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The dispersion problem on graphs asks k ≤ n robots placed initially arbitrarily on the nodes of an n-
node anonymous graph to reposition autonomously to reach a configuration in which each robot is 
on a distinct node of the graph. This problem is of significant interest due to its relationship to other 
fundamental robot coordination problems, such as exploration, scattering, load balancing, and relocation 
of self-driven electric cars (robots) to recharge stations (nodes). In this paper, we consider dispersion 
using the global communication model where a robot can communicate with any other robot in the graph 
(but the graph is unknown to robots). We provide two novel deterministic algorithms for arbitrary graphs 
in a synchronous setting where all robots perform their actions in every time step. Our first algorithm is 
based on a DFS traversal and guarantees (i) O (k�) steps runtime using O (log(k + �))) bits at each robot 
and (ii) O (min(m, k�)) steps runtime using O (� + log k) bits at each robot, where m is the number of 
edges and � is the maximum degree of the graph. The second algorithm is based on a BFS traversal 
and guarantees O ((D + k)�(D + �)) steps runtime using O (log D + � log k)) bits at each robot, where 
D is the diameter of the graph. Our results complement the existing results established using the local 
communication model where a robot can communication only with other robots present at the same 
node.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The dispersion of autonomous mobile robots to spread them out evenly in a region is a problem of significant interest in distributed 
robotics, e.g., see [16,17]. Recently, this problem has been formulated by Augustine and Moses Jr. [1] in the context of graphs. They defined 
the problem as follows: Given any arbitrary initial configuration of k ≤ n robots positioned on the nodes of an n-node anonymous graph, 
the robots reposition autonomously to reach a configuration where each robot is positioned on a distinct node of the graph (which we 
call the Dispersion problem). This problem has many practical applications, for example, in relocating self-driven electric cars (robots) 
to recharge stations (nodes), assuming that the cars have smart devices to communicate with each other to find a free/empty charging 
station [1,19]. This problem is also important due to its relationship to many other well-studied autonomous robot coordination problems, 
such as exploration, scattering, load balancing, covering, and self-deployment [1,19]. One of the key aspects of mobile-robot research is to 
understand how to use the resource-limited robots to accomplish some large task in a distributed manner [12,13].

In this paper, we continue our study on the trade-off between memory requirement and time to solve Dispersion on graphs. We 
consider for the very first time the problem of dispersion using the global communication model where a robot can communicate with any 
other robot in the system (but the graph structure is not known to robots). The previous work [1,19,20] (details in Table 1 and related 
work) on Dispersion considered the local communication model where a robot can only communicate with other robots that are present 
at the same node. Although the global communication model seems stronger than the local model in the first sight, many challenges that 
occur using the local model also arise using the global model. For example, two robots in two neighboring nodes of G cannot figure out 
just by communication which edge of the nodes leads to each other. Therefore, the robots still need to explore through the edges as using 
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Table 1
The results on Dispersion for k ≤ n robots on n-node arbitrary graphs with m edges, D diameter, 
and � maximum degree.

Algorithm Memory/robot 
(in bits)

Time (in 
rounds)

Comm. Model/ 
Initial Conf.

Lower bound �(log k) �(k) local
[1]1 O (logn) O (mn) local/general
[19] O (k log�) O (m) local/general
[19] O (D log�) O (�D ) local/general
[19] O (log(k + �)) O (mk) local/general
[20] O (logn) O (min(m,k�) · log k) local/general

Lower bound 1 �(log k) �(k) global
Lower bound 2 (for trees) �(log k) �(D2) global
Thm. 1.1(a) O (log(k + �)) O (k�) global/general
Thm. 1.1(b) O (� + log k) O (min(m,k�)) global/general
Thm. 1.2(a) O (log D + � log k) O (D�(D + �)) local/rooted
Thm. 1.2(b) O (log D + � log k) O ((D + k)�(D + �)) global/general

1 The results in [1] are only for k = n.

the local model. The global communication model has been considered heavily in the past in distributed robotics, e.g., see [8,15,25], in 
addition to the local model, and our goal is to explore how much global communication helps for Dispersion in graphs compared to the 
local model.

In this paper, we provide two new deterministic algorithms for Dispersion using the global communication model for arbitrary graphs. 
Our first algorithm using a depth first search (DFS) traversal performs better than the state-of-the-art using the local communication 
model by a O (log k) factor; see Table 1. The second algorithm is the first algorithm designed for Dispersion using a breadth first search
(BFS) traversal and provides different time-memory trade-offs. We also complement our algorithms by some lower bounds on time and 
memory requirement using the global model.

Overview of the Model and Results. We consider the same model (with the only difference as described in the next paragraph) as in 
Augustine and Moses Jr. [1], Kshemkalyani and Ali [19], and Kshemkalyani et al. [20] where a system of k ≤ n robots is operating on an 
n-node graph G . G is assumed to be a connected, undirected graph with m edges, diameter D , and maximum degree �. In addition, G
is anonymous, i.e., nodes have no unique IDs and hence are indistinguishable but the ports (leading to incident edges) at each node have 
unique labels from [0, δ − 1], where δ is the degree of that node. The robots are distinguishable, i.e., they have unique IDs in the range 
[1, k]. The robot activation setting is synchronous – all robots are activated in a round and they perform their operations simultaneously in 
synchronized rounds. Runtime is measured in rounds (or steps).

The only difference with the model in [1,19,20] is they assume the local communication model – the robots in the system can commu-
nicate with each other only when they are at the same node of G , whereas we consider in this paper the global communication model – 
the robots in the system can communicate with each other irrespective of their positions. Despite this capability, robots are still oblivious 
to G and they will not know the positions of the robots that they are communicating with, except of those they are colocated with.

We establish the following two results for Dispersion in an arbitrary graph. The second result differentiates the initial configurations 
of k ≤ n robots on G . We call the configuration rooted if all k ≤ n robots are on a single node of G in the initial configuration. We call the 
initial configuration general, otherwise.

Theorem 1.1. Given any initial configuration of k ≤ n mobile robots in an arbitrary, anonymous n-node graph G having m edges and maximum 
degree �:

a. Dispersion can be solved in O (k�) time with O (log(k + �)) bits at each robot using the global communication model.
b. Dispersion can be solved in O (min(m, k�)) time with O (� + log k) bits at each robot using the global communication model.

Theorem 1.2. Given k ≤ n mobile robots in an arbitrary, anonymous n-node graph G having m edges, diameter D, and maximum degree �:

a. For the rooted initial configurations, Dispersion can be solved in O (D�(D + �)) time with O (log D + � log k) bits at each robot using the local 
communication model.

b. For the general initial configurations, Dispersion can be solved in O ((D + k)�(D + �)) time with O (log D + � log k) bits at each robot using 
the global communication model.

Theorem 1.1 performs better than the O (min(m, k�) · log k) time best previously known algorithm [20] using the local communication 
model by a factor of O (log k) with an additional O (�) bits (see Table 1). We also prove a time lower bound of �(k) and memory lower 
bound of �(log k) bits at each robot for Dispersion on graphs using the global communication model. The implication is that, for constant-
degree arbitrary graphs (i.e., when � = O (1)), Theorem 1.1 is asymptotically optimal with respect to both memory and time, the first such 
result for arbitrary graphs. Theorem 1.2 gives significantly better run-time than the O (�D) algorithm [19] using the local communication 
model. We also prove a time lower bound of �(D2) for Dispersion on trees using the global communication model. This implies that the 
time in Theorem 1.2(a) is asymptotically optimal for constant-degree arbitrary graphs.

Although Theorem 1.2(b) has higher time and space complexity than Theorem 1.1, the algorithm for Theorem 1.2(b) is significant 
because: (i) it is the first algorithm that is based on a BFS approach (rather than DFS) to solve Dispersion and illustrates a new technique, 
(ii) it performs better than the O (�D) algorithm [19] using the local communication model, and (iii) it directly contributes to solving the 
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problem of merging concurrently initiated BFS tree constructions and traversals in a distributed setting, which is a very broad problem 
with many applications.

Challenges and Techniques. The well-known DFS traversal approach [5] was used in the previous results on Dispersion [1,19,20]. If all k
robots are positioned initially on a single node of G , then the DFS traversal finishes in min(4m − 2n + 2, 4k�) rounds solving Dispersion. 
If k robots are initially on k different nodes of G , then Dispersion is solved in a single round. However, if not all of them are on a single 
node, then the robots on nodes with multiple robots need to reposition to reach to free nodes and settle. The natural approach is to run 
DFS traversals in parallel to minimize time.

The challenge arises when two or more DFS traversals meet before all robots settle. When this happens, the robots that have not 
settled yet need to find free nodes. For this, they may need to re-traverse the already traversed part of the graph by the DFS traversal. 
Kshemkalyani et al. [20] designed a smarter way to synchronize the parallel DFS traversals so that the total time increases only by a 
factor of log k to min(4m − 2n + 2, 4k�) · log k rounds, in the worst-case, using the local communication model. However, removing the 
O (log k) factor seemed difficult due to the means of synchronization. We develop in this paper an approach (Algorithm 2) that allows to 
synchronize DFS traversals without re-traversing the already traversed part of the graph giving us min(4m − 2n + 2, 4k�) rounds, as if 
running DFS starting from all robots in the same node, using the global communication model. This gives an additive, not multiplicative, 
cost in synchronizing different DFS traversals. This is possible due to the information that can be passed to the robots to take their 
next actions, even if they do not know their positions on G . This passing of information among remotely located robots has not been 
possible using the local communication model in the literature, and does not seem to be possible because of the very nature of the 
local communication model. The best mechanism for synchronization in the local communication model incurred an O (log k) factor to 
synchronize O (k) trees that might be formed in the dispersion process. Our time bound for the global communication model becomes 
O (k) for constant-degree arbitrary graphs, which is asymptotically time-optimal. Our proposed technique in Algorithm 2 can be generalized 
and applied to any problem which requires merging concurrently-initiated and concurrently-growing DFS tree components into a single 
DFS component at an additive cost.

Despite efficiency in merging the DFS traversal trees due to global communication, the time bound of min(4m − 2n + 2, 4k�) seems to 
be inherent in algorithms based on a DFS traversal [5,19], and even if using the global model. A natural way to circumvent this limitation 
is to run BFS traversal to reach many nodes at once. A naive approach of running BFS gives exponential O (�D ) runtime. Here we design a 
smarter way (Algorithms 3 and 4) of performing BFS so that we can achieve dispersion in arbitrary graphs in O (D�(D + �)) time in the 
rooted initial configuration. The general initial configuration introduces a (D + k) factor instead of the O (D) factor in the time bound. Our 
proposed technique in Algorithms 3 and 4 can be generalized and applied to any problem which requires merging concurrently initiated 
and concurrently growing BFS tree components into a single BFS component.

