events, in the shared memory multi-threaded environment.
Resetting the EVC was done asynchronously and locally using the
formalism developed [32]. Using a combination of these two scal-
ability techniques, the size of the REVC remained small, and the
REVC-based application was able to outperform the traditional
vector clock based DJIT+ protocol by up to 1.6 times.

8. Related work

In the field of distributed systems, Raynal used prime numbers
as a tool for designing distributed algorithms [33]. Specifically,
he proposed a termination detection algorithm and a mutual
exclusion algorithm using the properties of prime numbers. Shen
et al. [37] previously used the encoding of vector clocks using
prime numbers to detect locality-aware conjunctive predicates in
large-scale systems.

Singhal and Kshemkalyani [38] proposed a mechanism to re-
duce the size of the vector timestamp piggybacked on messages
sent over FIFO channels. The key idea is to transmit only in-
cremental changes to previously transmitted timestamp compo-
nents. This message overhead reduction is achieved by having
each process maintain two arrays of size n integers to track the
incremental changes to be sent to each potential destination.
Meldal et al. [29] consider applications where it is important to

determine the causality between two messages sent to a common
destination process. In this context, they achieve a reduction in
the size of timestamps because they do not need to capture the
causality or the happened-before relation between all possible
pairs of events. Their algorithms exploit information about the
paths over which messages may be propagated.

Torres-Rojas and Ahamad [39] proposed a class of logical
clocks, called plausible clocks, that can be implemented with a
constant number of components. Under certain circumstances,
determined by factors such as the number of sites in the sys-
tem, communications patterns, size of the global history, level
of concurrency in the system, and frequency of communications,
these plausible clocks provide ordering accuracy close to that of
vector clocks. Several implementations of constant size plausible
clocks are presented. REV is a variant of vector clocks where R-
sized vectors are used. As R < n, several entries are shared
by more than one site of the distributed system and therefore
a mapping between sites and entries in the vector needs to be
defined. KLA is an extension of Lamport clocks where each site
keeps a standard Lamport clock together with a collection of
the maximum timestamp of any message received by itself and
by the K − 2 previous sites that directly or indirectly have had
communications with this site. The authors also develop rules to
compose known plausible clocks to produce more accurate clocks.
The accuracy levels of the proposed instances of constant-sized
plausible clocks are tested using simulations, and shown to be rel-
atively high. However, false positives occur (i.e., the mechanism
sometimes orders events that are mutually concurrent) even if
there are no false negatives (i.e., the mechanism always orders
events that are related by causality).

Ward and Taylor [41] proposed a timestamping mechanism
that is defined assuming the processes are organized as a hier-
archy of clusters. They maintain two types of timestamps per
event: one, short internal timestamps for (send) events that occur
from within the same cluster, and longer external timestamps for
(send) events that occur from outside the cluster. The latter type
of timestamps is a recognition of the fact that events within a
cluster can only be causally dependent on events outside the clus-
ter through receive events from send events that occurred out-
side the cluster. Such receive events are called ‘‘cluster-receive’’
events. In the hierarchical scheme, the key idea is to maintain
a set of cluster-receive events that have timestamps only to
the next level in the hierarchy. This allows a trade-off between
the size of the cluster, the number of cluster-receives, and the
size of the cluster-receive timestamp. This scheme uses static,
pre-determined clusters. An extension algorithm that allows a dy-
namic, self-organizing selection of clusters is then presented [42].

Kulkarni et al. [24] proposed a clock scheme that combines
physical clocks (such as NTP) with logical clocks. Their clock
scheme deals only with weak causality, i.e., e → f ⇒ C(e) < C(f).
Their scheme is meant for applications where only (weak) causal
relations in the recent immediate past are relevant, and assumes
that (weak) causal relations beyond a configurable parameter ϵ

are already reflected.
Kulkarni and Vaidya [25] reduced the size of the vector times-

tamp by exploiting the underlying logical topology (assuming,
not all processes communicate to each other) and deferring the
assignment of a timestamp to an event for a suitably determined
duration of time. They showed that for a graph with vertex cover
VC , it is possible to assign timestamps containing only 2|VC | + 2
integer elements. In particular, assuming α events per process,
they showed that the size of a timestamp for any event is at most
log2 n + (2|VC | + 1) log2(α + 1) bits.

