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ABSTRACT
Pervasive computing environments are composed of numerous 
smart entities (objects and human alike) which are interconnected 
through contextual links in order to create a Web of physical 
objects. The contextual links can be based on matching context 
attribute-values (e.g., co-location) or social connections. We call 
such a Web of smart physical objects a context map. Context 
maps can be used for context-aware search and browse of the 
physical world. This paper shows how to evaluate predicates on 
the context map, when the predicate is specified using complex 
timing relations.  

Categories and Subject Descriptors
H.3.4 [Context]: Web View 

General Terms
Algorithms 

Keywords
Context map; Relative event detection; Searching and browsing 
physical world; Query; Predicate detection. 

1. INTRODUCTION 
Rapid advances in embedded sensing technologies, wireless 
communications, and mobile computing, are transforming our 
physical world into an intelligent environment. Physical objects 
(including human beings) embedded with sensing, computing, 
and communication capabilities are being contextually 
interconnected to form an Internet of physical objects, not much 
unlike the traditional Internet. We call such a novel structure a 
context map where contextual links between pairs of objects are 
created based on their matching context attributes (e.g., location, 
ownership, social connections, etc). Context attributes can be 
static or dynamic depending on whether their value changes with 
time. Let us consider the following intelligent office example to 
illustrate the idea. 

Example 1. Tom enters his office PQ821 at 9:00 am with a laptop 
borrowed from the office IT services for presenting at the Annual  

General Meeting scheduled from 11:00 am. He calls his project 
partner Bob who arrives at 9:45 am to take a look at his PPT 
slides. Leaving Bob there Tom goes to the canteen at 10:30 am for 
breakfast and finally enters meeting room PQ 304 at 10:50 am. He 
finds that Bob has arrived there at 10:45 am and has set up the 
laptop for presentation. 

There are three smart objects - Tom, Bob and Laptop. All three 
have a location (Loc) context attribute and the laptop has an 
additional user attribute. The timing diagram in Fig. 1 shows the 
change of context attribute values with time and Fig. 2 shows the 
corresponding contextual links in the context map and the time 
through which they are active. If necessary, inactive previous 
links can also be stored to track the past contextual relationships 
of an object. Like the Web search and browse over the Internet, 
context map enables users to search for a physical object based on 
its current context values and to browse through the present and 
past contextual links between objects. Creation and maintenance 
of contextual links, however, requires correct and timely detection 
of contextual events generated by change of values of dynamic 
context attributes.  

Figure 1. Timing Diagram of Example1  

A context map represents a global snapshot of the physical world 
including multiple smart physical objects and people, and the 
variations of contextual relations among them with respect to 
time. A global snapshot should contain one local state from each 
participating entity. Using a common time axis, a global state can 
be specified (1) as occurring at the same time instant in each 
entity (or, concurrent), or (2) in terms of specific temporal 
relationships among the local states (one local state from each 
process) (or, relative). Examples 2 and 3 show the concurrent and 
relative temporal relations, respectively. 

Example 2. From Example 1, concurrency of location context of 
Tom, Bob and the Laptop can be represented as (Tom.Loc = 
Bob.Loc = Laptop.Loc). 

Example 3. In Example 1, assume that after Tom enters his office, 
he has invited both Bob and Ron to take a look at his slides. After 
that they may go to the meeting together or separately. So, here 
the relative occurrences of these events can be specified as - Ron 
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and Bob enter Tom’s office AFTER Tom and they leave AT THE 
SAME TIME or BEFORE Tom. 

Figure 2. Context Map for Example 1 
Incorrect detection of afore-mentioned events will certainly 
introduce contextual inconsistency in the context map. Moreover, 
due to the predominantly wireless nature of communication in 
pervasive computing environments, event reporting by smart 
objects often suffers from finite but unbounded delays. So, the 
consistent and timely maintenance of context map in a dynamic 
and asynchronous pervasive computing environment is non-
trivial. 

