
Middleware Clocks for Sensing the Physical World

Ajay D. Kshemkalyani
University of Illinois at Chicago

ajay@uic.edu

ABSTRACT

An important task in sensor networks is to sense locally to
detect global properties that hold at some instant in phys-
ical time. We propose software logical clocks, called strobe
clocks, that can be implemented by the middleware when
synchronized physical clocks are not available or are too ex-
pensive in resource-constrained environments. Strobe clocks
come in two flavors – scalar and vector. Let n be the num-
ber of sensors and p be the upper bound on the number of
relevant events sensed at a sensor. We propose an algorithm
using vector strobes that can detect all occurrences of a con-
junctive predicate in time O(n3p). The algorithm has some
false negatives but this is the best achievable accuracy in
the face of race conditions. We also present a variant algo-
rithm using scalar strobes; it needs time O(n2p) but may
also suffer from some false positives. We provide a char-
acterization of the errors. Both algorithms can also detect
relational predicates but with a greater chance of error. The
message complexity of strobe clocks (scalar and vector) and
both algorithms is O(np), which is the same as that of re-
porting each sensed event for detection of the predicate even
with synchronized physical clocks.

Categories and Subject Descriptors

C.2.4 [Distributed systems]: Distributed applications

General Terms

Theory, Design, Performance

Keywords

sensor networks, predicate detection, pervasive computing

1. INTRODUCTION
A sensor-actuator network is an asynchronous distributed

system of networked embedded sensors and actuators that
aim to sense-monitor-actuate the physical world. The moni-
toring is achieved via tracking a time-dependent image of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MidSens’10, November 30, 2010 Bangalore, India.
Copyright 2010 ACM 978-1-4503-0454-2/10/11 ...$10.00.

(spatio-temporal activities in the) physical world. Evaluat-
ing predicates on that image is an important problem [16].
The temporal component of the predicate specifies various
timing relations on the observed values of the variables that
need to satisfy the predicate. The most common of these
is the “instantaneous” snapshot of the variables; although
more complex timing relations exist, e.g., [9, 17, 18].

In this paper, we make the following contributions.

1. We propose a new software logical clock, called strobe
clock, that can be implemented by the middleware
when synchronized physical clocks are not available
or are too expensive in resource-constrained environ-
ments. These clocks “synchronize” only at relevant
events. They are useful to observe system state in
physical time at run-time. We use strobe clocks to
evaluate predicates [2] under a physical time modality
specification (Instantaneous) using no physical clocks.
Strobe clocks come in two flavors – scalar and vector.

2. Using vector strobes, we propose an algorithm that
can detect all occurrences of a conjunctive predicate
[2] in time O(n3p), where n is the number of sensors
and p is the upper bound on the number of relevant
events sensed at a sensor. The algorithm suffers from
some false negatives in the face of race conditions but
this is the best achievable accuracy. We also present
a variant algorithm using scalar strobes; it needs time
O(n2p) but may also suffer from some false positives.
We characterize the degree of accuracy of the predicate
detection algorithms. Both algorithms can also detect
the harder class of relational predicates [2], but with
a greater chance of error. The message complexity of
strobe clocks (scalar and vector) and both algorithms
is O(np), which is the same as that of reporting each
sensed event for detection of the predicate even with
synchronized physical clocks.

2. SYSTEM AND EXECUTION MODEL
Sensor-actuator networks and pervasive environments are

distributed systems that interact with the physical world in
a sense-and-respond manner [6]. The world plane consists of
the physical world entities and the interactions among them.
The network plane consists of the sensors/actuators and the
computer network connecting them.

For the network plane, we adapt the standard model of
a asynchronous message-passing distributed execution (see
[10]). We assume reliable FIFO communication and failure-
free execution. Each sensor/ actuator is modeled as a pro-

15

cess Pi(i ∈ [1 . . . n]); the local execution is a sequence of
alternating states and state transitions caused by “relevant”
events. Assume a maximum of p such events at any process.
The communication messages in the network plane may be
of two types. (1) Messages to assemble / monitor global
properties from locally sensed values, and to output to/ ac-
tuate the controlled devices. (2) Messages that mimic the
communication among the entities of the world plane. Such
messages attempt to capture the “true causality” [13] among
the events in the world plane, to re-create the time-varying
spatio-temporal image of the world plane. The communica-
tion in the world plane happens along what the literature
terms as covert channels; currently science does not know
how to detect this communication.