50 A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51

9. Conclusions

We proposed the encoding of the vector clock using prime
numbers, to use a single number to represent vector time. We
gave the operations on the EVC. To manipulate the EVC, every
process only needs to know its own prime, and not the primes
of other processes. Further, to compute the equivalent of the
maximum of two vector clocks, a process needs to find the
largest common multiple of their EVCs, which does not require
factorization. We also showed how to timestamp global states
using EVC, and various operations – namely, common causal
past computation, union, intersection, and comparison – on these
global states using EVC.

A serious drawback of EVCs is that they grow very fast and
overflow, i.e., exceeding the space used by traditional vector
clocks soon occurs. We examined using a theoretical analysis and
using simulations how fast the EVC grows. We then proposed
four scalability approaches for the EVC to deal with the high
growth rate of the EVC. These included (i) ticking the clock only
at application-relevant events and only at processes where such
events occur, and (ii) resetting the EVC throughout the system at a
global synchronization or at a transitless global state, or resetting
the EVC locally and independently (the REVC), when it overflows
at some process. A judicious use of these scalability approaches
can guarantee that the size of the EVC never exceeds the size
of the traditional vector clock. We considered two case studies
of using EVC. The first case study was for detecting memory
consistency errors in MPI applications that use one-sided com-
munication. Using the combination of two scalability approaches,
viz., ticking at relevant event, and resetting at the start of each
concurrent region, the size of the EVCs at the processes remained
small, grew linearly, and was significantly much less than that
using traditional vector clocks. The second case study was for
dynamic race detection in multi-threaded environments. Using
the combination of two scalability approaches, viz., ticking at
relevant event, and resetting the EVC locally and asynchronously
when an overflow occurred locally, the size of the EVCs at the
processes remained small, and the time overhead was less than
that using traditional vector clocks of the DJIT+ tool.

In summary, while EVC is mathematically elegant, it does not
appear to offer a general purpose practical replacement of vector
clocks due to its very high growth rate. However in conjunction
with the scalability techniques, the EVC shows much potential.
There are application areas, such as those discussed in the case
studies, where the EVC offers a definite practical advantage. These
results show how the EVC is not just a theoretical concept, but it
is applicable to practical problems and can compete in terms of
both space and time requirements with other known protocols. In
conjunction with resetting, the EVC is seen to be designed with
scalability and adaptability to different scenarios, which cannot
be found in other vector clock implementations. We believe these
achievements are promising and can be the starting point for a
number of developments that can help introduce new theoretical
and practical tools to more efficiently tackle several problems in
distributed systems, that require causality analysis as part of their
solutions.

As future work, it is a challenge to identify other such ap-
plication areas where EVC outperforms vector clock. The EVC
timestamps in the first case study were assigned after analyz-
ing the program traces. It would be interesting to determine
whether they can be assigned in an on-line manner efficiently.
Another direction for further work is to examine the length of
the causal chain of relevant events/messages in social platforms
(e.g., Twitter and Facebook) where the number of users is poten-
tially large. This could provide evidence as to whether or not EVCs
are advantageous on social platforms.

Declaration of competing interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.jpdc.2020.02.008.

CRediT authorship contribution statement

Ajay D. Kshemkalyani: Conceptualization, Formal analysis,
Investigation, Methodology, Supervision. Min Shen: Conceptual-
ization. Bhargav Voleti: Software, Validation, Visualization.

Acknowledgments

We thank Bhaskar Dasgupta for suggesting the alternate
bound on computing the GCD of n numbers in the unbounded
storage case. Thanks also to Rahul Sathe for his help with the
simulations.

References

[1] M. Ahuja, A.D. Kshemkalyani, T. Carlson, A basic unit of computation
in distributed systems, in: 10th International Conference on Distributed
Computing Systems, ICDCS 1990, May 28–June 1, 1990, Paris, France, 1990,
pp. 12–19, http://dx.doi.org/10.1109/ICDCS.1990.89327.