Related Work. There are three previous studies focusing on Dispersion using the local communication model. Augustine and Moses Jr. [1]
studied Dispersion assuming k = n. They proved a memory lower bound of �(log n) bits at each robot and a time lower bound of �(D)

(�(n) in arbitrary graphs) for any deterministic algorithm in any graph. They then provided deterministic algorithms using O (log n) bits 
at each robot to solve Dispersion on lines, rings, and trees in O (n) time. For arbitrary graphs, they provided two algorithms, one using 
O (log n) bits at each robot with O (mn) time and another using O (n log n) bits at each robot with O (m) time.

Kshemkalyani and Ali [19] provided an �(k) time lower bound for arbitrary graphs for k ≤ n. They then provided three deterministic 
algorithms for Dispersion in arbitrary graphs: (i) The first algorithm using O (k log �) bits at each robot with O (m) time, (ii) The second 
algorithm using O (D log �) bits at each robot with O (�D) time, and (iii) The third algorithm using O (log(k + �)) bits at each robot with 
O (mk) time. Recently, Kshemkalyani et al. [20] provided an algorithm for arbitrary graph that runs in O (min(m, k�) · log k) time using 
O (log n) bits memory at each robot. For grid graphs, Kshemkalyani et al. [22] provided an algorithm that runs in O (min(k, 

√
n)) time 

using O (log k) bits memory at each robot using the local model and an algorithm that runs in O (
√

k) time using O (log k) bits memory 
at each robot using the global model. Randomized algorithms are presented in [24] to solve Dispersion from rooted initial configurations 
where the random bits are mainly used to reduce the memory requirement at each robot. In this paper, we present results using the 
global communication model. The previous results on arbitrary graphs are summarized in Table 1.

One problem that is closely related to Dispersion is the graph exploration by mobile robots. The exploration problem has been quite 
heavily studied in the literature for specific as well as arbitrary graphs, e.g., [2,4,9,14,18,23]. It was shown that a robot can explore an 
anonymous graph using �(D log �)-bits memory; the runtime of the algorithm is O (�D+1) [14]. In the model where graph nodes also 
have memory, Cohen et al. [4] gave two algorithms: The first algorithm uses O (1)-bits at the robot and 2 bits at each node, and the 
second algorithm uses O (log �) bits at the robot and 1 bit at each node. The runtime of both algorithms is O (m) with preprocessing time 
of O (mD). The trade-off between exploration time and number of robots is studied in [23]. The collective exploration by a team of robots 
is studied in [15] for trees. Another problem related to Dispersion is the scattering of k robots in an n-node graph. This problem has been 
studied for rings [11,27] and grids [3]. Recently, Poudel and Sharma [26] provided a �(

√
n)-time algorithm for uniform scattering in a grid 

[7]. Furthermore, Dispersion is related to the load balancing problem, where a given load at the nodes has to be (re-)distributed among 
several processors (nodes). This problem has been studied quite heavily in graphs, e.g., see [6]. We refer readers to [12,13] for other recent 
developments in these topics.

Paper Organization. We discuss details of the model and some lower bounds in Section 2. We discuss the DFS traversal of a graph 
in Section 3. We present a DFS-based algorithm for arbitrary graphs in Section 4, proving Theorem 1.1. We then present a BFS-based 
algorithm for rooted arbitrary graphs in Section 5, proving Theorem 1.2(a). We then present a BFS-based algorithm for arbitrary graphs in 
Section 6, proving Theorem 1.2(b). Finally, we conclude in Section 7 with a short discussion.

2. Model details and preliminaries

Graph. We consider the same graph model as in [1,19]. Let G = (V , E) be an n-node graph with m edges, i.e., |V | = n and |E| = m. G is 
assumed to be connected, unweighted, and undirected. G is anonymous, i.e., nodes do not have identifiers but, at any node, its incident 
edges are uniquely identified by a label (a.k.a. port number) in the range [0, δ − 1], where δ is the degree of that node. The maximum 
degree of G is �, which is the maximum among the degree δ of the nodes in G . We assume that there is no correlation between two port 
102



A.D. Kshemkalyani, A.R. Molla and G. Sharma Journal of Parallel and Distributed Computing 161 (2022) 100–117
numbers of an edge. Any number of robots are allowed to move along an edge at any time. The graph nodes do not have memory, i.e., 
they are not able to store any information.

Robots. We also consider the same robot model as in [1,19,20]. Let R = {r1, r2, . . . , rk} be a set of k ≤ n robots residing on the nodes of 
G . For simplicity, we sometimes use i to denote robot ri . No robot can reside on the edges of G , but one or more robots can occupy the 
same node of G . Each robot has a unique �log k�-bit ID taken from [1, k]. When a robot moves from node u to node v in G , it is aware of 
the port of u it used to leave u and the port of v it used to enter v . Furthermore, it is assumed that each robot is equipped with memory 
to store information, which may also be read and modified by other robots present on the same node.

Communication Model. We assume that robots follow the global communication model, i.e., a robot is capable to communicate with 
any other robot in the system, irrespective of their positions in the graph nodes. However, they will not have the position information, 
except for co-located robots, as graph nodes are anonymous. This is in contrast to the local communication model where a robot can only 
communicate with other robots present on the same node.

The global communication abstraction can be implemented by message-passing or through memory. In some of our algorithms, we 
also use message-passing for non-co-located robots, wherein a directed message to a destination robot can be sent or a broadcast can be 
performed. This can be simulated in the memory model as follows. If robot i wants to send to j, it writes “broadcast/ j:〈message content〉” 
in its own memory and the receiver(s) j read this content from i’s memory.

Time Cycle. At any time a robot ri ∈ R could be active or inactive. When a robot ri becomes active, it performs the “Communicate-
Compute-Move” (CCM) cycle as follows.

• Communicate: For each robot r j ∈ R that is at some node v j , the robot ri at node vi can observe the memory of r j . In some of our 
algorithms, this communication is done by message-passing if vi 
= v j (ri does a send or broadcast and r j does a receive) which can 
be simulated in the memory model. Robot ri can also observe its own memory.

• Compute: ri may perform an arbitrary computation using the information observed during the “communicate” portion of that cycle. 
This includes determination of a (possibly) port to use to exit vi and the information to store in the robot r j that is at v j .

• Move: At the end of the cycle, ri writes new information (if any) in the memory of a robot rk at vi , and exits vi using the computed 
port to reach to a neighbor of vi .

A cycle may have O (1) CCM sub-cycles.

Time and Memory Complexity. We consider the synchronous setting where every robot is active in every CCM cycle and sub-cycle and 
they perform the cycle and sub-cycles in synchrony. Therefore, time is measured in rounds or steps (a cycle is a round or step). Another 
important parameter is memory. Memory comes from a single source – the number of bits stored at each robot. The memory we count is 
persistent memory, which is the memory that needs to survive across rounds. This includes the read-only memory for the robot identifier.

Mobile Robot Dispersion. The Dispersion problem can be formally defined as follows.

Definition 1 (Dispersion). Given any n-node anonymous graph G = (V , E) having k ≤ n mobile robots positioned initially arbitrarily on the 
nodes of G , the robots reposition autonomously to reach a configuration where each robot is on a distinct node of G .

The goal is to solve Dispersion optimizing two performance metrics: (i) Time – the number of rounds (steps), and (ii) Memory – the 
number of bits stored at each robot.

2.1. Some lower bounds

We discuss here some time and memory lower bounds using the global communication model, which show the difficulty in obtaining 
fast runtime and low memory algorithms. Consider the case of any rooted initial configuration of k = n robots on a single node vroot of 
an arbitrary graph G with diameter D . A time lower bound of �(D) is immediate since a robot initially at vroot needs to traverse �(D)

edges (one edge per time step) to reach a node that is �(D) away from vroot . For k ≤ n, we present the following lower bound.

Theorem 2.1. Any deterministic algorithm for Dispersion on graphs requires �(k) steps using the global communication model.

Proof. Consider a line graph G and a rooted initial configuration of k ≤ n robots on a single node vroot of G . In order for the robots to 
solve Dispersion, they need to settle at k distinct nodes of G , exactly one on each node. To reach a node to settle, some robot must travel 
k − 1 edges of G , taking k − 1 time steps. �

For k = n, we present the following time lower bound for trees.

Theorem 2.2. For k = n, there exists a tree T with n nodes and diameter (height) D such that any deterministic algorithm for Dispersion requires 
�(D2) steps using the global communication model.

Proof. We use the lower bound proof for exploration due to Disser et al. [10] to prove this lower bound. It has been argued in [1] that 
a lower bound for exploration applies to Dispersion. We argue here that the lower bound of [10] applies for Dispersion using the global 
communication model. Disser et al. [10] proved a lower bound for exploration assuming a rooted initial configuration in which k = n
robots are on a single node vroot of tree T . Moreover, they assumed that the nodes of tree T have unique identifiers and the robots have 
global communication. Specifically, they showed that: Using k = n robots, there exists a tree T on n vertices and with diameter (height) 
D = ω(1) such that any deterministic exploration strategy requires at least D2/3 = �(D2) steps to explore T . As our model is weaker 
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because the nodes are indistinguishable, the �(D2) steps lower bound applies to Dispersion in trees using the global communication 
model. �

We finally prove a lower bound of �(log k) bits at each robot for any deterministic algorithm for Dispersion on graphs.

Theorem 2.3. Any deterministic algorithm for Dispersion on n-node anonymous graphs requires �(logk) bits at each robot using the global com-
munication model, where k ≤ n is the number of robots.

Proof. From the system model, each robot must have its identifier in the range [1, k] and we count this memory space for the identifier 
which must survive across rounds as the space complexity. �
3. DFS traversal of a graph (Algorithm D F S(k))

Consider an n-node arbitrary graph G as defined in Section 2. Let Cinit be the initial configuration of k ≤ n robots positioned on a 
single node, say v , of G . Let the robots on v be represented as R(v) = {r1, . . . , rk}, where ri is the robot with ID i. We describe here a DFS 
traversal algorithm, D F S(k), that disperses all the robots in the set R(v) to k nodes of G guaranteeing exactly one robot on each node. 
D F S(k) will be heavily used in Section 4 as a basic building block.

Each robot ri stores in its memory four variables.

1. parent (initially assigned ⊥), for a settled robot denotes the port through which it first entered the node it is settled at.
2. child (initially assigned −1), stores the port of the node where ri is currently located, that it has last taken (while entering/exiting 

the node).
3. treelabel (initially assigned min(R(v))) stores the ID of the smallest ID robot the tree is associated with.
4. ri .state ∈ { f orward, backward, settled} (initially assigned f orward). D F S(k) executes in two phases, f orward and backtrack [5].

