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Abstract

Distributed applications using file sharing and file repli-
cation, conferencing, and delivery in multimedia systems of-
ten need to use the semantics of causal multicast. Causal
multicast in a mobile system is complicated by the various
limitations imposed by the mobile system. Though there are
different directions to improve the performance of causal
multicast algorithms in mobile systems, at the core of such
algorithms is the module to impose causal delivery among
a set of nodes – which may be either mobile hosts, or mobile
service stations, or peers at a higher level in the intercon-
nection hierarchy. We show how to adapt the optimal causal
multicast algorithm of Kshemkalyani-Singhal to mobile net-
works, and then show simulation results comparing its per-
formance with that of other algorithms for causal multicast
in mobile networks.

1. Introduction

Semantic multicast is useful in areas such as manag-
ing replicated database updates, shared files, conferencing,
collaborative tele-immersive sessions, and data delivery in
multimedia systems. Let ������� denote the event of a
process handing over the message � to the communica-
tion subsystem. Let ������	��� denote the event of �
being delivered to a process after it is been received by
its local communication subsystem. The system respects
the semantics of causal ordering (CO) [5] iff for any mes-
sages �� and �� sent to the same destination, (��������
����������) �� (������	���� ��������	����). 1

Many causal ordering algorithms have been proposed. See
[6, 8, 10, 12] for good surveys.

A causal ordering algorithm implementation has two
forms of space overheads, viz., the size of control infor-
mation on each message (message space overhead) and

1Events in a distributed execution are ordered by the causality relation
[13], denoted by ��. For two events �� and ��, �� ���� iff (i) �� and
�� occur on the same process and �� occurs before ��, or (ii) �� is the send
of a message and �� is the delivery of that message, or (iii) there exists an
event �� such that �� ���� and �� ����.

the size of buffer space at each process (log space over-
head). The causal ordering algorithm by Raynal, Schiper
and Toueg (RST) [16] is a canonical solution. It has a
fixed message space overhead and log space overhead of
�� integers, where � is the number of processes in the sys-
tem. Kshemkalyani and Singhal identified and formulated
the necessary and sufficient conditions on the information
required for causal multicast, and gave an optimal algo-
rithm (KS) to implement them [10, 11, 12]. This algorithm
was proved to be optimal under all network conditions,
but without making any simplifying system/communication
assumptions [10, 11, 12]. Its message space, log space,
and time overheads have the same pattern. Though the
worst-case space complexity of the algorithm is 
���� inte-
gers, extensive simulations under a wide range of conditions
showed that the overhead is closer to being linear in �, and
it has only a small dependence on (i) the network load, con-
gestion, and message transmission times, (ii) frequency of
communication, and (iii) percentage of multicasts [7].

Multicast in a mobile cellular network has received much
recent attention. We assume a mobile cellular network con-
sists of mobile hosts (MH) which communicate via static
hosts called Mobile Support Stations (MSS) (see Fig. 1).
For simplicity, it is assumed that the system consists of only
MHs and MSSs. The MSSs are connected to each other by
a high-speed wire-line network. The geographical cover-
age area under a MSS is called a cell. Each MH belongs to
at most one cell at a time. The communication between a
MH and its MSS is via a wireless channel. Whenever a MH
moves from one cell to another, a hand-off procedure is exe-
cuted between the two MSSs of the two cells involved. (For
example, between MSSs of Cell A and Cell E in Fig. 1.)
We denotes the number of MSSs and MHs by �� and ��,
respectively. There are several algorithms for causal multi-
cast in mobile cellular networks [2, 3, 14, 15, 18, 19].

Alagar and Venkatesan [2] presented a suite of algo-
rithms that all use RST [16] to enforce causal order. These
algorithms assume reliable wireless and wire-line networks.
They use the fact that the wireless channel between MSS
and each MH is FIFO, thus the log for each MH for causal
ordering is maintained at the MSS level rather than at MHs.
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Figure 1. Mobile cellular network architecture.