[2] A. Arora, S.S. Kulkarni, M. Demirbas, Resettable vector clocks, J. Parallel
Distrib. Comput. 66 (2) (2006) 221–237, http://dx.doi.org/10.1016/j.jpdc.
2005.07.001.

[3] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khang, K.S. McKinley, R.
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S.Z. Guyer, M. Hirzel, A.
Hosking, M. Jump, H. Lee, J.E.B. Moss, A. Phansalkar, D. Stefanović, T.
VanDrunen, D. von Dincklage, B. Wiedermann, The dacapo benchmarks:
Java benchmarking development and analysis, SIGPLAN Not. 41 (10) (2006)
169–190, http://dx.doi.org/10.1145/1167515.1167488, URL http://doi.acm.
org/10.1145/1167515.1167488.

[4] K.M. Chandy, L. Lamport, Distributed snapshots: Determining global states
of distributed systems, ACM Trans. Comput. Syst. 3 (1) (1985) 63–75,
http://dx.doi.org/10.1145/214451.214456, URL http://doi.acm.org/10.1145/
214451.214456.

[5] B. Charron-Bost, Concerning the size of logical clocks in distributed
systems, Inf. Process. Lett. 39 (1) (1991) 11–16, http://dx.doi.org/10.1016/
0020-0190(91)90055-M.

[6] Z. Chen, J. Dinan, Z. Tang, P. Balaji, H. Zhong, J. Wei, T. Huang, F.
Qin, MC-Checker: Detecting memory consistency errors in MPI one-sided
applications, in: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC 2014, New Orleans, LA, USA,
November 16–21, 2014, 2014, pp. 499–510, http://dx.doi.org/10.1109/SC.
2014.46.

[7] R. Crandall, C. Pomerance, Prime Numbers: A Computational Perspective,
first ed., Springer, New York, NY, USA, 2001.

[8] T.-D. Diep, K. Fürlinger, N. Thoai, MC-CChecker: A clock-based approach
to detect memory consistency errors in MPI one-sided applications, in:
Proceedings of the 25th European MPI Users’ Group Meeting, EuroMPI’18,
ACM, New York, NY, USA, 2018, pp. 9:1–9:11, http://dx.doi.org/10.1145/
3236367.3236369, URL http://doi.acm.org/10.1145/3236367.3236369.

[9] T. Diep, K.T. Pham, K. Fürlinger, N. Thoai, A time-stamping system to detect
memory consistency errors in MPI one-sided applications, Parallel Comput.
86 (2019) 36–44, http://dx.doi.org/10.1016/j.parco.2019.04.013.

[10] C.J. Fidge, Logical time in distributed computing systems, IEEE Comput. 24
(8) (1991) 28–33, http://dx.doi.org/10.1109/2.84874.

[11] C. Flanagan, S.N. Freund, Fasttrack: efficient and precise dynamic race
detection, in: Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2009, Dublin,
Ireland, June 15–21, 2009, 2009, pp. 121–133, http://dx.doi.org/10.1145/
1542476.1542490, URL http://doi.acm.org/10.1145/1542476.1542490.

[12] C. Flanagan, S.N. Freund, The roadrunner dynamic analysis framework for
concurrent programs, in: Proceedings of the 9th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, ACM,
New York, NY, USA, 2010, pp. 1–8, http://dx.doi.org/10.1145/1806672.
1806674, URL http://doi.acm.org/10.1145/1806672.1806674.

[13] H. Grossman, On the number of divisions in finding a G.C.D., Amer. Math.
Monthly 31 (9) (1924) 443.