We have used an event-driven execution model. An event
occurs whenever a monitored value, whether discrete or con-
tinuous, changes significantly. The time duration between
two successive events at a process identifies an interval. We
model the event-driven activity at processes in terms of in-
tervals. The application seeks to detect a predicate that
is defined on attribute variables connected as a conjunc-
tive expression [2, 4] or a relational expression [2], and that
also specifies certain timing relationships on the intervals
in which the attribute values hold. The most popular tim-
ing relationship, “concurrent” or “simultaneous” or the “In-
stantaneously” modality, captures the notion of the instan-
taneous observation of the physical world.
Problem Motivation: No physically synchronized clock
service may be available from a lower layer, as might be the
case for very resource-constrained sensors or those in remote
environments. Furthermore, even if one of the many clock
synchronization protocols for WSNs, e.g., [19], is available,
it may not be affordable in terms of energy consumption.
Such service is not for free as the costs are incurred by a
different layer. It also imposes a skew ε which leads to im-
precision in detecting predicates in physical time. For ex-
ample, there will be false negatives when the overlap period
of the local intervals, during which the global predicate is
true, is less than 2ε [15]. For these reasons, we explore the
option of using lightweight middleware layer logical clocks
to detect global predicates. Such clocks also provide layer-
independence and allow portability.
Problem: Given a conjunctive or a relational predicate φ

on sensed attribute values of the world plane, detect each
occurrence of φ under the Instantaneously modality (i.e.,
holding at the same instant), without using physically syn-
chronized clocks, in the network plane having asynchronous
message transmissions.

The algorithms we present are based on detecting over-
lap among intervals, and then evaluating φ on overlapping
intervals. The algorithms can detect both conjunctive and
relational predicates. Our characterization of accuracy is the
same for both types of predicates but the level of accuracy
is lower for relational predicates.

3. TIME MODELS FOR SENSORNETS
To provide a time base in the middleware, the option is ei-

ther the partial order model or the linear order model. The
partial order of time is isomorphic to the partial order of the
traditional distributed execution in the network plane, and
is encoded by the causality-based Mattern/Fidge clocks [3,
14]. But, in sensornets, it is unknown how to track the com-
munication over the covert channels that induce the causal

chains in the world plane; hence this communication cannot
be simulated in the network plane and there are pn possible
consistent global states.

For traditional distributed program executions, the global
state lattice [2, 14] derived from the causality-based partial
order of time, is useful to reason about properties of global
states. This reasoning is not just for one run, but across
all runs of the same deterministic distributed program. (In
a re-run, concurrent events may be reordered, leading to a
different path in the state lattice.) But in sensornets, the
physical world does not admit re-runs, and there are many
non-deterministic factors such as nature and human will; so
usually applications need to observe the actual np states in
the actual execution. Hence, there does not seem any need
to deal with the state lattice.

But logical time – scalar or vector – need not be based
strictly on causality as defined by application layer message-
passing. We identify a need to build a partial order of time
that is not strictly causality-based but still useful to observe
the world plane under the Instantaneously modality of phys-
ical time. In the absence of a synchronized physical clock
service, we require some time base. The idea is simple – log-
ical time can simply be used to provide a base of linear or-
der/ partial order time. Just as lower network layer physical
clock synchronization protocols periodically bring multiple
hardware clocks (scalars) “in sync” after some drift, so also
the middleware layer strobe clock that we formalize periodi-
cally brings “in sync” the drifting scalars or vectors at each
process. Without a strobe, logical clocks drift – they simply
tick asynchronously at each relevant local event. The strobe
clock is a logical (scalar or vector) clock synchronization ser-
vice to synchronize the local clocks at “critical events”. The
strobe clock only needs to guarantee monotonicity of logical
time. It can be issued by a process at any time, but no more
frequently than when relevant events are locally sensed.

Strobe clock messages are control messages and induce a
partial order. This partial order is artificial and arbitrary,
unlike the case for distributed programs, where the partial
order is induced explicitly by in-network semantic sends and
receives. It is important to observe that if the image of the
physical world could also track causality, that clock needs to
be different from the strobe clock. If it is not, it will intro-
duce false causality induced by the strobes and hence infer
fake causal relationships and eliminate possible equivalent
consistent global states.

4. STROBE LOGICAL CLOCKS
Define ∆ to be the bound on the asynchronous message

transmission delay for a system-wide broadcast. ∆ includes
the delays for queuing in local incoming and outgoing buffers,
process scheduling, context switching, and possible retrans-
missions (to provide reliability), until the received message
is processed. In WSNs, and in closed environments such as
smart homes, ∆ may be of the order of hundreds of millisecs
to secs. This is still small compared to speeds of human
and object movements. Although difficult to estimate, ∆
is not used by the clock protocols or the predicate detec-
tion algorithms; it serves only to characterize the degree of
imprecision in detecting the predicates.

4.1 Strobe Vector Clocks
A strobe vector clock Ci[1..n] at process i consists of n

integers. The protocol is given by rules SVC1 and SVC2.

