
Querying Context Maps using Relative Timing Predicates
in Pervasive Environments

Vaskar Raychoudhury
Deapartment of Electronics and

Computer Engineering, Indian Institute
of Technology Roorkee, India

vaskar@ieee.org

Ajay D. Kshemkalyani
Department of Computer Science,

University of Illinois at Chicago,
Chicago, IL 60607-7053

ajay@uic.edu

Jiannong Cao
Department of Computing, The Hong

Kong Polytechnic University, Hung
Hom, Kowloon, HK

csjcao@comp.polyu.edu.hk

ABSTRACT
Pervasive computing environments are composed of numerous
smart entities (objects and human alike) which are interconnected
through contextual links in order to create a Web of physical
objects. The contextual links can be based on matching context
attribute-values (e.g., co-location) or social connections. We call
such a Web of smart physical objects a context map. Context
maps can be used for context-aware search and browse of the
physical world. This paper shows how to evaluate predicates on
the context map, when the predicate is specified using complex
timing relations.

Categories and Subject Descriptors
H.3.4 [Context]: Web View

General Terms
Algorithms

Keywords
Context map; Relative event detection; Searching and browsing
physical world; Query; Predicate detection.

1. INTRODUCTION
Rapid advances in embedded sensing technologies, wireless
communications, and mobile computing, are transforming our
physical world into an intelligent environment. Physical objects
(including human beings) embedded with sensing, computing,
and communication capabilities are being contextually
interconnected to form an Internet of physical objects, not much
unlike the traditional Internet. We call such a novel structure a
context map where contextual links between pairs of objects are
created based on their matching context attributes (e.g., location,
ownership, social connections, etc). Context attributes can be
static or dynamic depending on whether their value changes with
time. Let us consider the following intelligent office example to
illustrate the idea.

Example 1. Tom enters his office PQ821 at 9:00 am with a laptop
borrowed from the office IT services for presenting at the Annual

General Meeting scheduled from 11:00 am. He calls his project
partner Bob who arrives at 9:45 am to take a look at his PPT
slides. Leaving Bob there Tom goes to the canteen at 10:30 am for
breakfast and finally enters meeting room PQ 304 at 10:50 am. He
finds that Bob has arrived there at 10:45 am and has set up the
laptop for presentation.

There are three smart objects - Tom, Bob and Laptop. All three
have a location (Loc) context attribute and the laptop has an
additional user attribute. The timing diagram in Fig. 1 shows the
change of context attribute values with time and Fig. 2 shows the
corresponding contextual links in the context map and the time
through which they are active. If necessary, inactive previous
links can also be stored to track the past contextual relationships
of an object. Like the Web search and browse over the Internet,
context map enables users to search for a physical object based on
its current context values and to browse through the present and
past contextual links between objects. Creation and maintenance
of contextual links, however, requires correct and timely detection
of contextual events generated by change of values of dynamic
context attributes.

Figure 1. Timing Diagram of Example1

A context map represents a global snapshot of the physical world
including multiple smart physical objects and people, and the
variations of contextual relations among them with respect to
time. A global snapshot should contain one local state from each
participating entity. Using a common time axis, a global state can
be specified (1) as occurring at the same time instant in each
entity (or, concurrent), or (2) in terms of specific temporal
relationships among the local states (one local state from each
process) (or, relative). Examples 2 and 3 show the concurrent and
relative temporal relations, respectively.

Example 2. From Example 1, concurrency of location context of
Tom, Bob and the Laptop can be represented as (Tom.Loc =
Bob.Loc = Laptop.Loc).

Example 3. In Example 1, assume that after Tom enters his office,
he has invited both Bob and Ron to take a look at his slides. After
that they may go to the meeting together or separately. So, here
the relative occurrences of these events can be specified as - Ron

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Midsens’2011, December 12th, 2011, Lisbon, Portugal.

Copyright 2011 ACM 978-1-4503-1069-7/11/12...$10.00

and Bob enter Tom’s office AFTER Tom and they leave AT THE
SAME TIME or BEFORE Tom.

Figure 2. Context Map for Example 1
Incorrect detection of afore-mentioned events will certainly
introduce contextual inconsistency in the context map. Moreover,
due to the predominantly wireless nature of communication in
pervasive computing environments, event reporting by smart
objects often suffers from finite but unbounded delays. So, the
consistent and timely maintenance of context map in a dynamic
and asynchronous pervasive computing environment is non-
trivial.