[14] T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, K.D.
Underwood, Remote memory access programming in MPI-3, TOPC 2 (2)
(2015) 9:1–9:26, http://dx.doi.org/10.1145/2780584, URL http://doi.acm.
org/10.1145/2780584.

https://doi.org/10.1016/j.jpdc.2020.02.008
http://dx.doi.org/10.1109/ICDCS.1990.89327
http://dx.doi.org/10.1016/j.jpdc.2005.07.001
http://dx.doi.org/10.1016/j.jpdc.2005.07.001
http://dx.doi.org/10.1016/j.jpdc.2005.07.001
http://dx.doi.org/10.1145/1167515.1167488
http://doi.acm.org/10.1145/1167515.1167488
http://doi.acm.org/10.1145/1167515.1167488
http://doi.acm.org/10.1145/1167515.1167488
http://dx.doi.org/10.1145/214451.214456
http://doi.acm.org/10.1145/214451.214456
http://doi.acm.org/10.1145/214451.214456
http://doi.acm.org/10.1145/214451.214456
http://dx.doi.org/10.1016/0020-0190(91)90055-M
http://dx.doi.org/10.1016/0020-0190(91)90055-M
http://dx.doi.org/10.1016/0020-0190(91)90055-M
http://dx.doi.org/10.1109/SC.2014.46
http://dx.doi.org/10.1109/SC.2014.46
http://dx.doi.org/10.1109/SC.2014.46
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb7
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb7
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb7
http://dx.doi.org/10.1145/3236367.3236369
http://dx.doi.org/10.1145/3236367.3236369
http://dx.doi.org/10.1145/3236367.3236369
http://doi.acm.org/10.1145/3236367.3236369
http://dx.doi.org/10.1016/j.parco.2019.04.013
http://dx.doi.org/10.1109/2.84874
http://dx.doi.org/10.1145/1542476.1542490
http://dx.doi.org/10.1145/1542476.1542490
http://dx.doi.org/10.1145/1542476.1542490
http://doi.acm.org/10.1145/1542476.1542490
http://dx.doi.org/10.1145/1806672.1806674
http://dx.doi.org/10.1145/1806672.1806674
http://dx.doi.org/10.1145/1806672.1806674
http://doi.acm.org/10.1145/1806672.1806674
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb13
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb13
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb13
http://dx.doi.org/10.1145/2780584
http://doi.acm.org/10.1145/2780584
http://doi.acm.org/10.1145/2780584
http://doi.acm.org/10.1145/2780584

A.D. Kshemkalyani, M. Shen and B. Voleti / Journal of Parallel and Distributed Computing 140 (2020) 37–51 51

[15] R. Honsberger, Mathematical Gems II, The Mathematical Association of
America, 1976.

[16] Java Grande Forum, Java Grande benchmarking suite, 2008, http://www.
javagrande.org/, [Online]. (Accessed 31 July 2019).

[17] D.E. Knuth, The Art of Computer Programming, Vol. 2, third ed., in:
Seminumerical Algorithms, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[18] A.D. Kshemkalyani, Causality and atomicity in distributed computa-
tions, Distrib. Comput. 11 (4) (1998) 169–189, http://dx.doi.org/10.1007/
s004460050048.

[19] A.D. Kshemkalyani, A framework for viewing atomic events in distributed
computations, Theoret. Comput. Sci. 196 (1–2) (1998) 45–70, http://dx.doi.
org/10.1016/S0304-3975(97)00195-3.

[20] A.D. Kshemkalyani, The power of logical clock abstractions, Distrib. Com-
put. 17 (2) (2004) 131–150, http://dx.doi.org/10.1007/s00446-003-0105-
9.

[21] A.D. Kshemkalyani, A.A. Khokhar, M. Shen, Encoded vector clock: Using
primes to characterize causality in distributed systems, in: Proceed-
ings of the 19th International Conference on Distributed Computing
and Networking, ICDCN 2018, Varanasi, India, January 4–7, 2018, 2018,
pp. 12:1–12:8, http://dx.doi.org/10.1145/3154273.3154305, URL http://doi.
acm.org/10.1145/3154273.3154305.

[22] A.D. Kshemkalyani, M. Singhal, Distributed Computing: Principles,
Algorithms, and Systems, Cambridge University Press, 2011.

[23] A.D. Kshemkalyani, B. Voleti, On the growth of the prime numbers based
encoded vector clock, in: Distributed Computing and Internet Technology
- 15th International Conference, ICDCIT 2019, Bhubaneswar, India, January
10–13, 2019, Proceedings, 2019, pp. 169–184, http://dx.doi.org/10.1007/
978-3-030-05366-6_14.