Context consistency detection has been studied in [1][2][3][4] for 
contexts belonging to the same snapshot of time. On the other 
hand, [5] has proposed inconsistency detection assuming an 
inherently asynchronous pervasive computing environment. 
However, example applications in [5] considered contextual 
events occurring at the same or close-by locations. This situation 
does not introduce delay in event reporting and hence, it is not 
readily evident whether the solution proposed in [5] works 
effectively for real-life applications. Also, more importantly, none 
of the above papers can detect contextual events with relative 
timing relations.  

There exists a need to evaluate predicates using complex timing 
relations on the context map to answer queries such as, “Did Bob 
and Ron enter Tom’s office after him and leave it after him?” 
None of the existing work can answer queries on the context map 
based on such complex timing relations. A generic algorithm to 
answer such complex queries was given in [14]. In this paper, we 
show how to adapt the algorithm in [14] to detect predicates with 
relative timing constraints. Although distributed systems are 
asynchronous, we assume synchronized physical clocks are 
available within the same administrative domain. Our algorithm 
leverages the availability of physically synchronized clocks.  

Contributions: 

1. We introduce the context map to track the image of the 
physical world, so that queries can be run against the 
context map. 

2. We give instances of real-world problems (Examples 3 
and 5) in pervasive environments where complex timing 
relations are involved in queries on the context map. 

3. We show how to adapt the theory and abstract algorithm 
given in [14] to answer queries based on relative timing 
predicates in an on-going manner, to a real-world problem 
using a detailed step-by-step example. 

The remainder of the paper is organized as follows. Section 2 
discusses the related works. Section 3 gives our system model. 
Section 4 adapts the algorithm of [14] to handle complex cases of 

detecting events with relative timing relations. Finally Section 5 
concludes this paper with the directions of future work. 

2. RELATED WORKS 
Contextually connecting smart objects is the key to many novel 
pervasive computing applications, such as, Internet of Things [6] 
or Real world search [7]. However, this requires capturing 
contextual events and relating them based on concurrency of 
occurrences, or just based on the relative time of their 
occurrences.  

Context maps are studied in [8] and [9] with reference to wireless 
sensor networks (WSN). A map-based world model has been 
presented in [8] for WSN where a map is an aggregated view on 
the spatial and temporal distribution of a certain attribute (e.g., 
temperature) sensed by some sensor nodes. This approach has 
limited scope and does not aim to connect all physical objects. 
SENSID [9] is a situation detecting middleware for WSN which is 
used to capture spatial and temporal event patterns in WSN using 
conjunctive situation predicates.  

Event detection by specifying predicates is a commonly used 
policy and is being used in pervasive environments as well. 
Concurrent events are detected in [5] by tackling temporal 
inconsistency caused by message asynchrony in pervasive 
environment. They use a logical clock based approach for 
detecting concurrent events specified by conjunctive predicates. 
Later, an extension [10] was made to decide temporal ordering of 
contextual events generated by a user’s activity. However, this 
process can only detect which event happens before or after the 
other and cannot find out the relative timing relations between 
events as introduced in this paper in Example 3. 

Predicate detection in traditional distributed computing is an old 
research area. Detecting distributed predicates based on 
concurrent and relative timing occurrences of intervals have been 
studied in [12] and [13], using logical time based [11] causality 
relationships. An extension of these works is [14], which 
introduced an approach of detecting composite events with 
relative timing constraints in WSN, using synchronized clocks. 

3. SYSTEM MODEL  
We assume that a pervasive computing environment is composed 
of multiple smart entities connected wirelessly and they 
communicate through asynchronous message passing. Each entity 
has a set of context attributes whose values may change with time. 
We model these changes as the generation of a series of linearly 
ordered set of discrete events Ei by the execution of a process Pi at 
each entity. The time duration between two successive events at a 
process identifies an interval during which the value of a context 
attribute holds (Fig. 1).  
Event streams from the processes report intervals to a central data 
fusion server, P0, either periodically (in batch mode) or following 
a trigger-based approach (i.e., as and when the value of an 
attribute changes). Information about the reported intervals is 
“fused” at the server and examined to detect relative temporal 
relations between intervals specified as a global predicate  that 
is satisfied by the current system state. The predicate  must be (i) 
explicitly defined on attribute values during intervals that are (ii) 
implicitly related using relative timing relationships. The context 
map is updated based on the truth value of , in order to reflect 
global states of execution. 