Context consistency detection has been studied in [1][2][3][4] for
contexts belonging to the same snapshot of time. On the other
hand, [5] has proposed inconsistency detection assuming an
inherently asynchronous pervasive computing environment.
However, example applications in [5] considered contextual
events occurring at the same or close-by locations. This situation
does not introduce delay in event reporting and hence, it is not
readily evident whether the solution proposed in [5] works
effectively for real-life applications. Also, more importantly, none
of the above papers can detect contextual events with relative
timing relations.

There exists a need to evaluate predicates using complex timing
relations on the context map to answer queries such as, “Did Bob
and Ron enter Tom’s office after him and leave it after him?”
None of the existing work can answer queries on the context map
based on such complex timing relations. A generic algorithm to
answer such complex queries was given in [14]. In this paper, we
show how to adapt the algorithm in [14] to detect predicates with
relative timing constraints. Although distributed systems are
asynchronous, we assume synchronized physical clocks are
available within the same administrative domain. Our algorithm
leverages the availability of physically synchronized clocks.

Contributions:

1. We introduce the context map to track the image of the
physical world, so that queries can be run against the
context map.

2. We give instances of real-world problems (Examples 3
and 5) in pervasive environments where complex timing
relations are involved in queries on the context map.

3. We show how to adapt the theory and abstract algorithm
given in [14] to answer queries based on relative timing
predicates in an on-going manner, to a real-world problem
using a detailed step-by-step example.

The remainder of the paper is organized as follows. Section 2
discusses the related works. Section 3 gives our system model.
Section 4 adapts the algorithm of [14] to handle complex cases of

detecting events with relative timing relations. Finally Section 5
concludes this paper with the directions of future work.

2. RELATED WORKS
Contextually connecting smart objects is the key to many novel
pervasive computing applications, such as, Internet of Things [6]
or Real world search [7]. However, this requires capturing
contextual events and relating them based on concurrency of
occurrences, or just based on the relative time of their
occurrences.

Context maps are studied in [8] and [9] with reference to wireless
sensor networks (WSN). A map-based world model has been
presented in [8] for WSN where a map is an aggregated view on
the spatial and temporal distribution of a certain attribute (e.g.,
temperature) sensed by some sensor nodes. This approach has
limited scope and does not aim to connect all physical objects.
SENSID [9] is a situation detecting middleware for WSN which is
used to capture spatial and temporal event patterns in WSN using
conjunctive situation predicates.

Event detection by specifying predicates is a commonly used
policy and is being used in pervasive environments as well.
Concurrent events are detected in [5] by tackling temporal
inconsistency caused by message asynchrony in pervasive
environment. They use a logical clock based approach for
detecting concurrent events specified by conjunctive predicates.
Later, an extension [10] was made to decide temporal ordering of
contextual events generated by a user’s activity. However, this
process can only detect which event happens before or after the
other and cannot find out the relative timing relations between
events as introduced in this paper in Example 3.

Predicate detection in traditional distributed computing is an old
research area. Detecting distributed predicates based on
concurrent and relative timing occurrences of intervals have been
studied in [12] and [13], using logical time based [11] causality
relationships. An extension of these works is [14], which
introduced an approach of detecting composite events with
relative timing constraints in WSN, using synchronized clocks.

3. SYSTEM MODEL
We assume that a pervasive computing environment is composed
of multiple smart entities connected wirelessly and they
communicate through asynchronous message passing. Each entity
has a set of context attributes whose values may change with time.
We model these changes as the generation of a series of linearly
ordered set of discrete events Ei by the execution of a process Pi at
each entity. The time duration between two successive events at a
process identifies an interval during which the value of a context
attribute holds (Fig. 1).
Event streams from the processes report intervals to a central data
fusion server, P0, either periodically (in batch mode) or following
a trigger-based approach (i.e., as and when the value of an
attribute changes). Information about the reported intervals is
“fused” at the server and examined to detect relative temporal
relations between intervals specified as a global predicate that
is satisfied by the current system state. The predicate must be (i)
explicitly defined on attribute values during intervals that are (ii)
implicitly related using relative timing relationships. The context
map is updated based on the truth value of , in order to reflect
global states of execution.