The algorithm pseudo-code is shown in Algorithm 1. The robots in R(v) move together in a DFS, leaving behind the highest ID robot 
at each newly discovered node. They all adopt the ID of the lowest ID robot in R(v) which is the last to settle, as their treelabel. Let 
the node visited have degree δ. When robots enter a node through port child either for the first time in forward mode or at any time in 
backtrack mode, the unsettled robots move out using port (child + 1) mod δ. However, when robots enter a node through port child in 
forward mode for the second or subsequent time, they change phase from forward to backtrack and move out through port child. (It is 
straight-forward to modify Algorithm 1 so that the settled robot r also tracks in r.child the port through which the other robots last left 
the node except when they entered the node in forward mode for the second or subsequent time and hence backtracked through the port 
through which they entered that time.)

Algorithm 1: Algorithm DFS(k) for DFS traversal of a graph by k robots from a rooted initial configuration. Code for robot i.
1 Initialize: child ← −1, parent ←⊥, state ← f orward, treelabel ← min(R(v))

2 for round = 1 to min(4m − 2n + 2, 4k�) do
3 child ← port through which node is entered
4 if state = f orward then
5 if node is free then
6 if i is the highest ID robot on the node then
7 state ← settled, i settles at the node (does not move henceforth), parent ← child, treelabel ← lowest ID robot at the node

8 else
9 child ← (child + 1) mod δ

10 if child = parent of robot settled at node then
11 state ← backtrack

12 else
13 state ← backtrack

14 else if state=backtrack then
15 child ← (child + 1) mod δ

16 if child 
= parent of robot settled at node then
17 state ← f orward

18 move out through child

Theorem 3.1. Algorithm D F S(k) correctly solves Dispersion for k ≤ n robots initially positioned on a single node of a n-node arbitrary graph G in 
min(4m − 2n + 2, 4k�) rounds using O (log(k + �)) bits at each robot.

Proof. We first show that Dispersion is achieved by D F S(k). Because every robot starts at the same node and follows the same path as 
other not-yet-settled robots until it is assigned to a node, D F S(k) resembles the DFS traversal of an anonymous port-numbered graph [1]
with all robots starting from the same node. Therefore, D F S(k) visits k different nodes, where each robot is settled.

We now prove time and memory bounds. The DFS traversal may take up to 4m −2n +2 rounds, with each forward edge being traversed 
twice and each backward edge being traversed 4 times (once in either direction in the forward phase and once in either direction in the 
backward phase) [19]. However, in 4k� rounds, D F S(k) is guaranteed to visit at least k different nodes of G because in the DFS, each edge 
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can be traversed at most 4 times and hence at most 4� traversals can visit a particular node [19]. If 4m − 2n + 2 < 4k�, D F S(k) visits 
all n nodes of G . Therefore, it is clear that the runtime of D F S(k) is min(4m − 2n + 2, 4k�) rounds. Regarding memory, variable treelabel
takes O (log k) bits, state takes O (1) bits, and parent and child take O (log �) bits. The k robots can be distinguished through O (log k) bits 
since their IDs are in the range [1, k]. Thus, each robot requires O (log(k + �)) bits. �
4. DFS-based algorithm for arbitrary graphs (Theorem 1.1)

We present and analyze Graph_Disperse_DFS, a DFS-based algorithm that solves Dispersion of k ≤ n robots on an arbitrary n-node graph 
in (i) O (k�) time with O (log(k + �)) bits of memory at each robot and (ii) O (min(m, k�)) time with O (� + log k) bits of memory at 
each robot using the global communication model. This algorithm has better run-time than the O (min(m, k�) · log k) time of the best 
previously known algorithm [19] for arbitrary graphs (Table 1) using the local communication model. We mainly discuss result (i) in 
Sections 4.1– 4.3. The last subsection, Section 4.4, discusses how to modify the approach of result (i), to obtain result (ii). Specifically, 
result (ii) achieves improved time of O (min(m, k�)) in the expense of additional O (�) bits per robot.

4.1. Basic idea

When k robots are located at more than one node in the initial configuration, multiple concurrent DFS traversals described in Section 3
are initiated. Two or more such DFSs collide when one DFS visits a node where another DFS has settled a robot or another DFS is also 
visiting in this round. The challenge is to combine these DFSs efficiently. Our algorithm operates in two phases: DFS Grow, and DFS Collect. 
The D F S(k) described in Algorithm 1 is the DFS Grow and is associated with a component ID, C I D , which is the treelabel. When two or 
more DFSs collide and form a connected component of DFSs, using global communication, a Subsume graph is constructed to represent 
which DFS has collided into which other one. One of the DFSs called the winner DFS is chosen to subsume the others in the connected 
component of CIDs and collapses the others. An unsettled robot from the winner DFS is chosen as leader and it traverses all the other 
connected DFS components of subsumed DFSs in G by entering the DFS Collect phase to collect all the settled and unsettled robots from 
those DFS components using a DFS traversal. Then they all switch to the DFS Grow phase of the winner and continue its DFS Grow from 
the home node where it was interrupted by the collision. This process can repeat up to k − 1 times.

The algorithm has two nice properties based on how the winner component is chosen after each collision.

1. All the settled nodes (defined as nodes with a settled robot) in all the subsumed components of DFSs (which are the nodes in the 
connected component of the Subsume graph) form a connected component in the network graph G .

2. Hence it is possible for the leader to successfully traverse these nodes, and only these nodes (i.e., not traverse the nodes in the 
winner’s component or any other nodes) in the DFS Collect phase, and collect their settled and unsettled robots to the home node 
from which the leader started the DFS Collect traversal.

A component CID may get subsumed multiple times before/while being collected because of possibly multiple collisions and multiple 
winners over time. However, the collection time of a subsumed DFS component is linear in the number of settled nodes in it. To see this, 
consider a component CID that is always a winner across the lifetime of the execution.

1. From the above properties, all the robots in all the components subsumed by the winner over time get collected by the winner’s 
leaders without interruption of their DFS Collect phases. The total time cost of the DFS Collect phases of the winner component is 
linearly additive, each term being the time for a DFS traversal of only the settled nodes in the subsumed components each time the 
leader of that winner switches to DFS Collect phase. This is bounded by O (min(m, k�)).

2. In addition, the time cost of the DFS Grow phases of the winner is additive and hence the total cost is that for a DFS traversal of the 
maximum number of robots in that winner, which is bounded by O (min(m, k�)).

The overall time cost is additive and hence bounded by O (min(m, k�)).

4.2. The algorithm

The algorithm is based on DFS traversal. In general, a robot may operate in one of two interchangeable DFS phases: DFS Grow and 
DFS Collect. As these are independent, a separate set of DFS variables: parent , child, state is used for operating in the two phases. The 
following additional variables are used.

1. T I D_Grow: Tree ID, of type robot identifier, is the ID, i.e., treelabel, of the DFS tree in the GROW phase with which the robot is 
associated. Initially, T I D_Grow ← minimum ID among the colocated robots.

2. T I D_Collect: Tree ID, of type robot identifier, is the ID of the DFS tree in the DFS Collect phase with which the robot is associated. 
Initially, T I D_Collect ←⊥.

3. C I D: for component ID, of type robot identifier, is used to denote the component associated with the DFS Grow phase of the DFS. 
Initially, C I D ← T I D_Grow .

4. C I D_old: for earlier component ID, of type robot identifier, is used to denote the earlier value of component ID just before the most 
recent component ID (C I D) update, associated with the DFS Grow phase of the DFS. Initially, C I D_old ← T I D_Grow .

5. winner: of type robot identifier. When multiple components collide/merge, this is used to indicate the winning component ID that 
will subsume the other components. Initially, winner ←⊥.

6. leader: of type boolean. This is set to 1 if the robot is responsible for collecting the various robots distributed in the subsumed 
components. Initially, leader ← 0.
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Algorithm 2: Algorithm Graph_Disperse_DFS to solve Dispersion in global model. Code for robot i in a round at any node. r denotes 
a settled robot (prevcurr_settled = 1), if any, at that node.

1 Initialize: T I D_Grow , T I D_Collect , C I D , C I D_old, winner, leader, home, state, prevcurr_settled
2 if state = grow then
3 if node is free then
4 highest ID robot y from highest C I D group having state = grow settles; y.state ← settled; y.prevcurr_settled ← 1

5 if C I D 
= r.C I D then
6 lowest ID robot from each C I D group broadcasts Subsume(C I D, r.C I D)

7 Subsume_Graph_Processing
8 if C I D is a node in Subsume graph then
9 C I D_old ← C I D; C I D ← winner in my connected component of Subsume graph

10 Let x ← min j( j.T I D_Grow = winner)
11 x.home ← r.I D; x.leader ← 1; x.state ← collect; x.T I D_Collect ← x.T I D_Grow
12 x begins DFS Collect(T I D_Collect)
13 if i 
= x ∧ state = grow on entering this round then
14 state ← subsumed; STOP moving until collected

15 else
16 continue DFS Grow(T I D_Grow)

17 else if state = collect then
18 Subsume_Graph_Processing
19 if C I D is a node in Subsume graph then
20 C I D_old ← C I D; C I D ← winner in my connected component of Subsume graph
21 state ← subsumed; STOP moving until collected
22 if leader = 1 then
23 leader ← 0; home ←⊥
24 else
25 if node is free ∨C I D = r.C I D = r.C I D_old ∨ C I D 
= r.C I D then
26 backtrack, as part of DFS Collect(T I D_Collect)

27 else if C I D = r.C I D 
= r.C I D_old then
28 if ∃ arrived robot x at my node | x.leader = 1 ∧ x.home = r.I D∧ all ports at r have been explored then
29 if x = i then
30 x.leader ← 0; x.home ←⊥
31 state ← grow; T I D_Grow ← x.T I D_Grow
32 i continues DFS Grow(T I D_Grow)

33 else
34 i continues DFS Collect(T I D_Collect) of x | x.leader = 1, along with x if x is backtracking to its parent in DFS Collect(x.T I D_Collect)

35 else if state = subsumed then
36 Subsume_Graph_Processing
37 if C I D is a node in Subsume graph then
38 C I D_old ← C I D; C I D ← winner in my connected component of Subsume graph

39 else
40 if ∃ arrived robot x at my node | x.state = collect ∧ x.leader = 1 ∧ x is backtracking to its parent in DFS Collect(T I D_Collect) then
41 state ← collect; T I D_Collect ← x.T I D_Collect
42 if x.home = r.I D∧ all ports at r have been explored then
43 state ← grow; T I D_Grow ← x.T I D_Grow; prevcurr_settled ← 0
44 i continues DFS Grow(T I D_Grow) along with x
45 else
46 prevcurr_settled ← 0; i continues DFS Collect(T I D_Collect) along with x

47 else if state = settled then
48 Subsume_Graph_Processing
49 if C I D is a node in Subsume graph then
50 C I D_old ← C I D; C I D ← winner in my connected component of Subsume graph
51 if C I D_old 
= C I D then
52 state ← subsumed, do not move until collected

53 Subsume_Graph_Processing
54 receive Subsume messages; build Subsume graph S
55 if exists node with no incoming edge in my connected component of S then
56 winner ← minC I D (C I Ds of nodes with no incoming edge in my component of S)

57 else if all nodes in my connected component of S are in a cycle then
58 winner ← minC I D (CIDs of nodes in cycle in my connected component)
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7. home: of type robot identifier. The robot identifier of a settled robot is used to identify the origin node of the leader robot that is 
responsible for collecting the scattered robots in the subsumed components back to this origin node. Initially, home ←⊥.