16

SVC1. When process i executes (senses) a relevant event:
Ci[i] = Ci[i] + 1
System-wide Broadcast (C)

SVC2. When process i receives a strobe T :
(k ∈ N) Ci[k] = max(Ci[k], T [k])

4.2 Strobe Scalar Clocks
A strobe scalar clock Ci is maintained by each process i.

The protocol is given by rules SSC1 and SSC2.

SSC1. When process i executes (senses) a relevant event:
Ci = Ci + 1
System-wide Broadcast (C)

SSC2. When process i receives a strobe T :
Ci = max(Ci, T)

It is weaker than the strobe vector clock but is lightweight
(strobe size is O(1), not O(n)) and it can be used to solve
our problem under certain conditions.

4.3 Features
Although similar to the causality-based Mattern/Fidge

vector clocks [3, 14], and Lamport scalar clocks [13], or “in-
terval vector clocks” [1], there are differences. (1) Strobe
clocks track the progress of local logical time counter at
each process by catching up or synchronizing on the latest
known time of other processes, and do not track the causality
induced by message communication; causality-based clocks
track the causality induced by the message sends and re-
ceives. (2) All strobes are control messages; in causality-
based clocks, timestamps are sent on and only on computa-
tion messages. (3) On receiving a strobe, the receiver up-
dates its clock but does not tick locally; in causality-based
clocks, the receiver ticks on receiving a message. (4) The
strobe clock protocol broadcasts its clock no more frequently
than at each relevant event (after ticking its local compo-
nent); in causality-based clocks, the clock values is sent on
and only on computation messages so that the exact replica
of the partial order is created. (5) If ∆ = 0 (synchronous
communication) and the protocol strobes at each relevant
event, strobe vectors can be replaced by strobe scalars with-
out sacrificing correctness or accuracy. This is not so for the
causality-based clocks even if ∆ = 0; Mattern/Fidge clocks
are still more powerful than Lamport clocks when reasoning
about the partial order of distributed program executions.

4.4 Application: Simulating Physical Time
We show how strobe clocks can be used to detect con-

junctive or relational predicates that held at some instant in
physical time (to simulate a single time axis). We approxi-
mate the physical time axis as best as theoretically possible
using strobe vector clocks.

A relevant event is modeled as a quadruple e = (Pi, aj , val, ts)
to represent the host process, attribute sensed, attribute’s
value, and the physical time of its occurrence (unknown
in our model). For each process/attribute pair, an inter-
val is represented by a value, start time, and finish time as
I = (val, ts, tf). The interval is defined by two consecutive
events (Pi, aj , val1, t1) and (Pi, aj , val2, t2) for that (Pi, aj)
pair as: I = (val1, t1, t2). Our goal is to evaluate whether a
predicate φ holds whenever the global state changes. Using
strobe clock values to timestamp relevant events and hence

intervals, we are using monotonic logical timestamps, that
are synchronized as tightly as theoretically possible.

Let I = {I1, . . . In} be a set of intervals, one per process.

Definition 1. All Ii ∈ I overlap in physical time, i.e.,
InstantaneouslyI, iff

max
i

(Ii.ts) < min
i

(Ii.tf) (1)

For this set of intervals I, we define a number:

Definition 2. overlap(I) = mini(Ii.tf)−maxi(Ii.ts)

Condition in Equation 1 is equivalent to:

∀i∀j, Ii.ts < Ij .tf (2)

As we do not have access to physical time, we use logical
time C values as a best approximation. Here, I.Cs and I.Cf

denote the start and finish logical clock values of interval I .
Approximation using vector strobes: We check for:

∀i∀j, Ii.Cs[i] ≤ Ij .Cf [i] (3)

For ∆ > 0, we have (see Section 5.1):

Ii.Cs[i] ≤ Ij .Cf [i](=⇒ ∧ 6⇐=)Ii.ts < Ij .tf (4)

For ∆ = 0, we have:

Ii.Cs[i] ≤ Ij .Cf [i] ⇐⇒ Ii.ts < Ij .tf (5)

Approximation using scalar strobes: We check for:

∀i∀j, Ii.Cs ≤ Ij .Cf (6)

For ∆ > 0, the following holds (see Section 6.1):

Ii.Cs ≤ Ij .Cf (6=⇒ ∧ 6⇐=)Ii.ts < Ij .tf (7)

Its utility is nevertheless shown (see Section 6.1).
When ∆ = 0, the scalar strobe clock behaves exactly like

the vector strobe clock, and Equation 8 holds.