Predicates can be of two types:  relational and conjunctive 
predicates. Relational predicates (Example 2) can be true for any 
values of the context attributes and cannot be evaluated locally. 
Conjunctive predicates, on the other hand, can be locally 
evaluated. They must be expressible in conjunctive form, 

i.e., i
t
iΦΛ=Φ , which is a conjunct over the local predicates i, 

where timing relations between intervals are included in the 
conjunction operation t. We consider queries using only 
conjunctive predicates. The following example shows a 
conjunctive predicate version of Example 2. 

Example 4. Conjunctive predicate: (Tom.Loc = PQ821 & 
Bob.Loc = PQ821 & Laptop.Loc = PQ821). 

We assume synchronized clocks for all the smart entities. Many 
low-cost, high-accuracy clock synchronization protocols have 
been proposed for single and multi-hop wireless sensor networks 
[18][19][20][21]. The clock skew can be very small (
microsecs), relative to the rate of changes in the observed physical 
phenomena, like human and object movement. Although 
pervasive environments are asynchronous WSNs, it is reasonable 
to assume such physically synchronized clocks, particularly if the 
participating entities belong to the same administrative domain. 

4. DETECTING PREDICATES BASED ON 
RELATIVE TIMING CONSTRAINTS 
As already mentioned in Section 1, detecting predicates with 
relative timing constraints is more challenging. In this section we 
shall study it in more detail for conjunctive predicates. For a 
single time axis there are 13 ways in which two time intervals can 
be related to one another on that time axis [16][17]. For intervals 
X and Y in processes Pi and Pj, respectively, the 13 relations are 
illustrated in Fig. 3. The set of these 13 relations is denoted by . 
There are six pairs of inverses as shown and equals is its own 
inverse. Below we define the problem of detecting predicates 
based on relative timing constraints.  

Figure 3. The 13 relations  between intervals [16], [17] 

4.1 Problem Definition  
Problem Relativepred. Given a set of relations r*

i,j  for each pair 
of processes Pi and Pj, determine online the earliest intervals, one 
from each process, such that any one of the relations in r*

i,j is 
satisfied (by the intervals) for each (Pi, Pj) pair. If a solution 
exists, identify the relationship from  for each pair of intervals in 
the solution. 

4.2 Data Structure for Relativepred  
We assume that there is a set of processes (one for each smart 
entity), P, and each process has a single context attribute A. We 
also assume that |P| = p. Every event (e) is identified by a triple 
(Pi, ValA, ts), where Pi is the identifier of process i, ValA is the 
value of attribute, and ts is the timestamp of occurrence of e.  

The central server maintains a queue, called interval queue (Qi), 
which captures the intervals generated by each process Pi. We 
assume that this queue can hold at most  intervals, where  is the 
maximum number of intervals per process. 

4.3 Explanation 
Consider Example 3 which specifies a predicate using three 
different relative timing constraints - AFTER, AT THE SAME 
TIME and BEFORE. Assuming Ron, Tom and Bob as three 
processes, Pi, Pj, and Pk, generating intervals X, Y and Z, 
respectively, the timing relations of Example 3 are shown in Fig. 
4. We can easily see that the timing relations between a pair of 
intervals are not fixed or unique and can be any one from a subset 
of the 13 relations shown in Fig. 3 and the predicate is satisfied if 
any one type of relation holds. 

So, for X, Y, and Z the subset of timing relations can be 
represented as r*

i,j={cb, f}, r*
i,k={sb, s, q}, and r*

j,k={c, fb}.  

Figure 4. Timing Relations for Example 3 
Let us consider another example of detecting predicates with 
relative occurrences of time intervals where contextual events 
have occurred at physically distant locations. 

Example 5. ABC Logistics Company has a secure datacenter 
(DC). Accessing data from the DC requires presentation of 
fingerprints by the DC manager (DCM), and two deputy general 
managers (DGM) of the company. All three managers are 
distributed across the globe and they must present their 
fingerprint remotely, over the wire. The DCM first presents his 
fingerprint to activate the system AFTER which the two DGMs 
present their fingerprints. They hold their fingers until the 
fingerprints are verified by the DCM and an acknowledgement is 
sent. AFTER both the DGMs pass security verifications, the DCM 
removes his finger and the DC becomes accessible to the user.  