8. state: denotes the state of the robot and can be one of {grow, collect, subsumed, settled}. Initially, state ← grow .
9. prevcurr_settled: of type boolean. A robot sets this when entering state = settled and resets it when leaving state = subsumed. A robot 

is considered settled if prevcurr_settled = 1. Initially, prevcurr_settled ← 0.

In the initial configuration, there are groups of robots at different nodes. Each robot has its T I D_Grow set to the minimum ID among 
the colocated robots, and its state = grow . The robots from a node move together in a DFS traversal, to locate free nodes and settle one 
by one. A free node is one where there is no robot having prevcurr_settled = 1. As the robots do the DFS traversal Grow(T I D_Grow), 
they extend the DFS tree that is associated with the T I D_Grow . Each growing DFS tree is also associated with a component ID, C I D , that 
is initialized to the T I D_Grow . Multiple DFS trees associated with different C I Ds may meet at a node in any round; specifically, a DFS 
tree for component C I D may meet another component r.C I D for some other DFS tree, where r is the robot that is settled at that node or 
settles there in this round, defined as having prevcurr_settled = 1. In this case, one robot from the newly arrived robots of the DFS tree 
component C I D broadcasts a Subsume(C I D, r.C I D) message. This is to indicate that the component C I D is subsuming the component 
r.C I D . Multiple such Subsume messages may get broadcast from different robots in different parts of the graph in any particular round.

All the robots listen to all such broadcasts in each round, and build a directed graph, Subsume, S = (C, L), where C is the set of 
component IDs, and edge (C I D j, C I Dk) ∈ L indicates that Subsume(C I D j, C I Dk) message has been received. In this graph, each node may 
have at most one outgoing edge but may have multiple incoming edges. The winner component ID corresponds to that node (in my 
connected component of S) that has the minimum C I D among the nodes with no incoming edges (if such a node exists). Otherwise, 
all nodes (in my connected component) of the Subsume graph must exist in one cycle, and the lowest valued C I D node in the cycle is 
chosen as winner. The significance of the winner is that its C I D subsumes all other C I Ds in its connected component of S; that is, all 
robots that are in the same connected component of S overwrite their current C I D by winner in their connected component of S and get 
collected by a leader robot from the winner component.

The robot with the minimum ID among those with T I D_Grow = winner and state = grow changes its state to collect , leader to 
1, T I D_Collect to T I D_Grow , and embarks on the Collect phase. In the Collect phase, the leader does an independent DFS traversal 
Collect(T I D_Collect) of the connected component of settled nodes of G which have settled robots which have newly changed their 
component ID C I D to be the same as its own. And all (settled and unsettled) robots which have newly changed their C I D to that of 
the winner leader (hence C I D 
= C I D_old, where C I D_old is the value of C I D before the latest overwrite by winner), also change their 
state, whether grow , collect , settled, or subsumed to subsumed and stop movement until they are collected. Also, all unsettled robots 
with state = grow and C I D = winner = C I D_old but are not the leader change their state to subsumed and stop movement until they are 
collected. In this DFS Collect traversal, the leader node collects all settled and unsettled robots with state = subsumed and brings them 
back to its home node from where it began the Collect DFS traversal, while the thus collected robots change their state to collect once 
they join the collection traversal. During the Collect traversal, if in some step the component being traversed gets subsumed by some other 
component, the robots in the component being traversed reset their state to subsumed. If the DFS Collect traversal completes successfully, 
the collected robots and the leader change state to grow , set their T I D_Grow to that of the leader, and resume DFS Grow(T I D_Grow)

after the leader resets its leader status. If the DFS Collect does not complete, it is because the component got subsumed by another winner
component; the robots in the interrupted DFS Collect change state to subsumed and stop until they are themselves collected by the leader 
of the new winner.

Note that the DFS Collect(T I D_Collect) is independent of the DFS Grow(T I D_Grow), and thus an independent set of variables parent , 
child, state need to be used for the two different types of DFSs. Further, when a new instance of a DFS Grow/DFS Collect , as identified 
by a new value of T I D_Grow/ T I D_Collect , is detected by a robot, the robot switches to the new instance and resets the old values of 
parent , child, state for that DFS search.

In the DFS Collect phase, the leader visits all nodes in its connected component of settled nodes having a settled robot that changed 
its component ID r.C I D ← C I D . (These are the settled robots where C I D = r.C I D 
= r.C I D_old.) This excludes the nodes already visited 
in the DFS Grow phase having settled robots with the same C I D as that of the leader before it become the leader. To confine the DFS 
Collect to such nodes, note that the leader may have to backtrack from a node v if the node (i) is free or (ii) has C I D = r.C I D = r.C I D_old
or (iii) has C I D 
= r.C I D . If the C I D of the leader changes at the beginning of this round in which it was to backtrack (because it gets 
subsumed), before it can backtrack, the leader (and any accompanying robots having state = collect) simply changes state to subsumed
and stops. In cases (i) and (iii), there may thus be stopped robots at a free node, or at a node that belongs to an adjoining, independent 
component. Such robots may be later collected by (a) a leader from its old component, or (perhaps earlier than that) (b) by a leader 
from the component where they stop. In the former case (a), it is execution as usual. In the latter case (b), there is no issue of violating 
correctness even though the robots jump from one connected component sharing a common C I D to an adjacent one with a different 
C I D .

4.3. Correctness and complexity

A robot may be in one of four states: grow , collect , subsumed, and settled. The state transition diagram for a robot is shown in Fig. 1(a).

Lemma 4.1. Once a robot enters state = grow for some value of T I D_Grow, the DFS Grow(T I D_Grow) completes within min(4m − 2n + 2, 4k�)

rounds, or the robot moves out of that state within min(4m − 2n + 2, 4k�) rounds.

Proof. From Theorem 3.1, the DFS Grow(T I D_Grow) can complete within min(4m − 2n + 2, 4k�) rounds and the robot goes to settled
state. Before this completion of the DFS, if the current component gets subsumed or subsumes another component, the robot moves to 
either subsumed or collect state. �
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Fig. 1. State transition diagrams. (a) Diagram for a robot’s state, state. (b) Diagram for any value of C I D .

Lemma 4.2. Once a robot enters state = collect for some value of T I D_Collect, the DFS Collect(T I D_Collect) completes in min(4m − 2n + 2, 4k�)

rounds or the robot moves out of that state within min(4m − 2n + 2, 4k�) rounds.

Proof. The DFS traversal of a component completes within 4m − 2n + 2 rounds. It also completes within 4k� rounds, as the collecting 
robot in the DFS traverses an edge at most 4 times, needs to visit each of the at most � neighbors of the at most k settled nodes in the 
component, until collection completes and the leader is back at the home node. At the completion of the DFS, the robot moves to grow
state; before this completion of the DFS, if the current component gets subsumed by another component, the robot moves to subsumed
state. �
Lemma 4.3. For a DFS Collect for a CID C I Dx:

1. The nodes in the DFS components of G subsumed by winner C I Dx, corresponding to the nodes of S (in a connected component of S) subsumed by 
winner C I Dx, form a connected component of G and for such nodes C I D = C I Dx 
= C I D_old.

2. The DFS Collect by the leader of winner C I Dx traverses all these nodes having C I D = C I Dx 
= C I D_old and their neighbors, and only these nodes.

Proof. (Part 1). There are two possibilities from Subsume_Graph_Processing. (a) All the nodes in the connected component of S ′ = (C ′, L′)
are in a simple cycle. All the nodes in the cycle minus the C I Dx node form a connected component (C ′′, L′′). (b) There exists a node in 
the connected component of S ′ = (C ′, L′) that has no incoming edges, and C I Dx is the CID of such a node. C ′ \ {C I Dx} is a connected 
component (C ′′, L′′).

In either possibility, an edge (C I D y, C I Dz) in L′′ , by definition of a Subsume broadcast, indicates the nodes in G belonging to the two 
DFS components of C I D y and C I Dz are reachable from one to the other. The connected component (C ′′, L′′) therefore implies that the 
union of the nodes contained in G in each of these nodes in C ′′ is all reachable from one another. Furthermore, all these are subsumed 
nodes by C I Dx and from the algorithm, they set C I D = C I Dx and C I D_old 
= C I Dx . The lemma Part (1) follows.

(Part 2). From the algorithm pseudocode, observe that the DFS Collect by the leader of winner C I Dx traverses all these nodes and their 
neighbors, and no other nodes. The lemma Part (2) follows. �
Theorem 4.4. The algorithm Graph_Disperse_D F S solves Dispersion.

Proof. Each robot begins in state = grow . Let α denote min(4m − 2n + 2, 4k�). We make the following observations about the state 
transition diagram of a robot given in Fig. 1(a).

1. A robot can enter subsumed state at most k − 1 times. In subsumed state, a robot can stay at most α · k rounds before it changes 
state to collect . This follows from Lemma 4.3 – the leader of the winner C I D winner will complete its DFS Collect of the connected 
component having C I D = C I D winner 
= C I D_old and collect the subsumed robot to its home node. This DFS Collect completes within 
α unless it gets serially subsumed by another winner, but such subsumptions can happen at most k − 1 times. In DFS Collect, robots 
from the subsumed component move along with the leader only when the leader is backtracking. So even if the DFS is interrupted 
by another winner winner′ , the partially completed DFS still belongs to a connected component having C I D = C I D winner′ 
= C I D_old. 
Hence the new DFS Collect for winner′ can complete, and as per Lemma 4.3, collect all subsumed robots.
Note that from subsumed state, a robot x that has the same T I D_Grow as the leader at the time the leader was so selected and is 
at the leader’s home node, but then stays back at the home node, changes state to grow when the leader returns to the home node 
and has finished exploring all ports at the home node in DFS Collect(T I D_Collect) (hence is virtually backtracking to its “parent” in 
DFS Collect). This transition happens within α rounds unless x gets serially subsumed by another winner, but such subsumptions can 
happen at most k − 1 times.

2. From collect state, within α rounds, a robot can go to subsumed state (which can happen at most k − 1 times), or go to grow state 
(which can happen at most k − 1 times) (Lemma 4.2).

3. In grow state, a robot can remain for at most α rounds, by when it may go to either subsumed, collect , or settled state for at most k
times (Lemma 4.1).