Ii.Cs ≤ Ij .Cf ⇐⇒ Ii.ts < Ij .tf (8)

Replacing ≤ by < in the test of Equation 6 gives:

∀i∀j, Ii.Cs < Ij .Cf (9)

Ii.Cs < Ij .Cf (6=⇒ ∧ 6⇐=)Ii.ts < Ij .tf when ∆ > 0 (10)

Ii.Cs < Ij .Cf ⇐⇒ Ii.ts < Ij .tf when ∆ = 0 (11)

Approximations: The physical world execution traces one

path (of the O((pn)!
(p!)n

) possible paths) through np of the

O(pn) states in the state lattice. The goal is to identify the
states in this path and evaluate the predicate in them. The
control messages for the strobe clock create artificial causal
dependencies which help to approximate instantaneous ob-
servation because they eliminate many of the O(pn) states
in which the intervals did not overlap. But the number of
possible consistent states in the sub-lattice induced by the
strobes is still O(pn). The faster the strobe transmissions,
the leaner the lattice; in the limit, ∆ = 0, we get a linear or-
der of np states. Unlike executions of distributed programs
where program-determined semantic messages may not get
sent for long periods, resulting in fat lattices, clock strobes
get sent at each value change. This gives us the “slim lat-
tice postulate” for consistent global states in sensornet obser-
vations. For these states, due to the inherent transmission
delays, it is theoretically possible either to verify that the in-
tervals overlapped, or to only suspect that they overlapped.
But it is not possible to ensure polynomial time overhead.

17

5. DETECTIONUSING STROBEVECTORS

5.1 Analysis
To characterize the degree of imprecision in Equation 4

that creeps in when we simulate physical clocks with logical
vector strobe clocks, consider any pair of intervals Xi and
Yj at Pi and Pj , respectively. These intervals can be placed
with respect to each other in one of 29 mutually orthogonal
ways only, as shown in Figure 1 [7]. X is shown in a fixed
position as a rectangle whereas the possible relative positions
of Y are shown by horizontal lines. The dashed lines indicate
the boundaries of the past and future of the events min(X)
and max(X), (induced by strobes). The distinction between
those positions of Y with two labels each is analyzed in [7].

max(X)min(X)

min(X) max(X) min(X) max(X)

’

’ ’

’

X

’

time

IBIR

IAIQ

IU

IS

IN IN

IL IL IE IE

ID ID
IF

IT
IP

IC

IJ

IM IM

IO

IX

IW

IIIV
IG IHIK

Figure 1: Timing diagram for complete set of or-
thogonal interaction types between intervals [7].

Of the 29, the following 18 logical placements [8]:

ID, IX, ID′, IU, IE, IW, IE′, IT, IF,

IS, IO, IL, IP, IL′, IM, IM ′, IN, IN ′ (12)

satisfy Equation 3. Using Equations 4 and 2, observe that
these placements imply physical time modality Instanta-
neously. If our algorithm evaluates the predicate only when
these modalities in Equation 12 are satisfied among the in-
tervals in I, the algorithm will not detect any false positives.

Of the 29, the following 9 logical placements [8]:

IB, IR, IC, IV, IG, IH, IK, II, IJ (13)

may or may not overlap in physical time, and it is theo-
retically impossible using logical clocks and asynchronous
unbounded transmission delays to determine the Instanta-
neously physical time modality specification in these cases.
With multiple processes, even if intervals at one pair of
processes are related by one of these 9 placements, to not
raise false alarms, the algorithm should not detect Instan-
taneously even if the intervals happen to overlap. These are
potential false negative cases. (If need be, these cases can
also be detected; see the algorithms in [1] and Section 7.)
The extent of false negatives will depend on the duration of
intervals, their placements, and the bound ∆.

Theorem 1. Using vector strobe clocks, the correctness
of detecting the Instantaneously modality using Equation 3
is characterized as follows.

1. If overlap ≥ ∆ then the modality can be correctly de-
tected.

2. If 0 < overlap < ∆ then a false negative may occur.

3. If overlap ≤ 0 then the modality can be correctly de-
tected as not holding.

5.2 Algorithm
The algorithm uses logical time to detect a physical time

modality, namely Instantaneously. To design the algorithm,
we guarantee no false positives. We seek to detect a set
of intervals, one per process, such that (i) pairwise, they
satisfy one of the placements in Equation 12, and hence
from Equations 3 and 4, satisfy Equation 2; and (ii) φ is true
over the attribute values in these intervals. The algorithm
is given in Figure 2. Lines (8)-(22) are based on [1, 4].

Each process Pi maintains an interval queue IQ[z] and
an event queue EQ[z], for strobes received from process Pz.
(Assume one attribute per process.) A strobe also piggy-
backs the sensed event’s quad-descriptor. Note, for online
detection of properties of the world plane, a sensor has to
immediately report the event to a monitor even while using
(synchronized) physical clocks; so a message transmission is
unavoidable. For a conjunctive φ, val at any process alter-
nates between 0, 1; when val = 1 on a received strobe, the
completed interval having val = 0 need not be processed
(skip steps (5) and (7) onwards).