Predicates can be of two types: relational and conjunctive
predicates. Relational predicates (Example 2) can be true for any
values of the context attributes and cannot be evaluated locally.
Conjunctive predicates, on the other hand, can be locally
evaluated. They must be expressible in conjunctive form,

i.e., i
t
iΦΛ=Φ , which is a conjunct over the local predicates i,

where timing relations between intervals are included in the
conjunction operation t. We consider queries using only
conjunctive predicates. The following example shows a
conjunctive predicate version of Example 2.

Example 4. Conjunctive predicate: (Tom.Loc = PQ821 &
Bob.Loc = PQ821 & Laptop.Loc = PQ821).

We assume synchronized clocks for all the smart entities. Many
low-cost, high-accuracy clock synchronization protocols have
been proposed for single and multi-hop wireless sensor networks
[18][19][20][21]. The clock skew can be very small (
microsecs), relative to the rate of changes in the observed physical
phenomena, like human and object movement. Although
pervasive environments are asynchronous WSNs, it is reasonable
to assume such physically synchronized clocks, particularly if the
participating entities belong to the same administrative domain.

4. DETECTING PREDICATES BASED ON
RELATIVE TIMING CONSTRAINTS
As already mentioned in Section 1, detecting predicates with
relative timing constraints is more challenging. In this section we
shall study it in more detail for conjunctive predicates. For a
single time axis there are 13 ways in which two time intervals can
be related to one another on that time axis [16][17]. For intervals
X and Y in processes Pi and Pj, respectively, the 13 relations are
illustrated in Fig. 3. The set of these 13 relations is denoted by .
There are six pairs of inverses as shown and equals is its own
inverse. Below we define the problem of detecting predicates
based on relative timing constraints.

Figure 3. The 13 relations between intervals [16], [17]

4.1 Problem Definition
Problem Relativepred. Given a set of relations r*

i,j for each pair
of processes Pi and Pj, determine online the earliest intervals, one
from each process, such that any one of the relations in r*

i,j is
satisfied (by the intervals) for each (Pi, Pj) pair. If a solution
exists, identify the relationship from for each pair of intervals in
the solution.

4.2 Data Structure for Relativepred
We assume that there is a set of processes (one for each smart
entity), P, and each process has a single context attribute A. We
also assume that |P| = p. Every event (e) is identified by a triple
(Pi, ValA, ts), where Pi is the identifier of process i, ValA is the
value of attribute, and ts is the timestamp of occurrence of e.

The central server maintains a queue, called interval queue (Qi),
which captures the intervals generated by each process Pi. We
assume that this queue can hold at most intervals, where is the
maximum number of intervals per process.

4.3 Explanation
Consider Example 3 which specifies a predicate using three
different relative timing constraints - AFTER, AT THE SAME
TIME and BEFORE. Assuming Ron, Tom and Bob as three
processes, Pi, Pj, and Pk, generating intervals X, Y and Z,
respectively, the timing relations of Example 3 are shown in Fig.
4. We can easily see that the timing relations between a pair of
intervals are not fixed or unique and can be any one from a subset
of the 13 relations shown in Fig. 3 and the predicate is satisfied if
any one type of relation holds.

So, for X, Y, and Z the subset of timing relations can be
represented as r*

i,j={cb, f}, r*
i,k={sb, s, q}, and r*

j,k={c, fb}.

Figure 4. Timing Relations for Example 3
Let us consider another example of detecting predicates with
relative occurrences of time intervals where contextual events
have occurred at physically distant locations.

Example 5. ABC Logistics Company has a secure datacenter
(DC). Accessing data from the DC requires presentation of
fingerprints by the DC manager (DCM), and two deputy general
managers (DGM) of the company. All three managers are
distributed across the globe and they must present their
fingerprint remotely, over the wire. The DCM first presents his
fingerprint to activate the system AFTER which the two DGMs
present their fingerprints. They hold their fingers until the
fingerprints are verified by the DCM and an acknowledgement is
sent. AFTER both the DGMs pass security verifications, the DCM
removes his finger and the DC becomes accessible to the user.

Figure 5. Timing Relations for Example 5

Fig. 5 describes the timing relations between the intervals for this
example (assuming DCM as Y and the two DGMs as X and Z,
respectively). So, for X, Y, and Z the subset of timing relations can
be represented as r*

i,j={cb}, r*
i,k={sb, s, fb, f, o, ob, c, cb, q}, and

r*
j,k={c}.