4. From settled state, a robot goes to subsumed at most k − 1 times, and each such transition must happen within what we denote as 
β rounds, or else the robot remains permanently in settled state. We now bound β . If the robot makes a transition to subsumed, it is 
because it gets subsumed by some C I D C I D y .
(a) The maximum time that different robots with T I D_Grow = C I D y spend in grow state is kα, from (3) above.
(b) The maximum time that different robots with T I D_Collect = C I D y spend in collect state is 2(k − 1)α, from (2) above.
(c) The maximum time that different robots with C I D = C I D y spend in subsumed state is (k − 1)α, from (1) above.
Thus, the sum of the sojourns in settled state is bounded by (k − 1)β which is (k − 1) · (kα + 2(k − 1)α + (k − 1)α).
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Although there are cycles in the state transition diagram, a robot must exit subsumed at most k − 1 times, collect state at most k − 1
times, grow state at most k times, and each stay has a bounded sojourn. Also, a robot must exit settled state at most k − 1 times with the 
bounded sojourn in each, or else it remains permanently in settled state. It then follows that within a finite, bounded number of rounds, a 
robot will be in settled state permanently. It will be settled as part of the DFS T I D_Grow tree traversal it was last associated with within 
α further rounds (follows from Theorem 3.1). This is and will be the only robot in settled state at the node. Thus, Dispersion is achieved 
within a finite, bounded number of rounds. �

We model the state of a particular value of C I D C I Dx as follows, depending on the state of the least ID robot whose T I D_Grow value 
equals C I Dx .

Definition 2.

state(C I Dx) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G R O W if min j( j.T I D_Grow = C I Dx).state = grow
C O LLEC T if min j( j.T I D_Grow = C I Dx).state = collect
SU B SU M E D if min j( j.T I D_Grow = C I Dx).state = subsumed or

� j | j.T I D_Grow = C I Dx

P A S S I V E if min j( j.T I D_Grow = C I Dx).state = settled

The state transition diagram for the state of a C I D value is shown in Fig. 1(b).

Theorem 4.5. The algorithm Graph_Disperse_D F S terminates in 2 · 4k� rounds.

Proof. By Theorem 4.4, each robot settles permanently within a finite, bounded number of rounds. We now determine the number of 
rounds more precisely.

If the state of C I D C I D y ever enters SUBSUMED, the robots with C I D = C I D y just before the transition would be subsumed, collected, 
and assigned a new C I D C I Dx′ possibly k − 1 times. Let the final such C I D assigned be C I Dx′′ . Note that C I Dx′′ would never have entered 
SUBSUMED state. The robots in question get associated with CID C I Dx′′ , and the termination time is that of such a C I Dx′′ that never 
entered SU B SU M E D state.

Let C I Dx denote the C I D of any robot that settles in the last round of Algorithm Graph_Disperse_D F S . This C I Dx has never entered 
SUBSUMED state and therefore its state has shuttled between GROW and COLLECT before reaching and ending in PASSIVE. We separately 
bound the number of rounds spent by C I Dx in GROW state and in COLLECT state.

Let the DFS tree in GROW state be associated with T I D_Growx . Observe that multiple sojourns of C I Dx in GROW state are associated 
with the same T I D_Growx . The DFS data structures associated with T I D_Growx are never overwritten by another DFS in GROW state 
as the component C I Dx is never subsumed (and independent DFS traversal data structures are maintained for the DFS Grow and DFS 
Collect phases). Within 4m − 2n + 2 rounds, possibly spread across multiple sojourns in GROW state, the DFS associated with T I D_Growx

completes and every robot associated with it gets settled. Every robot associated with T I D_Growx also gets settled within 4k� rounds, 
as the DFS Grow visits each edge at most 4 times, and hence within 4k� rounds, at least k nodes get visited.

C I Dx can transit from GROW to COLLECT and back at most k − 1 times because that is the maximum number of times C I Dx can 
subsume another C I D . Let the transition to COLLECT state occur l, 0 ≤ l ≤ k − 1 times, let the number of rounds spent in COLLECT state 
on the jth transition to it, 1 ≤ j ≤ l, be s j . Each transition to COLLECT is followed by a successful DFS Collect traversal of the connected 
component C j of nodes having C I D = C I Dx 
= C I D_old (from Lemma 4.3); denote by Nint

j , the set of such nodes. These are the nodes in 
the subsumed DFS components that form the connected component C j , from Lemma 4.3.

In the DFS Collect traversal of C j by the leader for the jth transition to COLLECT state, the leader visits from each node in Nint
j , each 

adjacent edge at most 4 times. As 
∑l

j=1 |Nint
j | ≤ k, it follows that at most 4k� edges are visited in DFS Collect(T I D_Collect = C I Dx) across 

all transitions to COLLECT state. Hence,

l∑
j=1

s j ≤ 4k�

The theorem follows by separately combining the number of rounds in DFS Grow and DFS Collect phases in terms of m, and separately 
combining the number of rounds in DFS Grow and DFS Collect phases in terms of k�. �
Theorem 4.6. Algorithm 2 (Graph_Disperse_DFS) requires O (log(k + �)) bits memory.

Proof. Each set of parent , child, treelabel, settled for the Grow and Collect phases takes O (log(k + �)) bits (follows from Theorem 3.1). 
C I D , C I D_old, winner, T I D_Grow , T I D_Collect , and home take O (log k) bits each. leader, state, and prevcurr_settled take O (1) bits each. 
Thus, the theorem follows. �
Proof of Theorem 1.1(a): Follows from Theorems 4.4 – 4.6.

4.4. A more time-efficient DFS_Collect

The DFS Collect traversal of C j is a naive DFS traversal. There are four types of edges traversed in it.
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1. eint
j : Edge between two nodes in C j . These can be either forward tree edges or back edges.

2. ewin
j : Edge from a node in C j to a node having C I D = C I Dx = C I D_old, i.e., back to the winner’s component.

3. e f ree
j : Edge from a node in C j to a free node.

4. eadj
j : Edge from a node in C j to a node in an adjacent component (having C I D y 
= C I Dx).

Let the numbers of these four types of edges be mint
j , mwin

j , m f ree
j , madj

j . In the DFS Collect of C j , each eint
j is traversed at most 4 times, 

whereas each ewin
j , e f ree

j , and eadj
j is traversed exactly 2 times (once in the forward mode and once in the backtrack mode). This gives:

s j ≤ 4mint
j + 2(mwin

j + m f ree
j + madj

j )

As C j and C j′ are not disjoint, it does not seem possible to bound 
∑l

j=1 s j , the cost of the Collect phases of a single winner, by O (m). 
As a result, time complexity of Algorithm Graph_Disperse_DFS is O (k�). We now describe a more efficient DFS Collect procedure having 
time complexity O (k), leading to the algorithm having O (min(m, k�)) time. The O (m) is obtained because mwin

j = m f ree
j = madj

j = 0 and 
only internal tree edges of C j are traversed. The key idea is that only DFS tree edges of each subsumed component are traversed in 
collecting the robots in that tree. This lower time complexity comes at the cost of a space complexity of O (� + log k) because � bits are 
required at a settled robot to mark (in the DFS Grow phase) whether the � neighbors of the node are tree edges or not.

Let a junction node be one which has robots having two or more T I D_Grow values. When a leader x of the winner component 
is selected following a Subsume graph processing, it (serially) does a DFS Collect of each DFS tree of robot y having y.T I D_Grow 
=
x.T I D_Grow . This DFS Collect is outlined as follows.

1. Go from the junction node to the root of the tree of y.
2. Perform a DFS traversal of the tree (Algorithm 1) with a different set of variables than those used in the Grow phase of that tree, with 

the following main changes.
(a) Explore an edge only if it marked as a tree edge or is marked by the child pointer of r in the DFS Grow phase.

This ensures that only tree edges are visited.
(b) When backtracking to a node along an edge pointed to by child pointer of r in the DFS Grow phase, do not visit other edges in 

forward mode, but backtrack to the parent .
This ensures that only eint

j edges are visited.
(c) Collect all robots to the parent node when backtracking to the parent, except along the path from the junction node to the root 

node.
This ensures that the tree with TID y.T I D_Grow remains a tree. If this traversal is interrupted due to another Subsume_Graph_Pro-
cessing, the next leader traversing the tree will use the child pointer of the DFS Collect phase to continue the DFS traversal from 
where it left off.

3. When the DFS traversal returns to the root node, collect all robots from the root to the junction node, round-by-round, setting the 
current root as active node in each round.
This preserves the tree structure in y.T I D_Grow from root to the junction node in case of interruption by another Subsume_Graph_Pro-
cessing.

During the DFS Collect traversal of a tree y.T I D_Grow , if a junction node (where y.T I D_Grow 
= z.T I D_Grow) is encountered, a DFS 
Collect traversal of tree z.T I D_Grow is begun recursively. Cycles in these recursive calls are broken by broadcasting z.T I D_Grow whenever 
the DFS Collect of z.T I D_Grow is begun (and setting, using, and resetting the new being_collected variable appropriately).
Proof of Theorem 1.1(b): For the modified DFS Collect algorithm outlined in this section, only tree edges of the subsumed DFS trees are 
visited. A DFS tree having n1 nodes is traversed in 2n1 rounds, collecting at least n1 robots to its root. Plus at most 2n1 rounds traversing 
from the junction node to the root node of the tree, and back. With a maximum of k robots being collected by the various C j , at most 4k
rounds are required by the Collect phases for the various C j . From Theorem 4.5, the Grow phases of C I Dx take O (min(m, k�)) time. This 
is the overall time complexity.

The modified algorithm requires � bits to mark tree edges in the Grow phase. The extra variables needed to implement the modified 
Collect phase require O (log(k + �)) space. Combining with this same space complexity shown in Theorem 4.6, the total space complexity 
of the modified algorithm is O (� + log k) bits per robot.

The theorem follows from the above reasoning and Theorems 4.4 – 4.6.

5. BFS algorithm for rooted arbitrary graphs (Theorem 1.2(a))

In this section, we present and analyze Rooted_Graph_Disperse_BFS, a BFS-based algorithm that solves Dispersion of k ≤ n robots on an 
arbitrary rooted n-node graph in O (D�(D +�)) time with O (log D +� log k) bits of memory at each robot using the local communication 
model. This algorithm assumes all k ≤ n robots are at a single node vroot in the initial configuration. In the next section, we show how to 
adapt this algorithm to the general case of robots on multiple nodes in the initial configuration.

5.1. Basic idea

The algorithm begins with all the robots at a single root node. A BFS tree is built level by level with the root at level 0. The graph 
is explored to identify the nodes at level i + 1. This exploration is initially carried out by doing a 2-neighborhood search by the robots 
settled at level i (�2 rounds). This gives a count of the “demand” for robots to settle at level i + 1. The demand number of unsettled 
robots are borrowed from the root to try to settle at level i + 1. Unfortunately the demand is likely to be an overcount because a level 
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i + 1 node may be reachable independently from multiple level i nodes. Yet that is not a big problem if the number of robots at the root 
exceeds this (overcount) demand.