Visually speaking, we step through the execution, state
by state, in physical time, by constructing states from the
interval queues. The challenge is doing so without using
physical clocks. The approach can be viewed as jumping
through a virtual state lattice of the partial order induced
by the strobes, without actually constructing one. In a nut-
shell, (1) we loop, queuing intervals from each process, until
we identify a set I having overlap > 0. If φ holds over the
values in I, raise an alarm. (2) We then prune the IQs judi-
ciously to ensure progress (more solutions can be detected)
and safety (not to miss any solution). In the process, we
have to ensure polynomial time overhead. An important
feature of the algorithm is that it does repeated detection of
φ as strobes are generated [11].

In addition to conjunctive predicates, we aim to detect
relational predicates as best as possible. We are detecting
each global state that satisfies the relational predicate in the
Instantaneously modality, subject to the inherent false neg-
ative constraints of the model and a polynomial time over-
head. The algorithm satisfies the characterization of Sec-
tion 5.1 and Theorem 1 for both conjunctive and relational
predicates. But the level of accuracy is lower for relational
predicates. This is because the algorithm verifies whether
a global state must have occurred. For a relational predi-
cate, it may happen that no one state must have occurred,
but collectively examined, one of some set of states must
have occurred. To examine collectively requires building the
lattice of consistent global states which cannot be done in
polynomial time. This is discussed further in Section 7.

5.3 Complexity
To find the first solution that satisfies Equation 3, the

algorithm continues till each interval queue IQ[k] has a head
element. The time overhead for this is O(n2). For each set
of intervals that satisfy Equation 3, O(n2) time is needed to
eliminate at least one interval; and let O(f(φ))(= Ω(n)) be
the time to evaluate φ. Such a set needs to be considered at
most np times. The time complexity is O(np(n2+O(f(φ)))),
or simply O(n3p), to find all solutions.

Message cost is O(np) system-wide broadcasts, each of
n integers. Note that the lower bound is Ω(np) (wireless)
broadcasts, of 1 integer each, because each sensed event
needs to be reported to a sink for assembly even with syn-

18

queue of event: (∀z)EQ[z] = 〈(z, a, init val, Cinit)〉
queue of interval: (∀z)IQ[z] = 〈〉
set of int: updatedQs, newUpdatedQs = {}
int: M [1 . . . n]

When event e = (Pi, ai, val, C) occurs at Pi:

(1) Ci[i] = Ci[i] + 1
(2) System-wide Broadcast (Pi, ai, val, C)
On Pi receiving event strobe e = (z, a, val, C) from process Pz :
(3) Execute SVC2 (Section 4.1)
(4) (z, a, v, C′) = dequeue(EQ[z])
(5) enqueue(IQ[z], (v, Cs = C′, Cf = C))
(6) enqueue(EQ[z], (z, a, val, C))
(7) if (number of intervals on IQ[z] is 1) then

(8) updatedQs = {z}
(9) while (updatedQs is not empty)
(10) newUpdatedQs={}
(11) for each h ∈ updatedQs
(12) if (IQ[h] is non-empty) then

(13) X = head of IQ[h]
(14) for j = 1 to n (j 6= h)
(15) if (IQ[j] is non-empty) then

(16) Y = head of IQ[j]
(17) if (X.Cf [j] < Y.Cs[j]) then

(18) newUpdatedQs =
{h} ∪ newUpdatedQs

(19) if (Y.Cf [h] < X.Cs[h]) then
(20) newUpdatedQs =

{j} ∪ newUpdatedQs
(21) Delete heads of all Qk, where k ∈ newUpdatedQs
(22) updatedQs = newUpdatedQs
(23) if (all queues are non-empty) then

(24) heads of queues satisfy Eqn 3 (hence Eqn 2)
(25) if φ((∀k)head(IQ[k]).val) is true then
(26) raise alarm/actuate/update world image
(27) (∀k)M [k] = head(IQ[k]).Cf [k]
(28) for k = 1 to n
(29) if (∀j, (j 6= k))head(IQ[k]).Cf [j] < M [j] then
(30) mark k for dequeuing
(31) for k = 1 to n
(32) if k is marked for dequeuing then
(33) dequeue(head(IQ[k]))

Figure 2: Vector strobe algorithm at Pi to detect
predicates.

chronized physical clocks. However, if a multi-hop network or
a point-to-point medium was used in the network plane, the
O(np) broadcasts would become O(n2p) messages. In con-
trast, if physically synchronized clocks were used, the O(np)
transmissions of the sensed events to the sink would require
O(np · log n) or even O(n2p) message (re-)transmissions as-
suming a tree or a linear array configuration, respectively,
to reach the sink. In the worst case, assuming a tree con-
figuration, the message complexity is a factor of n

log n
more

than with synchronized hardware clocks.