[24] S.S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, M. Leone, Logical physical
clocks, in: Principles of Distributed Systems - 18th International Con-
ference, OPODIS 2014, Cortina D’Ampezzo, Italy, December 16–19, 2014.
Proceedings, 2014, pp. 17–32, http://dx.doi.org/10.1007/978-3-319-14472-
6_2.

[25] S.S. Kulkarni, N.H. Vaidya, Effectiveness of delaying timestamp computa-
tion, in: Proceedings of the ACM Symposium on Principles of Distributed
Computing, PODC 2017, Washington, DC, USA, July 25–27, 2017, 2017,
pp. 263–272, http://dx.doi.org/10.1145/3087801.3087818, URL http://doi.
acm.org/10.1145/3087801.3087818.

[26] G. Lame, Note sur la limite du nombre des divisions dans la recherche du
plus grand commun diviseur entre deux nombres entiers, C. R. Acad. Sci.
19 (1844) 867–870.

[27] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Commun. ACM 21 (7) (1978) 558–565.

[28] F. Mattern, Virtual time and global states of distributed systems, in:
Proceedings of the Parallel and Distributed Algorithms Conference, 1988,
pp. 215–226.

[29] S. Meldal, S. Sankar, J. Vera, Exploiting locality in maintaining potential
causality, in: Proceedings of the Tenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’91, ACM, New York, NY, USA,
1991, pp. 231–239, http://dx.doi.org/10.1145/112600.112620, URL http:
//doi.acm.org/10.1145/112600.112620.

[30] N. Moller, On Schonhage’s algorithm and subquadratic integer gcd
computation, Math. Comp. 77 (261) (2008) 589–607.

[31] E. Pozniansky, A. Schuster, MultiRace: efficient on-the-fly data race detec-
tion in multithreaded C++ programs, Concurr. Comput.: Pract. Exper. 19
(3) (2007) 327–340, http://dx.doi.org/10.1002/cpe.1064.

[32] T. Pozzetti, Resettable Encoded Vector Clock for Causality Analysis with an
Application to Dynamic Race Detection (M.S. thesis), University of Illinois
at Chicago, 2019.

[33] M. Raynal, Prime numbers as a tool to design distributed algorithms,
Inf. Process. Lett. 33 (1) (1989) 53–58, http://dx.doi.org/10.1016/0020-
0190(89)90187-7.

[34] G.G. RichardI.I.I., Efficient vector time with dynamic process creation and
termination, J. Parallel Distrib. Comput. 55 (1) (1998) 109–120, http:
//dx.doi.org/10.1006/jpdc.1998.1493.

[35] H. Roh, M. Jeon, E. Seo, J. Kim, J. Lee, Log’ version vector: Logging version
vectors concisely in dynamic replication, Inf. Process. Lett. 110 (14–15)
(2010) 614–620, http://dx.doi.org/10.1016/j.ipl.2010.04.026.

[36] R. Schwarz, F. Mattern, Detecting causal relationships in distributed com-
putations: In search of the holy grail, Distrib. Comput. 7 (3) (1994)
149–174, http://dx.doi.org/10.1007/BF02277859.

[37] M. Shen, A.D. Kshemkalyani, A.A. Khokhar, Detecting unstable conjunctive
locality-aware predicates in large-scale systems, in: IEEE 12th International
Symposium on Parallel and Distributed Computing, ISPDC 2013, Bucharest,
Romania, June 27–30, 2013, 2013, pp. 127–134, http://dx.doi.org/10.1109/
ISPDC.2013.25.

[38] M. Singhal, A.D. Kshemkalyani, An efficient implementation of vector
clocks, Inf. Process. Lett. 43 (1) (1992) 47–52, http://dx.doi.org/10.1016/
0020-0190(92)90028-T.

[39] F.J. Torres-Rojas, M. Ahamad, Plausible clocks: Constant size logical clocks
for distributed systems, Distrib. Comput. 12 (4) (1999) 179–195, http:
//dx.doi.org/10.1007/s004460050065.