The real problem arises if the number of robots at the root is less than this demand. Not having any topology information, the available 
robots at the root are distributed to the level i leaf nodes to only partially fulfill their demands. Now, (a) some level i + 1 nodes may not 
be reached at all because of the partial fulfillment – leading to a deficit of robots for level i + 1 nodes, while on the other hand, (b) some 
level i + 1 nodes may be reached via multiple level i nodes – leading to a surplus of robots for level i + 1 nodes. The biggest challenge 
is how to transfer robots efficiently from the surplus to the deficit without having any topology information. The procedure of returning 
the surplus robots to the root and redetermining demands by level i nodes, and borrowing robots from the root to meet these demands 
can be repeated multiple times but the problem of partially fulfilling the demands and resulting in problems (a) and (b) again, may occur 
again.

The algorithm cleverly bounds the number of iterations of this procedure to transfer robots from surplus to deficit to � + 2. In this 
process, the algorithm also simultaneously reduces the overcount demand to the actual demand. It does this by having the exploratory 
robots borrowed from the root perform some added rounds (2�) in each iteration to classify edges (u, v) from level i nodes to level 
i + 1 as (i) to be uniquely taken to reach the level i + 1 node v (type V for “valid”), or (ii) not to be taken in order that the level i + 1
node v is uniquely reachable from another level i node (type I for “invalid”), or (iii) it is yet undetermined whether the level i + 1 node 
v is uniquely reachable from u (type U for “unfinalized”). The movement of robots up and down the tree for meeting the demand and 
rebalancing the surplus/deficit to meet this goal takes 2i rounds. So the time complexity for extending the level i tree to level i + 1 is 
O ((� + 2)(2� + 2i)). This gives a O (D�(D + �)) time algorithm.

The algorithm is presented assuming a global communication model for two reasons. It is more compact, and it can be directly adapted 
in the next section to the multi-rooted case for the global communication model. While proving the correctness of the algorithm, we show 
how the global communication can be replaced by the local communication model without increasing the asymptotic complexity.

5.2. The algorithm – rooted case

In the initial configuration, all k ≤ n robots are at a single node vroot . The synchronous algorithm proceeds in rounds and is described in 
Algorithm 3. The algorithm induces a breadth-first search (BFS) tree, level by level, in the graph. There are two main steps in the algorithm 
when extending the tree from level i to level i + 1: (i) the leaf nodes in the BFS tree at level i determine the number of edges going to 
level i + 1. This is done in procedure Determine_Leaf_Demand(i) and can be achieved in O (�2) rounds as a 2-neighborhood traversal is 
performed. The level i robot sets its demand for robots equal to the number of edges (ports) going to level i + 1. (ii) The leaf nodes at 
level i then populate the level i + 1 nodes in a coordinated manner, because there may be arbitrary number of edges and connectivity 
going from level i to level i + 1. This is done in procedure Populate_Next_Level(i) iteratively by borrowing robots for exploration from vroot .

The iterative borrowing of robots in Populate_Next_Level(i) is done as follows. In each iteration, the leaf nodes’ demands are accumulated 
up the tree in a convergecast-like manner by doing a broadcast B1 as detailed in the algorithm. In this process, each node in the tree and 
the root learns of the demands of the sub-trees rooted at each of its children. In parallel, the unsettled robots, if any, at the leaf nodes 
move up to the root. When this completes in i rounds, the root redistributes the available robots among its children’s sub-trees as per 
their accumulated demands, and so on, down the tree for rebalancing. The downward motion of the robots from root to the leaf nodes 
takes another i rounds. The number of robots assigned by the root to a leaf node at level i may be up to the demand of that node, which 
is the number of its incident edges going to level i + 1 nodes. As there may be edges from multiple nodes at level i to a node at level 
i + 1, only one robot can be earmarked to settle at that node. The robot earmarked to settle at the level i + 1 node does a 1-neighborhood 
traversal and invalidates (I) the ports of all other level i nodes leading to that level i + 1 node (O (�) time). The robot does not actually 
settle at the level i + 1 node but participates in further computation. It then returns to the level i node it arrived from and designates 
the port used to go to the level i + 1 node as a valid (V ) port. The settled robots at level i then re-evaluate the demand for robots, 
based on the number of unfinalized (U ) ports (i.e., not validated and not invalidated ports going to level i + 1 nodes). All unsettled robots 
(including those that had been “earmarked” to settle at a level i + 1 node) return to vroot in the next iteration and they are reassigned 
for the next iteration based on the renewed (and decreased) values of net demand for exploratory robots and move to the level i leaf 
nodes. The upward and downward movement takes O (D) time. The algorithm guarantees that � + 1 iterations suffice for setting to valid
status a sufficient number of ports of level i nodes leading to level i + 1 nodes (sufficient to fill level i + 1 using the available number of 
robots), after which a final iteration of robot movements up and down the tree reassigns the final demand based on the number of valid
ports (each of which leads to an unique level i + 1 node) and distributes up to those many robots among level i + 1 nodes. The procedure 
Populate_Next_Level(i) thus takes O (�(� + D)) time.

Due to the BFS nature of the tree growth, D iterations of the outer loop of Graph_Disperse_BFS suffice. Hence, the running time is 
O (D(�2 + �(� + D)).

The following variables are used at each robot.

1. nrobots: the total number of robots at the root, vroot . Initialize as defined.
2. level: the level of a robot/node in the BFS tree. Initialize to 0.
3. i: the current maximum level of settled robots. Initialize to 0.
4. demand[1 . . .�], where

demandu[ j] for a non-leaf node u is the demand for robots to populate level i + 1 for sub-tree reachable via port j. Initialize to 0.
demandu[ j] for a leaf node u at level i has the following semantics.

demandu[ j] =

⎧⎪⎪⎨
⎪⎪⎩

0 if port j does not go to a level i + 1 node
U if port j goes to a level i + 1 node via an unfinalized edge
V if port j goes to a level i + 1 node via an validated edge
I if port j goes to a level i + 1 node via an invalidated edge

Initialize to 0.
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Algorithm 3: Algorithm Rooted_Graph_Disperse_BFS to solve Dispersion in global model. r denotes a settled robot, if any, at that 
node.
1 Initialize: nrobots ← number of robots; level, i, demand[1 . . .�], child_id[1 . . .�]; parent_id, parent , winner, lvlf ull
2 robot with lowest ID settles at root, nrobots ← nrobots − 1
3 while nrobots > 0 do
4 Determine_Leaf_Demand(i)
5 Populate_Next_Level(i)
6 i ← i + 1

7 Determine_Leaf_Demand(i)

8 Each settled robot r at a leaf node u at level i does a 2-bounded DFS to count the number of neighbors v at level i + 1. If on exploring (u, v) via 
outu , (i) v is level i − 1, then backtrack, (ii) else if v has a level i − 1 neighbor, then v is level i node - discount and backtrack, (iii) else v is a 
level i + 1 node, hence robot r sets demandu[outu] ← U .

9 Wait until �2 rounds are elapsed or synchronize
10 Populate_Next_Level(i)

11 while [∑leaf u

∑�
j=1(1 if demandu[ j] = U )] > 0 

∧[∑leaf u

∑�
j=1(1 if demandu[ j] = V )] ≤ nrobots do

12 if i = 0 then
13 ∀ j, demandroot [ j] ← 1

14 else if i > 0 then
15 unsettled robots at level i move upwards to root using parent pointers of settled nodes along the path, in i rounds. In parallel, 

Convergecast from leaf nodes at level i to root is performed in i rounds as follows. Leaf node u broadcasts 
B1(my_id, parent_id, 

∑�
j=1(1 i f demandu[ j] = U )). On receiving B1(x, my_id, y), my_id sets demand[child_id−1[x]] ← y. On receiving B1

from all children, my_id broadcasts B1(my_id, parent_id, 
∑�

j=1 demand[ j]). Wait until i rounds are elapsed

16 When root has updated demand[ j] for all children j, distribute min(nrobots, 
∑�

j=1 demand[ j]) robots among children after resetting 
winner ← 0 for each robot

17 Robots move down the tree to the leaf nodes at level i + 1: On receiving x robots, a node at level < i (= i) distributes among children 
reachable via ports p such that demand[p] > 0 (demand[p] = U ).

18 On arrival at level i + 1 node v from level i node u via (outu, inv ), robot with lowest ID sets winner ← 1
19 if winner = 0 then
20 retrace back via inv to u and wait

21 else if winner = 1 then
22 visit each neighbor w via (outv , inw ). If w(
= u) is at level i, demandw [inw ] ← I
23 retrace back from v using inv to u; demandu[outu] ← V

24 Wait until 2� − 1 rounds are elapsed since arriving at level i + 1 (so all robots at level i + 1 are back at level i) or synchronize()

25 if i = 0 then
26 ∀ j, demandroot [ j] ← 1 if demandroot [ j] = V

27 else if i > 0 then
28 unsettled robots at level i move upwards to root using parent pointers of settled nodes along the path, in i rounds. In parallel, Convergecast 

from leaf nodes at level i to root is performed in i rounds as follows. Leaf node u broadcasts 
B1(my_id, parent_id, 

∑�
j=1(1 i f demandu[ j] = V )). On receiving B1(x, my_id, y), my_id sets demand[child_id−1[x]] ← y. On receiving B1 from 

all children, my_id broadcasts B1(my_id, parent_id, 
∑�

j=1 demand[ j]). Wait until i rounds are elapsed

29 When root has updated demand[ j] for all children j: set lvlf ull ← 0; If nrobots ≥ ∑�
j=1 demand[ j] then lvlf ull ← 1. Distribute 

min(nrobots, 
∑�

j=1 demand[ j]) robots among children; nrobots ← nrobots − min(nrobots, 
∑�

j=1 demand[ j])
30 Robots move down the tree to the leaf nodes at level i: On receiving x robots, a node at level < i distributes among children reachable via ports p

such that demand[p] > 0.
31 At a level i node u, on receiving ≤ ∑�

j=1(1 i f demandu[ j] = V ) robots, send one robot x on each port out | demandu[out] = V ; child_idu[out] ← x

32 The robot x reaches node v at level i + 1 via incoming port in, level ← i + 1, parent_id ← u, parent ← in, x settles at the node

If the node u being referred to is clear from context, we sometimes omit the subscript u.
5. child_id[1 . . .�], where child_id[ j] is the ID of the child node (if any), reachable via port j. Initialize to ⊥.
6. parent_id: the ID of the parent robot in the BFS tree. Initialize to ⊥.
7. parent: to identify the port through which the parent node in the BFS tree is reached. Initialize to ⊥.
8. winner: to uniquely select a robot among those that arrive at a level i +1 node, to mark the edge/outgoing port along which it arrived 

as V and all other edges/outgoing ports from level i to that level i + 1 node as I . Initialize to 0.
9. lvlf ull: a boolean to track whether all level i + 1 nodes can have a settled robot. (Used in Algorithm 4.) Initialize to 0.