In Relativepred problem, for each pair of processes (Pi, Pj), there is
a set r*

i,j such that some relation in r*
i,j must hold. For solving

Relativepred, given an arbitrary r*
i,j, the central server stores all the

incoming intervals in specific interval queues and compares every
possible pair of intervals in order to detect a relation. This process
tends to grow exponentially unless somehow the numbers of
comparisons are restricted by controlling the growth of the
interval queues. So, to avoid tracking multiple intervals in each
queue and examining exponential number of global states (up to
pn), we use the prohibition function and CONVEXITY property
from [14].

4.4 Algorithm for Solving Relativepred Problem
To solve the Relativepred problem for Example 5, we show how to
adapt the theory and abstract algorithm given in [14]. As already
mentioned, before giving the algorithm, we briefly describe the
prohibition function and CONVEXITY property and introduce
certain lemmas derived from them that have been used in this
paper.

Table 1. Prohibition Functions H(ri,j) for the 13 Relations ri,j in

Definition 1. Prohibition function H: 2 is

H(ri,j) = {R | if R(X, Y) is true then ri,j (X, Y’) is false for all Y’

that succeed Y}

Intuitively, for each ri,j , the prohibition function H(ri,j) is the
set of all orthogonal relations R (ri,j) such that if R(X, Y) is true,
then ri,j (X, Y’) can never be true for any successor Y’ of Y. H(ri,j) is
the set of relations that prohibit ri,j from being true in the future.

Table 1 gives H(ri,j) for the 13 relations in . It is constructed by
analyzing each relation pair. Example 6 shows the use of
prohibition function in pruning interval queues.

Example 6. The sixth row of Table 1 gives H(ri,j) for the relations
c and cb.

• In column two, H(ci,j(Xi, Yj)) ={p, m, o, s, f, fb, cb, q}.
Hence, p(Xi, Yj) or m(Xi, Yj) or o(Xi, Yj) or s(Xi, Yj) or f(Xi, Yj)
or fb(Xi, Yj) or cb(Xi, Yj) or q(Xi, Yj) implies that c(Xi, Y

’
j) can

never hold for any successor Y’
j of Yj.

• In column three, H(cbj,i(Yj, Xi)) = {p, m, mb, o, ob, s, sb, f,
fb, c, cb, q}. Hence, p(Yj, Xi) or m(Yj, Xi) or mb(Yj, Xi) or
o(Yj, Xi) or ob(Yj, Xi) or s(Yj, Xi) or sb(Yj, Xi) or f(Yj, Xi) or
fb(Yj, Xi) or c(Yj, Xi) or cb(Yj, Xi) or q(Yj, Xi) implies that
cb(Yj, X

’
i) can never hold for any successor X’

i of Xi.

The following two lemmas directly follow from the prohibition
function. Lemma 2 guarantees progress, when two intervals are
checked, if the desired relationship is not satisfied, at least one of
them can be discarded.

Lemma 1. If the relationship R(X, Y) between intervals X at Pi
and Y at Pj is contained in the set H(ri,j) and R ri,j, then X can be
removed from the queue Qi.
Lemma 2. If the relationship between a pair of intervals X at Pi
and Y at Pj is not equal to ri,j, then either X or Y is removed from
the queue.
So far, we specified a single relation r from between a pair of
intervals. Queries based on more complex timing relations, e.g.,
Figure 5 for Example 3, and Figure 6 for Example 5, show that r
can be any one of several relations in a subset of . We now need
to identify the counterpart of Lemma 2. To better illustrate this
issue, let us reconsider Fig. 4, where we see that for Example 3,
r*

j,k={c, fb}. The intervals considered are Y and Z, and let us
assume, that a relation (other than c or fb) ‘precedes’ p(Y, Z), and
hence, pb(Z, Y) holds between them. We want to check whether it
is possible to remove either of the intervals, Y and Z. This is
illustrated in Fig. 6.

Figure 6. Example of “no queue pruning” of Qk (for Pk)
• We can see that p H(c), but pb H(cb). Even though Y

will not form a part of a solution satisfying relation c with
any future Z’, Z can form a solution satisfying relation cb
with any future Y’, i.e., cb(Z, Y’) may be true. So, the
record of Z must be retained in Qk.

• Similarly, for the other relation fb, p H(fb), pb H(f).
Even though Y will not form a part of a solution satisfying
relations fb with any future Z’, Z can form a solution
satisfying relation f with any future Y’, So, as before, f(Z,
Y’) may be true for some future Y’, So, the record of Z
must be retained in Qk.