AV-1 has a message overhead of ����
�
� and requires ����

messages for hand-off. AV-2 has a low message space over-
head of ������, and requires ����� messages (a broadcast)
for hand-off. AV-2 is smart in realizing that it is sufficient
only to maintain causal order among the MSSs; each MSS
acts as proxy for all MHs in its cell. Note that in AV-2, a
MSS does not have to broadcast a message to all the MSSs,
but it does a broadcast to all MSSs only when a hand-off is
executed. The algorithm in [18] is a variant of AV-2. The
algorithm in [19] also adapts RST to achieve causal order in
mobile networks. Its message space overhead is��������.
The algorithm by Prakash, Raynal and Singhal (PRS) [15]
combines an improved version of the RST causal order al-
gorithm for static networks with that in [1], an algorithm for
multicast with ‘exactly-once delivery semantics’ in mobile
cellular networks. PRS assumes all wire-line and wireless
networks to be reliable. Causal information is maintained at
each MSS, for all the MHs in the system. The MSS broad-
casts each message it receives from a MH in its cell, to all
other MSSs. A MSS delivers the message to the destination
MH if that MH is in its cell, once the message satisfies the
causal order delivery condition. The message overhead of
PRS is ����

�
�. An additional drawback is that MSSs have

to broadcast each message.
The causal multicast algorithm presented in [3] uses co-

ordinators at a level higher in a hierarchy than the MSSs.
The coordinators broadcast the messages to all the MSSs
which in turn broadcast them to all MHs. The decision
of causal ordering delivery takes place at the MH. The
wired network is assumed to be FIFO and reliable, while
the wireless network is assumed to be FIFO but messages
can be lost. The algorithm has a message space overhead
of �����, where �� is the number of coordinators in the
system model. This algorithm is part of a larger suite of
fault-tolerant message ordering algorithms in mobile sys-
tems, and hence the need for the coordinator nodes. The
algorithm in [14] also does a broadcast among MSSs, and
then within each cell to MHs. As broadcast is used in
[3, 14], causal ordering requires ���� message space over-

head on ���� messages constituting a broadcast, where �
is the number of processors involved [4, 6]. Although the
message complexity is linear in the number of MSS or co-
ordinators, all the messages must be broadcast.

All the multicast algorithms for mobile systems dis-
cussed till now can be divided into two categories.

Category 1: Messages are sent using the point-to-point
communication paradigm, as in [2, 15, 18, 19]. The
causal order has to be maintained using a ����� mes-
sage space overhead. Only one message needs to be
sent to the MSS which has the destination MH and
no broadcasts are needed except during hand-off, (al-
though [15] always uses broadcasts).

Category 2: All the messages are broadcast, as in [3, 14].
Hence, an algorithm similar to [4, 6] can be used to
achieve causal order. The message space overhead is
linear in �, (per message). But broadcasting a mes-
sage of size ����, unless implemented with a shared
medium/hardware support, requires � point-to-point
messages of size ���� each (or even����� messages,
depending on the implementation such as flooding).
This results in at least a net����� message space over-
head per broadcast, in addition to the OS overhead of
handling more messages.

Although these differ significantly, a core module for Cate-
gory 1 is the causal ordering module for the static wire-line
network connecting the MSSs. The focus of this work is to
address the extent to which the ����� overhead – where �
is ��, ��, or any equivalent usage – is reduced in practice
for this network. We make the following contributions.

1. We show how to adapt the optimal KS algorithm to the
core causal ordering module in mobile systems.

2. We then show via extensive simulations that KS
greatly outperforms PRS which is a representative al-
gorithm for mobile cellular networks.

3. From the above analysis, it is seen that the KS algo-
rithm provides the best performance for the core CO
module among Category 1 algorithms, and it competes
closely with the (inflexible) Category 2 algorithms that
broadcast each message even when not needed.

We stress that our focus is on the core CO module. KS
can be used orthogonally with other directions, such as the
following, to further improve performance.

� Use a hierarchical cluster organization [3, 4], where
the CO module is used in each cluster.

� Send incremental changes, as in [17].

� Reduce falsely causally-ordered messages [9].

Section 2 outlines the RST algorithm, the KS algorithm,
and the PRS algorithm. Section 3 adapts the KS algorithm
to a mobile system. Section 4 gives the comparative simu-
lation results. Section 5 concludes.
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Figure 2. An example to illustrate the Propa-
gation Constraints [10, 11, 12].