The variables child_id[1 . . .�] and parent_id, and the unique robot identifiers assumption, are strictly not necessary for the single-
rooted case. Without child_id[1 . . .�] and parent_id, the broadcast function can be simulated by each settled robot moving up to its parent 
and back, to communicate the demand of its subtree. The unique robot identifiers assumption and winner help in determining which robot 
should settle at the root, for assigning robots as per the demands, and for selecting winner. Without these, a simple randomized scheme 
can be used for the above determinations.

Lemma 5.1. The while loop of Populate_Next_Level(i) (in Algorithm 3) terminates within � + 1 iterations.
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Proof. Let ei denote 
∑

leaf u

∑�
j=1(1 i f demandu[ j] = U ), the number of unfinalized edges (i.e., not validated and not invalidated edges) 

going from level i to level i + 1.

1. If nrobots ≥ ei , then each of the ei unfinalized edges can be explored and all nodes in level i + 1 accounted for by validating exactly 
one edge each among the ports at level i nodes (and invalidating all other unfinalized edges at level i nodes) – thus, the while loop 
can be exited after one iteration as demandu[ j] 
= U for any u at level i and for any j and the first clause of the while loop condition 
is falsified.

2. If nrobots < ei , then nrobots robots will be pressed into service for exploration of level i + 1, at least �nrobots/�� nodes at level i + 1
will be visited uniquely in this iteration (i.e., not visited in earlier iterations) via unfinalized edges, and hence at least �nrobots/��
ports (edges) at level i, that are currently marked as demandu[ j] = U will be validated with change demandu[ j] = V . For the next iter-
ation of the while loop, ei will be decreased by at least this amount and �nrobots/�� ports (edges) at level i will change demandu[ j]
to V . It follows that within � + 1 iterations, one of the following will occur.
(a) > nrobots ports at level i will be validated. The second clause of the while loop condition is falsified and the loop is exited.
(b) = nrobots ports at level i will be validated and 

∑
leaf u

∑�
j=1(1 if demandu[ j] = U )] = 0. This happens because no ports were 

validated in iteration � + 1 which is because in � iterations at least nrobots ports could have been validated and if exactly 
nrobots ports were validated, there were no remaining unfinalized ports in iteration � + 1. The first clause of the while loop 
condition is falsified and the loop is exited.

(c) nrobots ≥ ei within the first � iterations. By the reasoning given above in part (1), in one additional iteration, the loop is exited.

In all cases, the loop is exited within � + 1 iterations. �
Lemma 5.2. A BFS tree is induced in the underlying graph by Algorithm Rooted_Graph_Disperse_BFS given in Algorithm 3.

Proof. We show by induction on the hypothesis that “all nodes at distance i (along shortest path) from the root have a settled robot that 
is assigned level = i, or there are no more robots to assign to some such nodes.” The hypothesis is clearly true for level = 0 and can be 
seen to be true for level = 1 by following the execution of the algorithm.

We now assume the hypothesis for level = x (x ≥ 1) and prove it true for level = x + 1. If level x is filled for iteration with level = x − 1
and some robots are left over, the algorithm moves to level = x iteration of the main loop, otherwise we are done with the proof. 
Procedure Determine_Leaf_Demand(x) correctly identifies all nodes at level x + 1 and the number of unfinalized edges going to such nodes 
from level x nodes is set to ex = 

∑
u at level x

∑�
j=1(1 i f demandu[ j] = U ).

1. If nrobots ≥ ex , then after one iteration of the while loop of Populate_Next_Level(x), all nodes of level x + 1 are assigned robots (i.e., 
all ports from level x leading to level x + 1 are marked V or I) as 

∑
u at level x

∑�
j=1(1 i f demandu[ j] = U ) = 0. After one traversal of 

robots up and down the tree for correct distribution of robots, robots settle at all the level x + 1 nodes. Each node at level x + 1 has 
its corresponding outgoing port j from level x parent u set to demandu[ j] = V , with more robots left at vroot for populating higher 
levels if nrobots >

∑
u at level x

∑�
j=1(1 i f demandu[ j] = V ).

2. If nrobots < ex , then (as argued in the proof of Lemma 5.1), it follows that within � + 1 iterations of the while loop of Popu-
late_Next_Level(x), one of the following will occur.
(a) > nrobots ports at level x will be validated. The second clause of the while loop condition is falsified and the loop is exited. All 

the remaining robots (nrobots) can be accommodated at level x + 1 nodes and some nodes at level x + 1 will not be assigned any 
robots because the algorithm has run out of robots. There will be no further levels in the BFS tree.

(b) = nrobots ports at level i will be validated and 
∑

leaf u

∑�
j=1(1 if demandu[ j] = U )] = 0. The first clause of the while loop condi-

tion is falsified and the loop is exited. Level x + 1 is filled and there are no remaining robots.
(c) ex gets decreased and nrobots ≥ ex within the first � iterations. By the reasoning given above in part (1) for nrobots ≥ ex , in one 

additional iteration, the loop is exited. Now either
i. ≥ nrobots edges have been validated (adding those validated before this iteration to those validated in this iteration), in which 

case nrobots robots are accommodated at level x + 1, and some nodes at level x + 1 remain free because the algorithm has run 
out of robots (if ≥ is strictly >), or

ii. < nrobots edges have been validated (adding those validated before this iteration and in this iteration), in which case all the 
nodes at level x + 1 will be assigned and settled with robots, with more robots left at vroot for populating higher levels.

The correctness of the induced BFS tree follows. �
Theorem 5.3. Algorithm 3 (Rooted_Graph_Disperse_BFS) solves Dispersion on single-rooted graphs in O (D�(� + D)) rounds and requires 
O (log D + � log k)) memory using the local communication model.

Proof. There is one robot settled at each node of the BFS tree induced (Lemma 5.2); hence dispersion is achieved.
In one iteration of the main while loop:

1. Determine_Leaf_Demand(i) does 2-neighborhood traversals in parallel, and hence takes O (�2) rounds.
2. In each of the � + 1 iterations of the while loop of Populate_Next_Level(i) (Lemma 5.1), the upward movement and the downward 

movement of the robots takes 2i rounds and the following code block based on the value of winner takes 2� rounds. This is followed 
by one upward and downward movement of the robots outside the while loop, which takes 2i rounds.
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So the time complexity for each iteration of the main while loop is �2 + (� + 1)(2� + 2i) + 2i. By Lemma 5.2, a BFS tree is induced and 
hence the maximum number of levels is D , which is the number of iterations of the while loop of Rooted_Graph_Disperse_BFS. Thus the 
overall time complexity is 

∑D
i=1 1(�2 + (� + 1)(2� + 2i) + 2i) = O (D�(� + D)).

The variable nrobots takes log k bits, level and i take log D bits each, demand[1 . . .�] takes � log k bits, child_id[1 . . .�] takes � log k
bits, parent_id takes log k bits, parent takes log � bits, and winner takes 1 bit. The synchronize() can be implemented by a log k bit 
counter.

The local communication model suffices because we can simulate the global communication in the pseudocode by local communication 
without increasing the asymptotic complexity.

1. The directed broadcasts B1 can be simulated by each settled robot moving up to its parent and back, to communicate the demand of 
its sub-tree.

2. Also, to evaluate the condition in line (11), leaf nodes trigger a convergecast up the tree wherein each settled robot moves one level 
up to its parent to convey its subtree variables; it waits there until the root evaluates the condition; the result is read in a tree 
broadcast-like action down the tree wherein each waiting child at the parent’s original position locally reads the result and moves 
down one level to its original position to convey the result to its children who are waiting there.

3. The synchronize can be implemented using a mechanism similar to that in point 2 above.

The theorem follows. �
6. BFS algorithm for arbitrary graphs (Theorem 1.2(b))

In this section, we adapt the single-rooted algorithm Rooted_Graph_Disperse_BFS (Algorithm 3) to the multi-rooted case. We present and 
analyze Graph_Disperse_BFS (Algorithm 4), which is a BFS-based algorithm that solves Dispersion of k ≤ n robots on an arbitrary n-node 
graph in O ((D + k)�(D + �)) time with O (log D + � log k) bits of memory at each robot using the global communication model. This 
algorithm has lower run-time than the O (�D) time of the best previously known algorithm [19] for arbitrary graphs (Table 1) using the 
local communication model. Furthermore, it is the first such algorithm using the BFS approach to solve Dispersion. This algorithm also 
contributes to BFS tree creation in distributed systems with concurrently initiated BFS tree creations from different nodes.

6.1. The algorithm – general case

We adapt the single-rooted algorithm to the multi-rooted case, see Algorithm 4. From each root, a BFS tree is initiated in parallel. A tree 
is identified by root , the robot ID settled at the root. When two (or more) BFS trees meet at a node, a collision is detected and a Collide
message is broadcast. This collision detection may happen in Determine_Leaf_Demand or in Populate_Next_Level. In Collision_Processing, 
a tree with the highest depth among the colliding trees is chosen to subsume the other tree(s) it has directly collided with, and a 
corresponding Subsume message(s) is broadcast. Settled robots in a subsumed tree change their state and are not settled any more, and 
all the trees that are subsumed disappear and join the subsuming tree which will have maximal depth. (All subsuming trees will have 
maximal depth because the others with lower depth are not active.) In Subsume_Processing, the robots of the other (subsumed) tree(s) 
are collected at the root of the subsuming tree. The subsuming tree then continues the BFS algorithm at the same depth by executing 
Populate_Next_Level again if nrobots = 0 and lvlf ull = f alse (which tracks if the level has not been filled completely), i.e., level i + 1 may 
not be fully populated yet, where i is the current maximum level of settled robots. Collisions may occur again in Populate_Next_Level and 
hence Collision_Processing and Subsume_Processing may have to be re-executed. This may repeat but each time, at least one BFS tree gets 
subsumed and hence the total number of serial executions of the three procedures is bounded by k − 1. In the execution of this algorithm, 
there are synchronize() statements to ensure all tree growths occur in lock-step. Such barrier synchronizations can be implemented in the 
global communication model by a log k-sized counter.

A collision is detected in tree with root root when a robot visits a node at level i + 1, where i is the current maximum level of settled 
robots, from node u along outgoing port outu . A 4-tuple collision record T = 〈root, i + 1, u, outu〉 is associated with this direction of the 
exploration collision. In the code, we refer to the third and fourth parameters as bordernode and borderport , respectively. A message 
Collide(〈root, i + 1, u, outu〉, 〈root′, lvl′, v, outu〉) is broadcast to indicate that the exploration denoted by the first parameter has collided 
with the second parameter exploration/tree.