6. DETECTIONUSING STROBE SCALARS
Using the test in Equation 6 as the best approximation to

Equation 2, Equation 7 indicated that strobe scalars do not
guarantee correctness of detecting the Instantaneously.

6.1 Analysis
Potential false positives: Consider the example execu-
tion in Figure 3, showing three intervals X, Y , and Z, at
processes Pi, Pj , and Pk, respectively. (Assume all clocks are
initially 0.) The beginning of each interval I is timestamped
I.Cs by the strobe scalar clock rules, SSC1 and SSC2. The
end of the interval is timestamped I.Cf by the start time of

P

P

P
i

j

k

X

Y

4

1 2 3

2

321

3

4

41

Z

Figure 3: False positives with scalar strobes.

P

P

P
i

j

k

X

Y

1 2

1

1

Z
2

2

3

3 4

3 4

4 5

5

5

Figure 4: False negatives with scalar strobes.

the next interval at that process. Messages in regular lines
are the strobe scalars sent at the start of X, Y , and Z; mes-
sages is dotted lines are those sent at the start of the next
intervals following these. The local clock value is shown only
when it changes. Timestamps in bold are the start and end
timestamps of the intervals.

By applying the test of Equation 6 for each pair of inter-
vals, observe that the test is satisfied; but although Y.ts =
2 ≤ Z.tf = 3, they do not overlap. This is a false positive.
If Z had extended in time as indicated by the dashed exten-
sion, then the strobe scalar clocks would remain the same
and the detection would have been a true positive.
Potential false negatives: Consider the example execu-
tion in Figure 4. By applying the test of Equation 6 for
each pair of intervals, observe that the test is not satisfied
because Y.ts = 3 6≤ Z.tf = 2. However, they do overlap.
This is a false negative. If Z had finished earlier in physical
time than the start of Y and the dotted strobes sent at the
end of Z reached at the same time as they do currently in the
figure, then the strobe scalar clocks would remain the same
and the non-satisfaction of Equation 6 would have been a
true negative.

Using Equation 9 instead of Equation 6 still gives false
positives and false negatives. Observe, when Y.Cs = Z.Cf ,
Equation 6 risks a false positive whereas Equation 9 risks a
false negative.

Theorem 2. Using scalar strobe clocks, the correctness
of detecting the Instantaneously modality using Equation 6
(or Equation 9) is characterized as follows.

1. If overlap ≥ ∆ then the modality can be correctly de-
tected.

2. If 0 < overlap < ∆ then a false negative may occur.

3. If −∆ < overlap < 0 then a false positive may occur.

4. If overlap ≤ −∆ then the modality can be correctly
detected as not holding.

Figure 5 depicts the results of Theorems 1 and 2. The
dashed lines are indicative and do not imply a linear relation.

6.2 Algorithm
The algorithm, implementing Equation 6, is a modifica-

tion of Figure 2. The changes are shown in Figure 6. Vector
M is scalar Min Finish; lines (1,3) update scalar clocks;
lines (17,19) use scalar tests; lines (27-33) that delete inter-
vals get replaced by the scalar analogs in lines (27-30).

19

−

−

− +

+

+

1

1

1

possible
false positives false negatives

overlap

overlap

overlap

0,0

0,0

0,0

ideal
(synchronized
clocks)

clocks

clocks

possible

vector strobe

scalar strobe

Figure 5: Probability of detecting overlap of inter-
vals for the Instantaneously modality.

int: Min F inish

When event e = (Pi, ai, val, C) occurs at Pi:
(1) Ci = Ci + 1

On Pi receiving event strobe e = (z, a, val, C) from process Pz :

(3) Execute SSC2 (Section 4.2)

(17) if (X.Cf < Y.Cs) then

(19) if (Y.Cf < X.Cs) then

(27) Min finish = mink((head(IQ[k]).Cf)
(28) for k = 1 to n
(29) if head(IQ[k]).Cf = Min finish then

(30) dequeue(head(IQ[k]))

Figure 6: Scalar strobe algorithm at Pi to detect
predicates. The changes from Figure 2 are shown.

6.3 Complexity
To find the first solution that satisfies Equation 6, time

overhead till each queue IQ[k] has a head element is O(n2).
For each set of intervals that satisfy Equation 6, O(n) time
is needed to eliminate at least one interval. Such a set needs
to be considered at most np times. The time complexity is
O(np(n+O(f(φ)))), or simply O(n2p), to find all solutions.

The message cost and analysis are the same as in Sec-
tion 5.3, except that the strobe size is O(1) instead of O(n).