2. Overview of algorithms
2.1. The RST algorithm

Each of the � processes in the system maintains a �� �
matrix, called the ���� matrix. ���� ��� �� is the pro-
cess’s best knowledge of the number of messages sent by
process �� to process �� . A process also maintains an ar-
ray 	�
�� of size �, where 	�
�� �� is the number of
messages sent by process �� that have already been deliv-
ered locally. The ���� matrix of the sender process is
piggybacked on each message sent. When process � � re-
ceives message � with the matrix �� piggybacked on it,
the message is delivered only if, � �, 	�
�� ���� �� ��� ��.
�� then updates its local matrix ����� as: ��� �
��� � � � � ��, ����� �� �� � ��������� �� ��� �� �� ���.
The space overhead on each message and in local storage at
each process is the size of the matrix ���� , which is ��

integers.

2.2. The KS algorithm

Kshemkalyani and Singhal identified the necessary and
sufficient conditions on the information required for causal
multicast, and proposed an algorithm (KS) to implement the
conditions [10, 11, 12]. The causal past (resp., future) of an
event � is the set ��� � �� ���� (resp., ��� � � �����). A
path in the computation graph is termed a causal path.

The KS algorithm achieves optimality by storing in local
message logs and propagating on messages, information of
the form “� is a destination of �” about a message � sent
in the causal past, as long as and only as long as

(Propagation Constraint I:) it is not known that the mes-
sage � is delivered to �, and

(Propagation Constraint II:) it is not known that a message
has been sent to � in the causal future of �������,

and hence it is not guaranteed using a reasoning based
on transitivity that the message � will be delivered to
� in CO.

Let ��	���� denote the set of destinations of � . The
Propagation Constraints also imply that if either (I) or (II)
is false, the information “� ���	����” must not be stored
or propagated, even to remember that (I) or (II) has been
falsified. In addition to the Propagation Constraints, the al-
gorithm follows a Delivery Condition: A message � � that
carries information “����	����”, where message � was
sent to � in the causal past of ������ ��, is not delivered
to � if � has not yet been delivered to �.

The Propagation Constraints are illustrated with the help
of Fig. 2. The message � is sent by process � at event � to
process �. The information “� ���	����”

	 must exist at �� and �� because (I) and (II) are true.

	 must not exist at �� because (I) is false

	 must not exist at ��� �	� �
 because (II) is false

	 must not exist at ��� �� because (I) and (II) are false

��	���� can be represented in the local logs at pro-
cesses and piggybacked on messages using the data struc-
tures shown in Fig. 3 [7]. Assuming that pid is an integer,
the size of a LogStruct structure is �  ����������� in-
tegers, where ������� is the number of elements in the set
� . The log space overhead is the sum of the sizes of all the
entries in the log. The size of overhead on a message is the
size of the MsgOvhdStruct structure sent on it. This can
be determined as �  �����������  ����������, where
������� is the sum of the sizes of all the entries in the set
� of LogStruct. The message and log space overheads
of the KS algorithm, as measured using this data structure,
are denoted by KS in our simulation.

Rather than storing the log as a variable length array of
type LogStruct, a 2-dimensional bit array �������� can
be used to simplify the data structure. �������������� � �
indicates the presence of an entry in the log, correspond-
ing to the latest message sent from �� to �� . The modified
log contains only the clock value of the send events of the
messages whose entries are flagged in ��������. The to-
tal overhead is now �� !  �number of entries in the log�
integers, where W is the number of bits used to represent
an integer. The message and log space overheads of the
KS algorithm, based on this data structure and assuming
! � ��, are denoted by KS’. The values for KS’ depend
on the value of � and on how sparse the log is.