So, in neither case, Qk can be pruned, i.e., records of Z cannot be
deleted from its interval queue. Next we define the CONVEXITY
property [14] on r*

i,j.

Definition 2. CONVEXITY:

∈∈∀∉∀ RrrrR jijiji ,(: *
,,

*
, H(ri,j) ∈∈∀∨ −1*

,, ,Rrr ijij H(rj,i))

It guarantees that either X or Y or both get deleted if R(X, Y) r*
i,j

and, hence, there is no explosion of global states. The following
results from [14] are used.
Lemma 3. If the relation R(X, Y) between intervals X and Y (at
processes Pi and Pj, respectively) is contained in the set

*
,, jiji rr ∈ H(ri,j), then interval X can be removed from Qi.

Lemma 4. If the relation R(X, Y) between a pair of intervals X
and Y (at processes Pi and Pj, respectively) does not belong to the
set r*

i,j, where r*
i,j satisfies CONVEXITY, then either interval X or

Y is removed from the queue.
From the above lemmas we can say that if a r*

i,j can satisfy
CONVEXITY, it can be solved and our algorithm (given later)
can be used to detect Relativepred. We apply the lemmas on the r*

i,j
of Example 5 and verify that it satisfies CONVEXITY. We
proceed as follows:

1. We know that Example 5 have the sets of relations between
the intervals (X, Y and Z), r*

i,j = {cb}, r*
j,k = {c}, and r*

i,k =
{o, ob, s, sb, f, fb, c, cb, q}.

2. For each R in \ r*
i,j = {p, pb, m, mb, o, ob, s, sb, f, fb, c,

q}, observe from Table 1 that R H() or R-1 H (-1),
where r*

i,j. Similarly, it is true for the other two sets, r*
j,k

and r*
i,k. So, CONVEXITY is satisfied by r*

i,j, r*
j,k and r*

i,k
and our algorithm can be used.

Algorithm: Online Algorithm for Relativepred

Interval: (Val, ts, tf)
Number of processes: n = 3 = {i, j, k}
Queue of intervals: Qi, Qj, Qk = (default, t,)
Set of integer: updatedQs, newupdatedQs = {}
On receiving interval from process P at P0
(1) Enqueue the interval onto Q
(2) if (|Q | = 1) then
(3) updatedQs = {P }
(4) while (updatedQs NULL)
(5) newupdatedQs ={}
(6) for each updatedQs
(7) if(Q NULL) then
(8) U = head of Q
(9) for in {i, j, k}, ()
(10) if (Q NULL) then
(11) V = head of Q
(12) case
//Test for R(U,V) using interval timestamps (Fig.5)
(13) (,) = (i, j) or (j, i):

(14) if (R(U, V) *
,, jiji rr ∈

H(ri,j) and R r*
i,j) then

(15) newupdatedQs ={i} newupdatedQs

(16) if (R(V, U) *
,, ijij rr ∈ H(rj,i) and R r*

j,i) then

(17) newupdatedQs ={j} newupdatedQs
(18) (,) = (i, k) or (k, i):

(19) if (R(U, V) *
,, kiki rr ∈ H(ri,k) and R r*

i,k) then

(20) newupdatedQs ={i} newupdatedQs

(21) if (R(V, U) *
,, ikik rr ∈ H(rk,i) and R r*

k,i) then

(22) newupdatedQs ={k} newupdatedQs
(23) (,) = (j, k) or (k, j):

(24) if (R(U, V) *
,, kjkj rr ∈ H(rj,k) and R r*

j,k) then

(25) newupdatedQs ={j} newupdatedQs

(26) if (R(V, U) *
,, jkjk rr ∈ H(rk,j) and R r*

k,j) then

(27) newupdatedQs ={k} newupdatedQs
(28) Delete heads of all Qt where t newupdatedQs
(29) updatedQs = newupdatedQs
(30) if (all queues are non-empty) then
(31) Heads of queues identify intervals that form the solution

Above, we present our algorithm to solve the Relativepred problem.
The algorithm is written in a way to solve an instance of the
Example 5 described earlier. As we already know that the set of
relations between every pair of processes in Example 5 satisfies
CONVEXITY, it is possible to detect the specified relative timing
relations between the same processes using the above algorithm.
In the above algorithm, we can replace some expressions with the
following values. From Table 1, we have:
For r*

i,j= {cb}, the set

*
,, jiji rr ∈

H(ri,j) = {p, m, mb, o, ob, s, sb, f, fb, c, cb, q}…(1)