7. DISCUSSION
Table 1 compares predicate detection using the proposed

middleware layer strobe clocks versus using synchronized
clocks from a lower layer [15]. The algorithms also allow
detection to be done by all observers at no additional mes-
saging cost; results are observer-independent. They provide
all nodes the choice to run the algorithm to know the out-
come or to implement a rotating sink.

The false negative states in the vector strobe algorithm are
the cases of Equation 13 where it is impossible to determine
whether an overlap in the considered I actually occurred be-
cause of races. There are at most pn such instances because
only pn states occurred in the actual execution. These cases
may occur only if 0 < overlap < ∆ and can be flagged as
potential false negatives by classifying them in a new bin:
borderline. This bin would also include some of those non-
overlap cases with −∆ < overlap < 0 which could equally
have been overlapping; unfortunately, there are O(pn) such

states in the borderline bin, most of which never occurred.
They can be flagged by enumerating the state lattice. Al-
though impractical despite the slim lattice postulate, enu-
merating them is useful to: (i) not miss any borderline case
and let the application decide whether to raise an alarm; (ii)
identify collections of states which collectively can ascertain
that a relational predicate held. (See Section 5.2).

Definition 3. For any (state identified by) I, there are
three modalities on its observation:

[InstantaneouslyI:] the intervals in I overlapped. There
are np such states.

[DefI :] it can be verified that the intervals in I overlapped.
There are at most np such states.

[PossI] intervals in I can be verified to have overlapped,
or they might have overlapped but it is impossible to
ascertain. There are O(pn) such states.

Then, PossI∧DefI means the intervals might or might not
have overlapped and it is impossible to ascertain. This is the
borderline bin. There are O(pn) such states. Also, PossI

means we can ascertain with certainty that the intervals did
not overlap. There are O(pn) such states.

Theorem 3. For observing physical world phenomenon:

Def
I =⇒ Instantaneously

I =⇒ Poss
I (14)

Poss
I 6=⇒ Instantaneously

I 6=⇒ Def
I (15)

The vector stobe algorithm detects DefI and then evaluates
φ. The condition tested in Equation 3 was used for testing
for the Definitely modality [2] for conjunctive predicates [4,
7]. Informally writing, DefI and PossI can be viewed as
counterparts of Definitely and Possibly modalities [2] de-
fined on predicates over executions of distributed programs,
with different semantics. For the lattice of consistent global
states induced by the strobes,

φ(I|Def
I) ⇒ Definitely(φ)⇒ φ(I|Instantaneously

I)

⇒ φ(I|Poss
I) = Possibly(φ) (16)

For conjunctive predicates, φ(I|DefI)⇔Definitely(φ); for
relational predicates, φ(I|DefI) serves as an approxima-
tion to Definitely(φ), determining which requires evaluat-
ing φ(I|PossI) for all states, i.e., lattice evaluation.

The algorithms generate and evaluate a polynomial num-
ber of states, n2p. These are good approximations to the
actual np states that did occur; hence more likely candidates
for the set of states that did occur. Figure 7 modifies the
strobe vector algorithm (Figure 2) to classify some of the
(false negative) states encountered, in the borderline bin,
without increasing the O(n3p) time. The bin would also in-
clude some true negative states having −∆ < overlap < 0
that are encountered. Some false negatives will still persist
as we are not generating the state lattice.

Recall that even with synchronized physical clocks, one
has to cope with false negatives and false positives due to
skew (of the order of microsecs or even millisecs using soft-
ware protocols [19]), when there are “races” [15]. Hardware
solutions can achieve skews of the order of nanosecs but are
not practical in sensornets. In contrast, the bound ∆ is of
the order of hundreds of millisecs to secs in small-scale net-
works, e.g., smart offices and smart homes. However, mid-
dleware clocks may still be an option for sensing in small-
scale networks and pervasive environments, because

20

Table 1: Middleware strobe clocks and synchronized (physical) clocks to sense physical world properties.

Synchronized (physical) clock algo Strobe vector clock algo Strobe scalar clock algo

lower layer messaging ongoing cost of none (zero cost) none (zero cost)
for clock synchronization synchronization protocol
middleware layer messages none (zero cost) one O(n) broadcast per one O(1) broadcast per
for clock synchronization sensed event sensed event
middleware layer messages one O(1) message to sink, per free free
for reporting events sensed event (i.e., one broadcast (piggyback on strobe) (piggyback on strobe)

in small wireless network)
time cost to evaluate φ O(n) per sensed event O(n2) per sensed event O(n) per sensed event
false positives none none if −∆ < overlap < 0, may occur
false negatives if overlap period ≤ 2ε, always if 0 < overlap < ∆, may occur if 0 < overlap < ∆, may occur
distributed predicate one O(1) broadcast instead of free (no messaging cost) free (no messaging cost)
detection by all sensors message to sink, per sensed event

On Pi receiving event strobe e = (z, a, val, C) from process Pz :

(17) if (X.Cf [h] ≤ Y.Cs[h]) then

(19) if (Y.Cf [j] ≤ X.Cs[j]) then

(24) // queue heads satisfy ∀h∀j, Ih.Cf [h] > Ij .Cs[h]
(25) if φ((∀k)head(IQ[k]).val) is true then

(26) if X.Cf [j] ≥ Y.Cs[j] ∧ Y.Cf [h] ≥ X.Cs[h] then
(27) raise alarm/actuate/update world image
(28) else classify in borderline bin

Figure 7: Changes to vector strobe algorithm (Fig-
ure 2) to use borderline bin.