A unique robot executes Collision_Processing to process the Collide messages. It creates an undirected Collision graph GC = (V C , EC ), 
where

V C = {T .root | Collide(T ,∗) or Collide(∗, T ) message is received }
EC = {(T .root, T ′.root) | at least one Collide(T , T ′) message is received }

It then creates a Maximal Independent Set (MIS) M from among those nodes T .root of V C having T .depth = i + 1, where i is the current 
maximum level of settled robots. For each tree identified by x ∈ M , it includes adjacent trees identified by T ′′.root ∈ V C with which there 
has been a collision, in set P (x). Such trees T ′′.root may have T ′′.depth ≤ i + 1. (If T ′′.depth < i + 1 then T ′′ is not active, (which can 
happen in line 28), and if T ′′.depth = i +1 then T ′′ is active (first instance of broadcast in line 37) or inactive (second instance of broadcast 
in line 37).) For each x ∈ M , trees in P (x) \{x} are asked to collapse and subsume into tree identified by x, by broadcasting Subsume(T , T ′′); 
when they get subsumed by the tree x ∈ M , this unblocks the x tree. Note that if tree T ′′.root /∈ M is adjacent to multiple trees x, x′ ∈
M , the tree T ′′.root will be asked to collapse and be subsumed in to only one of those trees in M . However, T ′′.root no longer blocks 
both x and x′ . The MIS construction guarantees that if there are two adjacent trees of depth i + 1 (hence active) in V C , either one will be 
subsumed into the other or at least one of them will get subsumed by yet other(s). Hence, unblocking occurs. For trees y /∈ M such that 
y.depth = i + 1, they must have a neighbor z such that z ∈ M and tree z subsumes tree y. Thus, all active trees (which are those having 
level i + 1), whether in or outside M , unblock or get subsumed.
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Algorithm 4: Algorithm Graph_Disperse_BFS to solve Dispersion in global model for multi-rooted case. r denotes a settled robot, if 
any, at that node.

1 Initialize: nrobots ← number of robots; level, i, demand[1 . . .�], child_id[1 . . .�], parent_id, parent , winner, lvlf ull
2 robot with lowest ID settles at root, nrobots ← nrobots − 1
3 while nrobots > 0 do
4 Determine_Leaf_Demand(i)
5 Populate_Next_Level(i)
6 Collision_Processing, Subsume_Processing, synchronize()
7 while nrobots > 0 ∧ lvlf ull = 0 do
8 Populate_Next_Level(i)
9 Collision_Processing, Subsume_Processing, synchronize()

10 synchronize() and while waiting for synchronization execute Subsume_Processing when any Subsume messages received, i ← i + 1

11 Execute Subsume_Processing when any Subsume messages received
12 Collision_Processing: executed by robot rmin lowest ID robot
13 Using all Collide messages broadcast since the last execution of Collision_Processing,rmin creates an undirected Collision graph GC = (V C , EC ).
14 X ← V C

15 while ∃x ∈ X, growing level i + 1 do
16 M ← M ∪ {x}, P (x) ← {x} ∪ { 1-hop neighbors of x}, X ← X \ P (X)

17 ∀x ∈ X, ∀y ∈ P (x) \ {x} do: among Collide(T , T ′) received such that (T .root = x ∧ T ′.root = y), select one and broadcast Subsume(T , T ′); if no such 
selected then among Collide(T , T ′) received such that (T .root = y ∧ T ′.root = x ∧ T .lvl = T ′.lvl = i + 1), select one and broadcast Subsume(T ′, T )

18 Subsume_Processing: process received Subsume(T,T’) messages as follows.
19 if robot j is waiting (without settling) at node v at level i + 1 and j.root = T .root then
20 j sets level ← i + 1, parent_id ← u (its parent’s ID), parent ← in (port through which it entered), j settles at v .

21 else if robot j is waiting (without settling) at node v at level i + 1 and j.root = T ′.root then
22 j retraces its step back to u (its parent), (then moves on to the root of the tree that subsumes its tree as described next.)

23 else if robot j is waiting (without settling) at node v at level i + 1 and no Subsume message has been received such that j.root = T .root or j.root = T ′.root
then

24 j sets level ← i + 1, parent_id ← u (its parent’s ID), parent ← in (port through which it entered), j settles at v .

25 For message Subsume(T , T ′), T ′.bordernode identifies a path H from T ′.root to T ′.bordernode by nodes along H serially broadcasting 
B2(my_id, parent_id) progressively up the path from T ′.bordernode to T ′.root (i + 1 serial broadcasts suffice).

26 In parallel, all robots in T ′ , except those robots along H , beginning from the leaf node robots move up tree T ′ to T ′.root using the parent pointers 
(i + 1 rounds suffice). The robots in T ′ then move down path H from T ′.root to T ′.bordernode (i + 1 rounds suffice); then to T .bordernode via 
T ′.borderport and then up to T .root using the parent pointers (i + 1 rounds suffice). nrobots at T .root is then incremented with the count of the 
newly arrived robots.

27 Determine_Leaf_Demand(i)

28 Each settled robot r at a leaf node u at level i does a 2-bounded DFS to count the number of neighbors v at level i + 1. On exploring (u, v) via 
outu , (i) if v has a settled robot r′ of another tree with root root′ and level lvl′ (lvl′ < i + 1), r broadcasts 
Collide(〈root, i + 1, u, outu〉, 〈root′, lvl′, v, inv 〉) – then discount and backtrack, (ii) else if v is level i − 1 in my tree, then discount and backtrack, 
(iii) else if v has a level i − 1 neighbor in my tree, then v is level i node - discount and backtrack, (iv) else v is a level i + 1 node, hence robot r
sets demandu[outu] ← U .

29 Wait until �2 rounds are elapsed or synchronize().
30 Populate_Next_Level(i): changes to Algorithm 3 are given
31 Lines 18-23: are to be executed only with reference to robots belonging to my own tree (having same root).
32 Line 32, replace by the following block:
33 The robot x reaches node v at level i + 1 via incoming port inv

34 if no other robot from any tree has arrived at or is settled at v then
35 level ← i + 1, parent_id ← u, parent ← inv , x settles at the node

36 else
37 For each other robot r′ of tree with root root′ and level i + 1 that arrived from u′ via outu′ , broadcast 

Collide(〈root, i + 1, u, outu〉, 〈root′, i + 1, u′, outu′ 〉). If robot r′ of another tree with root root′ and level lvl′ (= i + 1) is already settled at v , 
broadcast Collide(〈root, i + 1, u, outu〉, 〈root′, i + 1, v, inv 〉). Wait until Subsume_Processing is executed.

In Subsume_Processing, for each received message Subsume(T , T ′), where T = 〈root, i + 1, u, outu〉 and T ′ = 〈root′, lvl′, v, outu〉, the 
path H from root′ to v is identified in a backwards manner, via parents, as follows. Nodes along H beginning from bordernode leaf 
node v serially broadcast B2(my_id, parent_id) progressively up the path from v to root′ (i + 1 serial broadcasts suffice). On receiving 
B2(x, my_id) at robot my_id, the next node on the path H is x, reachable via outgoing port child_id−1[x], and my_id also broadcasts 
B2(my_id, parent_id) to continue identifying the previous nodes along the path. (The path H can alternately be identified by each robot 
beginning with v serially moving up to its parent (to let it identify which port to take towards v) and back to its original position.)

All robots in T ′ except those along H move upwards and collect to root′ . They move along H down to v , then to u, and upwards in T
to root . These movements take 3(i + 1) steps.

Theorem 6.1. Algorithm 4 (Graph_Disperse_BFS) solves Dispersion in multi-rooted graphs in O ((D +k)�(� + D)) rounds and requires O (log D +
� log k)) memory using the global communication model.
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Proof. Each concurrently-initiated BFS tree grows until it collides with another (or runs out of robots). When two (or more) trees collide, 
then in the processing of the Collision graph we have the following. (1) For each x ∈ M , trees in P (x) \ {x} are asked to collapse and 
subsume into tree identified by x, by broadcasting a Subsume message; when they get subsumed by the tree x ∈ M , this unblocks the x
tree. (2) For trees y /∈ M such that y.depth = i + 1, they must have a neighbor z such that z ∈ M and tree z subsumes tree y. Thus, all 
active trees (which are those having level i + 1) unblock or get subsumed. On unblocking, the tree continues to grow. It can collide at 
most k − 1 times, hence at most k − 1 invocations of Collision_Processing and Subsume_Processing. It continues to grow until termination 
(exhausting all the unsettled robots at its root). On termination, one robot is settled at each distinct node of the BFS tree(s). Hence
Dispersion is achieved.

Building on the proof of Theorem 5.3 for Algorithm 3, in addition to O (
∑D

i=1 �2 + i�) = O (�D(� + D)) rounds, we have at most 
k −1 executions of Populate_Next_Level, Collision_Processing, and Subsume_Processing. Let there be x such iterations corresponding to x serial 
subsumptions by the tree in question. Let the depth (level) of the tree for the jth subsumption be d j . Then the following additional time 
cost is incurred:

x∑
j=1

(� + 1)(2� + 2d j) + 2d j (for Populate_Next_Level, see proof of Theorem 5.3)

+
x∑

j=1

3d j (for Subsume_Processing) ,

d j < D and x < k. Thus the additional time is O (�2k + 2kD� + 3Dk). The total time complexity follows.
The logic introduced in the multi-rooted algorithm adds variables (log k sized counters for synchronize()) that do not increase the bit 

complexity.
The global communication model needs to be used for issuing and processing the broadcasts. The theorem follows. �

Proof of Theorem 1.2: Follows from Theorems 5.3 and 6.1.

7. Concluding remarks

We have presented two results for solving Dispersion of k ≤ n robots on n-node arbitrary graphs. The first result is based on a DFS 
traversal and the algorithm performs better than the best previously known algorithm using the local communication model by a O (log k)

factor, with an additional O (�) bits in memory. The second algorithm is based on a BFS traversal and runs significantly faster than the 
O (�D) time of the previously known algorithm using the local communication model.

For future work, it will be interesting to solve Dispersion on arbitrary graphs using a DFS-based algorithm with time O (k) or improve 
the existing time lower bound of �(k) to �(min(m, k�)). Furthermore, it will be interesting to achieve O (min(m, k�)) time bound in 
Theorem 1.1(b) with only O (log(k + �)) bits per robot, removing the additional O (�) bits factor. For BFS-based algorithms, it will be 
interesting to improve the (D + k) factor to O (D) for arbitrary graphs. The fourth interesting direction will be to consider faulty robots. 
The fifth interesting direction will be to extend our algorithms to semi-synchronous and asynchronous settings.
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