*
,, jiji rr ∈ H(ri,j)\ r*

i,j = {p, m, mb, o, ob, s, sb, f, fb, c, q}…(2)

For r*
j,i= {c}, the set

*
,, ijij rr ∈ H(rj,i) = { p, m, o, s, f, fb, cb, q }…(1’)

*
,, ijij rr ∈

H(rj,i)\ r*
j,i = { p, m, o, s, f, fb, cb, q }…(2’)

For r*
i,k= {o, ob, s, sb, f, fb, c, cb, q}, the set

*
,, kiki rr ∈

H(ri,k) = {p, m, o, s, f, fb, cb, q} (3)

*
,, kiki rr ∈

H(ri,k) \ r*
i,k = {p, m} …… (4)

For r*
k,i = {o, ob, s, sb, f, fb, c, cb, q}, the set

*
,, ikik rr ∈

H(rk,i) = {p, m, o, s, f, fb, cb, q} (3’)

*
,, ikik rr ∈

H(rk,i)\ r*
k,i = {p, m} …… (4’)

For r*
j,k= { c }, the set

*
,, kjkj rr ∈

H(rj,k) = {p, m, o, s, f, fb, cb, q} ……(5)

*
,, kjkj rr ∈

H(rj,k) \ r*
j,k = { p, m, o, s, f, fb, cb, q }... (6)

For r*
k,j= { cb }, the set

*
,, jkjk rr ∈

H(rk,j) = { p, m, mb, o, ob, s, sb, f, fb, c, cb, q } …(5’)

*
,, jkjk rr ∈

H(rk,j)\r*
k,j = {p, m, mb, o, ob, s, sb, f, fb, c, cb, q}.. (6’)

Substituting the values in lines 14-17, 19-22, and 24-27 of
Algorithm gives the code in the following Fig. 7.
Analysis of worst case time complexity: The time complexity is
the product of the number of steps needed to determine a
relationship and the number of relations determined. For each
interval considered from one of the queues in updatedQs (lines 6-
12), the number of relations determined is (p-1). Thus, number of
relations determined for each iteration of the while loop is (p-
1)|updatedQs|. But, |updatedQs| over all iterations of the while
loop is less than the total number of intervals over all of the
queues. Thus, the total number of relations determined is less than
(p-1).X, where X = p. is the upper bound on the total number of
intervals over all the queues. As the time required to determine a
relationship is O(1) (follows trivially from Fig. 4), the total time
complexity is O(p2).

(14) if R(U, V) {p, m, mb, o, ob, s, sb, f, fb, c, q} then
(15) newupdatedQs ={i} newupdatedQs
(16) if R(V, U) { p, m, o, s, f, fb, cb, q} then
(17) newupdatedQs ={j} newupdatedQs
(19) if R(U, V) {p, m} then
(20) newupdatedQs ={i} newupdatedQs
(21) if R(V, U) {p, m} then
(22) newupdatedQs ={k} newupdatedQs
(24) if R(U, V) {p, m, o, s, f, fb, cb, q} then
(25) newupdatedQs ={j} newupdatedQs
(26) if R(V, U) { p, m, mb, o, ob, s, sb, f, fb, c, q } then
(27) newupdatedQs ={k} newupdatedQs

Figure 7. Algorithm Relativepred replacing for Example 5

5. CONCLUSION AND FUTURE WORKS
In this paper we presented a context map structure which is a
graph showing contextual interconnection between several smart
physical objects and people of our surrounding environment.
Contextual links are added between smart objects based on
multiple context-based relations, such as, co-location (‘located in
the same room’), or colleague (‘employed by the same
company’), etc. Since, the dynamic context attributes (e.g.,
location) of an object may change with time, the contextual links
may also be created or deleted with changes in context values.
Tracking these changes and answering queries on the context map
in a timely and consistent manner is non-trivial in asynchronous
pervasive computing environments. We showed how to adapt an
existing theoretical algorithm for detecting contextual events with
relative timing relations in a real-life example in a pervasive
environment. Our proposed algorithm is applicable to a wide
range of pervasive applications.
In future, we want to develop decentralized algorithm for
detecting contextual events which can maintain context map
through autonomous coordination of smart objects. We also want
to carry out more experiments to verify our algorithms.

6. REFERENCES
[1] Xu, C. and Cheung, S.C. 2005. Inconsistency detection and

resolution for context-aware middleware support. In
Proceedings of the ACM SIGSOFT Int’l Symposium on
Foundations of Software Engineering (FSE), pp.336-45.