[40] X. Wang, J. Mayo, W. Gao, J. Slusser, An efficient implementation of vector
clocks in dynamic systems, in: Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications, PDPTA
2006, Las Vegas, Nevada, USA, June 26–29, 2006, Vol. 2, 2006, pp. 593–599.

[41] P.A.S. Ward, D.J. Taylor, A hierarchical cluster algorithm for dynamic, cen-
tralized timestamps, in: Proceedings of the 21st International Conference
on Distributed Computing Systems, ICDCS 2001, Phoenix, Arizona, USA,
April 16–19, 2001, 2001, pp. 585–593, http://dx.doi.org/10.1109/ICDSC.
2001.918989.

[42] P.A.S. Ward, D.J. Taylor, Self-organizing hierarchical cluster timestamps, in:
Euro-Par 2001: Parallel Processing, 7th International Euro-Par Conference
Manchester, UK August 28–31, 2001, Proceedings, 2001, pp. 46–56, http:
//dx.doi.org/10.1007/3-540-44681-8_8.

[43] G.T. Wuu, A.J. Bernstein, Efficient solutions to the replicated log and
dictionary problems, in: Proceedings of the Third Annual ACM Symposium
on Principles of Distributed Computing, PODC ’84, ACM, New York, NY,
USA, 1984, pp. 233–242, http://dx.doi.org/10.1145/800222.806750, URL
http://doi.acm.org/10.1145/800222.806750.

[44] L. Yen, T. Huang, Resetting vector clocks in distributed systems, J. Parallel
Distrib. Comput. 43 (1) (1997) 15–20, http://dx.doi.org/10.1006/jpdc.1997.
1330.

Ajay D. Kshemkalyani received the B.Tech. degree
in computer science and engineering from the Indian
Institute of Technology, Bombay, in 1987, and the
MS and Ph.D. degrees in computer and information
science from The Ohio State University in 1988 and
1991, respectively. He spent six years at IBM Research
Triangle Park working on various aspects of computer
networks, before joining academia. He is currently a
professor in the Department of Computer Science at the
University of Illinois at Chicago. His research interests
are in distributed computing, distributed algorithms,

computer networks, and concurrent systems. In 1999, he received the US
National Science Foundation Career Award. He has served on the editorial board
of the Elsevier journal Computer Networks, and the IEEE Transactions on Parallel
and Distributed Systems. He has coauthored a book entitled Distributed Computing:
Principles, Algorithms, and Systems (Cambridge University Press, 2008). He is a
distinguished scientist of the ACM and a senior member of the IEEE.

Min Shen received the B.S. degree in computer sci-
ence from Nanjing University in 2009, and the Ph.D.
degree in computer science from University of Illinois
at Chicago in 2014. His research interests include dis-
tributed algorithms, predicate detection and wireless
sensor networks. He is currently working at LinkedIn
on various aspects of Hadoop ecosystem.

Bhargav Voleti received his M.S. in computer science
from the University of Illinois at Chicago in 2019. His
research interests include distributed systems, operat-
ing systems and high-performance concurrent systems.
He is currently working at Amazon on scalable action
frameworks.