2.3. Algorithms for cellular networks
With the emerging growth of mobile cellular networks,

several recently proposed algorithms [2, 3, 14, 15, 18, 19]
provided causal ordering in such networks. The algorithms
[2, 15, 18, 19] use some variant of the RST algorithm, that
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type LogStruct = record type MsgOvhdStruct = record
sender : pid; sender: pid;
clock: integer; clock: integer;
numdests: integer; numdests: integer;
dests: array[1..numdests] of pid; numLogEntries: integer;

end dests: array[1..numdests] of pid;
olog: array[1..numLogEntries] of LogStruct;

end

Figure 3. The log data structure and message overhead data structure [7] for KS.

is tailored for a mobile architecture. For example, the PRS
algorithm [15] tracks direct predecessor messages using the
mobile system framework of Acharya and Badrinath [1].

The multicast message overhead of PRS consists of (i)
the vector��, each entry of which is a set of up to � tuples
of the form ����� ��	 �
�, (ii) counter ����, (iii) the list of
destinations, and (iv) the ��� of the sender. As each entry in
�� is a set of tuples, the size of the vector�� is two times
the number of tuples in ��. By using a �� bit string, the
size of �� can be reduced to �number of tuples ���� �
integers, where  is the number of bits per integer. Thus,
�
��� ��� ����
� ���� ������� � ����������
������ �����
� � � ����������
������ �number of tuples � ��� �

The log overhead at each processor is the matrix
���������, vector ��, and counter ����. This adds to ��

� (number of tuples ���� ) ��.  is assumed to be 32.
The message overhead of PRS using the data structures to
support the bit-string representation is denoted by PRS in
the simulations.

3. Causal multicast for cellular networks
The KS causal multicast algorithm can be adapted to a

mobile cellular network. Moving from a static to a mo-
bile network presents several problems. The limitations of
memory, computational power, and battery life of a mobile
host (MH) require a minimum algorithm implementation at
the MH. As the MH can move from one cell to another, it
may not receive a message at all or it may receive multi-
ple copies. Another issue is related with the lifetime of the
messages at MSS, i.e., for how long should a message be
cached. Acharya and Badrinath [1] present an algorithm
that delivers a multicast message exactly once to a group
of mobile destinations. PRS [15] presents a scheme that
uses the above algorithm [1] coupled with its own causal
ordering module to implement causal ordering for mobile
networks. A similar approach can be used to combine KS
and the above algorithm [1]. The added advantage of us-
ing KS is the significant decrease in message overhead for
communication between MSSs.

3.1. KS algorithm adapted to cellular networks

1. Data structures: Every mobile host ��� has a log �
��
(see Section 2.2) and array ������������ associated with

it. These data structures are stored only at the (local) MSS in
the cell. The �
�� is used for maintaining causal order with
respect to ���. The array ������������, initialized to
all zeros, is used to guarantee that each message is delivered
once to ���. A MSS also maintains a sequence number
���� , which is incremented each time after it forwards a
message on behalf of any of the MHs in its cell.

Each message forwarded by a MSS ������� on behalf
of any MH in its cell is associated with a message-id ���,
defined to be a tuple ��������������.
2. Algorithm overview: All the processing and maintain-
ing data structures for enforcing causal order, exactly once
delivery, and hand-offs is done by the MSSs. Consider the
sending of a message from ��� to ��	. ��� sends
the message to its MSS, �������, which updates �
�� for
causal delivery, then appends ��� and �
�� (Section 2.2)
to the message, and broadcasts the message to all MSSs.
Once the message is sent, ������� increments ���� by
one. When a MSS receives a message� destined for��	

from another MSS, it tests the following conditions.
� Destination ��	 is present in the local cell
� ����	��������� � ����

� The Delivery Condition (Section 2.2) is satisfied for�

If these conditions are satisfied, the message is deliv-
ered to ��	. For each ��
 that is not a destination,
����
��������� is incremented. The message is also
buffered, irrespective of the outcome of the tests. On re-
ceiving the message, ��	 sends an ack to its MSS, which
now increments ����	���������, updates �
�	 as per
KS, deletes the buffered message, and forwards the ack to
�������. ������� then broadcasts message�����������
to all MSSs. When a MSS receives �����������, it clears
any information about message ��� from its buffer.

Hand-off for ��� is handled by passing
������������ and �
�� from the old MSS to the
new MSS. The transfer is delayed if a message has been
delivered to ��� but the update of ������������ and
�
�� have not taken place.