[2] Xu, C. and Cheung, S.C., and Chan, W.K. 2006. Incremental
consistency checking for pervasive context. In Proceedings
of the Int’l Conf. on Software Engineering (ICSE’06),
Shanghai, China, pp. 292–301.

[3] Bu, Y., Gu, T., Tao, X., Li, J., Chen, S., and Lu, J. 2006.
Managing quality of context in pervasive computing. In
Proceedings of the Int’l Conf. on Quality Software
(QSIC’06), Beijing, China, pp. 193–200.

[4] Bu, Y., Chen, S., Li, J., Tao, X., and Lu, J. 2006. Context
consistency management using ontology based model. In
Proceedings of the Current Trends in Database Technology
(EDBT), Munich, pp. 741–755.

[5] Huang, Y., Ma, X., Cao, J., Tao, X., and Lu, J. 2009.
Concurrent Event Detection for Asynchronous consistency
checking of pervasive context. In Proceedings of the IEEE
Int’l Conf. on Pervasive Computing and Communications.

[6] Gershenfeld, N., Krikorian, R., and Cohen, D. 2004. The
Internet of Things. Scientific American, vol. 291, pp. 76-81.

[7] Wang, H., Tan, C.C., and Li, Q. 2010. Snoogle: A Search
Engine for Pervasive Environments," IEEE Trans. on
Parallel and Distributed Systems, vol. 21, no. 8, pp.1188-
1202.

[8] Khelil, A., Sheikh, F.K., Ayari, B., and Suri, N. 2008.
MWM: A Map-based World Model for Event-driven
Wireless Sensor Networks. In Proceedings of the 2nd ACM
International Conference on Autonomic Computing and
Communication Systems (AUTONOMICS).

[9] Kranz, M. 2005. SENSID: A situation detector for sensor
networks. Honours Thesis, School of Computer Science and
Software Engineering, University of Western Australia.

[10] Huang, Y., Ma, X., Cao, J., Tao, X., and Lu, J. Checking
Behavioral Consistency Constraints for Pervasive Context in
Asynchronous Environments. arXiv:0911.0136

[11] Lamport, L. 1978. Time, Clocks, and the Ordering of Events in
a Distributed System. Comm. ACM, vol. 21, no. 7, pp.558-65.

[12] Chandra, P., Kshemkalyani, A.D. 2005. Causality-based
Predicate Detection across Space and Time. IEEE Trans. on
Computers, 54(11): 1438-1453, (November 2005).

[13] Kshemkalyani, A.D. 2003. A Fine-Grained Modality
Classification for Global Predicates. IEEE Trans. on Parallel
and Distributed Systems, vol. 14, no. 8, pp. 807-816.

[14] Kshemkalyani, A.D. 2007. Temporal Predicate Detection
Using Synchronized Clocks. IEEE Trans. on Computers, vol.
56, no. 11, pp. 1578-1584, (June 2007).

[15] Mayo, J. and Kearns, P. 1995. Global predicates in rough
real time. In Proceedings of the 7th IEEE Symposium on
Parallel and Distributed Processing.

[16] Allen, J. 1983. Maintaining Knowledge about Temporal
Intervals. Comm. ACM, vol. 26, no. 11, pp. 832-843.

[17] Hamblin, C.L. 1972. Instants and Intervals The Study of
Time, pp. 324-332. Springer-Verlag.

[18] Sichitiu, M.L. and Veerarittiphan, C. 2003. Simple, accurate
time synchronization for wireless sensor networks.
IEEE Wireless Communications and Networking (WCNC).

[19] Kyoung-lae, N., Serpedin, E., and Qaraqe, K. 2008. A New
Approach for Time Synchronization in Wireless Sensor
Networks: Pairwise Broadcast Synchronization. IEEE Trans.
Wireless Communications, vol. 7, no. 9, pp.3318-3322.

[20] Sundararaman, B., Buy, U., and Kshemkalyani, A.D. 2005.
Clock synchronization for wireless sensor networks: a
survey. Ad Hoc Networks, vol.3, Issue 3, Pages 281-323.

[21] Su, W., and Akyildiz, I. 2005. Time-Diffusion
Synchronization Protocol for Sensor Networks. IEEE/ACM
Trans. Networking, vol. 13, no. 2, pp. 384-397.