1. the additional message cost, over reporting sensed events
to a sink, is relatively low (see Sections 5.3,6.3);

2. occurrence of false negatives may be low when n is low
and/or the sensed event rate is low w.r.t. ∆ (typi-
cal with human and object movements). Simulations
in related work [5] to detect Definitely(φ) for a con-
junctive φ in a realistic model of a smart office showed
that despite increasing the average message delay over
a large range, the probability of correct detection is
quite high. The simulations were backed by an analyt-
ical model with supporting numerical results [5].

3. they avoid the cost of and dependence on synchronized
physical clocks (giving layer-independence).

Our algorithms wait for an interval to complete before it is
processed. So there may be a delay in detecting a predicate.
Three algorithms [12] to detect the predicate immediately
are compared with our algorithms, in [12].

8. REFERENCES
[1] P. Chandra, A. D. Kshemkalyani, Causality-based

predicate detection across space and time. IEEE
Transactions on Computers, 54(11): 1438-1453, 2005.

[2] R. Cooper, K. Marzullo, Consistent detection of global
predicates. In Proc. ACM/ONR Workshop on Parallel
and Distributed Debugging, 163-173, May 1991.

[3] C. Fidge, Timestamps in message-passing systems that
preserve partial ordering. Australian Computer Science
Communications, 10(1): 56-66, 1988.

[4] V. K. Garg, B. Waldecker, Detection of strong unstable
predicates in distributed programs. IEEE Trans.
Parallel & Distributed Systems, 7(12):1323-1333, 1996.

[5] Y. Huang, X. Ma, J. Cao, X. Tao, J. Lu, Concurrent
event detection for asynchronous consistency checking

of pervasive context. In IEEE International Conference
on Pervasive Computing and Communications, 2009.

[6] L. Kaveti, S. Pulluri, G. Singh, Event ordering in
pervasive sensor networks. In IEEE Int. Conf. on
Pervasive Computing and Comm. Workshops, 2009.

[7] A.D. Kshemkalyani, Temporal interactions of intervals
in distributed systems. Journal of Computer and
System Sciences, 52(2): 287-298, April 1996.

[8] A. D. Kshemkalyani, A fine-grained modality
classification for global predicates. IEEE Trans. Parallel
and Distributed Systems, 14(8): 807-816, August 2003.

[9] A.D. Kshemkalyani, Temporal predicate detection
using synchronized clocks. IEEE Transactions on
Computers, 56(11): 1578-1584, November 2007.

[10] A.D. Kshemkalyani, M. Singhal, Distributed
Computing: Principles, Algorithms, and Systems.
Cambridge University Press, 2008.

[11] A.D. Kshemkalyani, Repeated detection of conjunctive
predicates in distributed executions. manuscript, 2010.

[12] A.D. Kshemkalyani, Immediate detection of predicates
in pervasive environments. In 9th International
Workshop on Adaptive and Reflective Middleware
(ARM’10), ACM Press, 2010.

[13] L. Lamport, Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7): 558-565, July 1978.

[14] F. Mattern, Virtual time and global states of
distributed systems. In: Parallel and Distributed
Algorithms, North-Holland, pp 215-226, 1989.

[15] J. Mayo, P. Kearns, Global predicates in rough real
time. In IEEE Symp. on Parallel and Distributed
Processing, 17-24, 1995.

[16] L. Mottola, G.P. Picco, Programming wireless sensor
networks: fundamental concepts and state of the art.
ACM Computing Surveys, 2010.

[17] P. Pietzuch, B. Shand, J. Bacon, Composite event
detection as a generic middleware extension. IEEE
Network, 18(1): 44-55, 2004.

[18] K. Romer, F. Mattern, Event-based systems for
detecting real-world states with sensor networks: a
critical analysis. In DEST Workshop on Signal
Processing in Wireless Sensor Networks at ISSNIP, pp.
389-395, 2004.

[19] B. Sundararaman, U. Buy, A. D. Kshemkalyani, Clock
synchronization for wireless sensor networks: a survey.
Ad-Hoc Networks, 3(3): 281-323, May 2005.

21