3.2. Other adaptations of KS to cellular networks

The above adaptation was based on [1] to show an adap-
tation similar to PRS. KS can be adapted to cellular net-
works in more efficient ways.
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Figure 4. Average message overhead as a function of �.

� Causal message delivery can be implemented by send-
ing messages directly between MHs through wireless
(even ad-hoc) networks. In this case, the local logs
can be maintained by the MHs themselves. The low
bandwidth of wireless networks and the low memory
capacity of MHs makes KS most suited for the core
module for causal multicast.

� KS can be used as the core CO module with other ar-
chitectures for mobile networks, such as AV-2 [2]. In-
stead of the RST algorithm, the use of KS will lead to
substantial decrease in the message overhead. There is
no need to broadcast each message to all MSSs. The
message is only sent to the MSS containing the recipi-
ent MH, using a location management scheme. Broad-
cast is used only during hand-off.

4. Simulation results
In the simulations of KS, KS’, and PRS, we assumed

w.l.o.g. that each MH runs a single process and that a re-
liable communication network delivers messages in FIFO
order for any pair of processes (MHs and MSSs). The sim-
ulation used Java2 1.4.1 SDK with Object Space JGL 4.0.
The simulation experiment setup and methodology are sim-
ilar to [7]; hence details are omitted.

The following system parameters are of interest.
� Number of processes (�).
� Mean inter-message time (MIMT): The inter-

message time is the average time between two mes-
sage send events. It is exponentially distributed about
the MIMT.

� Mean transmission time (MTT): The transmission
time of a message here implicitly refers to the msg.
size�bandwidth � propagation delay. We model this
time as an exponential distribution about the mean,
MTT. The MTT captures the various network distances,
available bandwidth, and congestion levels. For the
purpose of enforcing this mean, multicasts are treated
as multiple unicasts and transmission time is indepen-
dently determined for each unicast.

� Multicast frequency (M/T): The ratio of the number
of multicasts to the total number of message sends
(M/T) is the parameter on the basis of which the mul-
ticast sensitivity of the algorithms can be determined.
The number of destinations of a multicast is given by
a uniform distribution ranging from � to �.

The performance metrics used are the following.

� The average number of integers sent per message un-
der various combinations of the system parameters,
viz., �, MTT, MIMT, and M/T.

� The average size of the log in integers.

Simulation experiments were conducted for different
combinations of the parameters. For each combination, ten
runs were executed; the results of the ten runs did not differ
from each other by more than a percent. Hence, only the
mean is reported for each combination and the variance is
not reported. All the overheads are reported as a percentage
of the corresponding deterministic overhead �� of the RST
algorithm.
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Figure 5. Average message overhead as a function of MTT.

It was seen that for KS and KS’, the log space overhead
and time overhead followed the same pattern as the message
space overhead in all the experiments. For PRS, the log
space overhead is much worse than even the �� required by
RST. So we focus on the message space overhead compar-
isons, and the log space overhead plots are not shown. See
[7] for a detailed analysis of the behavior of KS and KS’.

4.1. Scalability with increasing �

The simulations were performed for KS, KS’, and
PRS for the combinations of the parameters (MTT, MIMT,
M/T) fixed at ������ ������ ����, ������� ������ ����,
������ ������� ����, and ������ ������ ����� while �

was varied up to 50 processors. For larger systems, a hi-
erarchical organization is typically used, where the num-
ber of processes � in each cluster can be controlled. These
four combinations of the parameter settings correspond to a
MIMT to MTT ratio of 2, 0.25, 32, and 8, resp.

The average message overhead is shown in Fig. 4. KS
and KS’ perform significantly better than PRS under all the
network conditions simulated. The curves for KS and KS’
show a similar trend, and are very close together for high
values of �. KS and KS’ are almost linear in �. As expected
for lower values of �, KS’ is more efficient than KS. At
higher values of �, KS’ approaches KS because the log is
very sparse and the �

� bit-array adds more overhead than
it reduces. We expect that for any set of traffic parameters,
eventually as � keeps increasing, some threshold value will
be reached beyond which KS performs better than KS’.