http://refhub.elsevier.com/S0743-7315(19)30493-9/sb15
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb15
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb15
http://www.javagrande.org/
http://www.javagrande.org/
http://www.javagrande.org/
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb17
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb17
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb17
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb17
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb17
http://dx.doi.org/10.1007/s004460050048
http://dx.doi.org/10.1007/s004460050048
http://dx.doi.org/10.1007/s004460050048
http://dx.doi.org/10.1016/S0304-3975(97)00195-3
http://dx.doi.org/10.1016/S0304-3975(97)00195-3
http://dx.doi.org/10.1016/S0304-3975(97)00195-3
http://dx.doi.org/10.1007/s00446-003-0105-9
http://dx.doi.org/10.1007/s00446-003-0105-9
http://dx.doi.org/10.1007/s00446-003-0105-9
http://dx.doi.org/10.1145/3154273.3154305
http://doi.acm.org/10.1145/3154273.3154305
http://doi.acm.org/10.1145/3154273.3154305
http://doi.acm.org/10.1145/3154273.3154305
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb22
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb22
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb22
http://dx.doi.org/10.1007/978-3-030-05366-6_14
http://dx.doi.org/10.1007/978-3-030-05366-6_14
http://dx.doi.org/10.1007/978-3-030-05366-6_14
http://dx.doi.org/10.1007/978-3-319-14472-6_2
http://dx.doi.org/10.1007/978-3-319-14472-6_2
http://dx.doi.org/10.1007/978-3-319-14472-6_2
http://dx.doi.org/10.1145/3087801.3087818
http://doi.acm.org/10.1145/3087801.3087818
http://doi.acm.org/10.1145/3087801.3087818
http://doi.acm.org/10.1145/3087801.3087818
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb26
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb26
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb26
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb26
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb26
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb27
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb27
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb27
http://dx.doi.org/10.1145/112600.112620
http://doi.acm.org/10.1145/112600.112620
http://doi.acm.org/10.1145/112600.112620
http://doi.acm.org/10.1145/112600.112620
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb30
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb30
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb30
http://dx.doi.org/10.1002/cpe.1064
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb32
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb32
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb32
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb32
http://refhub.elsevier.com/S0743-7315(19)30493-9/sb32
http://dx.doi.org/10.1016/0020-0190(89)90187-7
http://dx.doi.org/10.1016/0020-0190(89)90187-7
http://dx.doi.org/10.1016/0020-0190(89)90187-7
http://dx.doi.org/10.1006/jpdc.1998.1493
http://dx.doi.org/10.1006/jpdc.1998.1493
http://dx.doi.org/10.1006/jpdc.1998.1493
http://dx.doi.org/10.1016/j.ipl.2010.04.026
http://dx.doi.org/10.1007/BF02277859
http://dx.doi.org/10.1109/ISPDC.2013.25
http://dx.doi.org/10.1109/ISPDC.2013.25
http://dx.doi.org/10.1109/ISPDC.2013.25
http://dx.doi.org/10.1016/0020-0190(92)90028-T
http://dx.doi.org/10.1016/0020-0190(92)90028-T
http://dx.doi.org/10.1016/0020-0190(92)90028-T
http://dx.doi.org/10.1007/s004460050065
http://dx.doi.org/10.1007/s004460050065
http://dx.doi.org/10.1007/s004460050065
http://dx.doi.org/10.1109/ICDSC.2001.918989
http://dx.doi.org/10.1109/ICDSC.2001.918989
http://dx.doi.org/10.1109/ICDSC.2001.918989
http://dx.doi.org/10.1007/3-540-44681-8_8
http://dx.doi.org/10.1007/3-540-44681-8_8
http://dx.doi.org/10.1007/3-540-44681-8_8
http://dx.doi.org/10.1145/800222.806750
http://doi.acm.org/10.1145/800222.806750
http://dx.doi.org/10.1006/jpdc.1997.1330
http://dx.doi.org/10.1006/jpdc.1997.1330
http://dx.doi.org/10.1006/jpdc.1997.1330

	Prime clock: Encoded vector clock to characterize causality in distributed systems
	Introduction
	System model
	Encoded vector clock
	Encoded vector clock operations
	Complexity
	Local tick
	Merge or computing LCM
	Compare
	Storage

	Resilience to churn

	EVC timestamps of cuts
	Cuts
	EVC timestamp of a cut
	EVC timestamp of cut representing common past
	Other operations on cuts

	Simulation results
	Number of events until EVC size becomes 32n as a function of n
	Size of EVC as a function of number of events
	Number of events until EVC size becomes 32n as a function of ratio of event types

	Scalability
	Relevant events
	Detection regions
	Resetting EVC
	Using logarithms of EVC

	Case studies
	Detecting memory consistency errors in MPI one-sided applications
	MPI one-sided communication
	Memory consistency errors in MPI one-sided communication
	The MC-Checker tool
	The MC-CChecker tool using EVC
	Performance benefits of MC-CChecker using EVC
	Analysis and summing up proof of concept

	Dynamic race detection in multi-threaded environments
	Resettable Encoded Vector Clock (REVC)
	Evaluation
	Analysis and summing up proof of concept

	Related work
	Conclusions
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	References