4.2. Impact of increasing transmission time

Increasing MTT is indicative of larger distances, de-
crease in available bandwidth, and increasing network con-
gestion. The simulations were performed for KS, KS’,
and PRS with the parameters (MIMT, M/T, �) fixed at
�������� ���� ���, ������� ���� ���, ������� ���� ���, and
�������� ���� ���, respectively. The MTT was increased
from 50�� to 6000�� for the first two cases, while it has a
range of 50�� to 1000�� for the later two cases. Thus, the
four cases had a MIMT to MMT ratio varied from 32 to 0.3,
8 to 0.067, 8 to 0.4, and 32 to 1.6, respectively. The average
message overhead is shown in Fig. 5.

KS and KS’ outperform PRS significantly in all cases,
and KS’ shows a lower overhead than KS. KS and KS’ are
not much sensitive to the MTT parameter.

4.3. Impact of decreasing communication load

This set of simulations studies the overhead behav-
ior of KS, KS’, PRS as a function of usage of com-
munication. The values of (MTT, M/T, �) were fixed
at ������ ���� ���, ������ ���� ���, ������� ���� ���, and
������ ���� ���. MIMT is varied from 50�� to 1200�� for
the first two cases and from 50�� to 12000�� for the other
two. Thus, the four cases had a MIMT to MMT ratio varied
from 1 to 24, 1 to 24, 0.125 to 30, and 1 to 240, respectively.
The average message overhead is shown in Fig. 6. Overall,
KS and KS’ perform much better than PRS. KS and KS’ are
not much sensitive to the MIMT parameter.
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Figure 6. Average message overhead as a function of MIMT.

4.4. Impact of increasing multicast frequency

This experiment studies the sensitivity of KS, KS’,
and PRS to multicast frequency. We ran simulations
for KS, KS’, and PRS, increasing M/T from 0.1 to
1.0 in steps of 0.1. The values of (MTT, MIMT,
�) were fixed at ������ ������ ���, ������ ������ ���,
������ ������ ���, and ������ ����� ���. MTT was in-
creased from 50�� to 75�� across the four runs. MIMT
was varied from 500�� to 1600��. Thus, the four cases
had a MIMT to MMT ratio of 6.67, 10, 8, and 32, respec-
tively. The average message overhead is shown in Fig. 7.

KS and KS’ are not much sensitive to the M/T param-
eter. The decrease in the overhead is much more for PRS
than for KS or KS’ – PRS gradually begins to approach KS
as multicast frequency increases. In the extreme case of full
broadcasts, the behavior will tend to be closer. Even though
there is a decline in the overhead for PRS with increasing
M/T, KS and KS’ are still significantly more efficient than
PRS. This is even more evident for a larger number of pro-
cesses.

5. Concluding discussion
Efficient causal multicast support is important for ap-

plications such as multiplayer gaming, text conferencing,
distributed multimedia interactions, and event notifications.
We first showed how to adapt the KS algorithm [10, 11, 12],
which has been proved to be optimal, to mobile cellular
networks. The adapted KS algorithm can be used for the
core causal ordering module. We then performed exten-
sive simulations to compare the overhead incurred by two

implementations of the KS algorithm – KS and KS’ – and
the PRS algorithm, for mobile cellular networks. KS and
KS’ were seen to have significantly lower overhead in all
respects. Specifically, the low message space overhead of
the KS algorithm is seen to be
� fairly independent of MIMT, MTT, and M/T.
� somewhat linear in �, making the KS algorithm very

scalable.

It can thus be concluded that for causal multicasts:
� The KS algorithm provides the best performance for

the core module used by the class of algorithms ([2, 15,
18, 19]) that send a point-to-point message between
each pair of MSSs involved.

� The KS algorithm competes closely with the class of
algorithms ([3, 14]) that do a broadcast, (which re-
quires ���� messages of size ���� each per broad-
cast), even when a broadcast is not required.

� The KS algorithm can be used in addition to other tech-
niques (such as hierarchical clustering, transmitting in-
cremental updates, and reducing false causal relation-
ships) to improve CO multicast performance.
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