Figure 5. Timing Relations for Example 5



Fig. 5 describes the timing relations between the intervals for this 
example (assuming DCM as Y and the two DGMs as X and Z, 
respectively). So, for X, Y, and Z the subset of timing relations can 
be represented as r*

i,j={cb}, r*
i,k={sb, s, fb, f, o, ob, c, cb, q}, and 

r*
j,k={c}.  

In Relativepred problem, for each pair of processes (Pi, Pj), there is 
a set r*

i,j  such that some relation in r*
i,j must hold. For solving 

Relativepred, given an arbitrary r*
i,j, the central server stores all the 

incoming intervals in specific interval queues and compares every 
possible pair of intervals in order to detect a relation. This process 
tends to grow exponentially unless somehow the numbers of 
comparisons are restricted by controlling the growth of the 
interval queues. So, to avoid tracking multiple intervals in each 
queue and examining exponential number of global states (up to 
pn), we use the prohibition function and CONVEXITY property 
from [14]. 

4.4 Algorithm for Solving Relativepred Problem 
To solve the Relativepred problem for Example 5, we show how to 
adapt the theory and abstract algorithm given in [14]. As already 
mentioned, before giving the algorithm, we briefly describe the 
prohibition function and CONVEXITY property and introduce 
certain lemmas derived from them that have been used in this 
paper. 

Table 1. Prohibition Functions H(ri,j) for the 13 Relations ri,j in 

Definition 1. Prohibition function H:  2 is 

H(ri,j) = {R  | if R(X, Y) is true then ri,j (X, Y’) is false for all Y’

that succeed Y}  

Intuitively, for each ri,j , the prohibition function H(ri,j) is the 
set of all orthogonal relations R ( ri,j) such that if R(X, Y) is true, 
then ri,j (X, Y’) can never be true for any successor Y’ of Y. H(ri,j) is 
the set of relations that prohibit ri,j from being true in the future. 

Table 1 gives H(ri,j) for the 13 relations in . It is constructed by 
analyzing each relation pair. Example 6 shows the use of 
prohibition function in pruning interval queues. 

Example 6. The sixth row of Table 1 gives H(ri,j) for the relations 
c and cb. 

• In column two, H(ci,j(Xi, Yj)) ={p, m, o, s, f, fb, cb, q}. 
Hence, p(Xi, Yj) or m(Xi, Yj) or o(Xi, Yj) or s(Xi, Yj) or f(Xi, Yj) 
or fb(Xi, Yj) or cb(Xi, Yj) or q(Xi, Yj) implies that c(Xi, Y

’
j) can 

never hold for any successor Y’
j of Yj. 

• In column three, H(cbj,i(Yj, Xi)) = {p, m, mb, o, ob, s, sb, f, 
fb, c, cb, q}. Hence, p(Yj, Xi) or m(Yj, Xi) or mb(Yj, Xi) or 
o(Yj, Xi) or ob(Yj, Xi) or s(Yj, Xi) or sb(Yj, Xi) or f(Yj, Xi) or 
fb(Yj, Xi) or c(Yj, Xi) or cb(Yj, Xi) or q(Yj, Xi) implies that 
cb(Yj, X

’
i) can never hold for any successor X’

i of Xi. 

The following two lemmas directly follow from the prohibition 
function. Lemma 2 guarantees progress, when two intervals are 
checked, if the desired relationship is not satisfied, at least one of 
them can be discarded. 

Lemma 1. If the relationship R(X, Y) between intervals X at Pi
and Y at Pj is contained in the set H(ri,j) and R ri,j, then X can be 
removed from the queue Qi. 
Lemma 2. If the relationship between a pair of intervals X at Pi
and Y at Pj is not equal to ri,j, then either X or Y is removed from 
the queue.
So far, we specified a single relation r from  between a pair of 
intervals. Queries based on more complex timing relations, e.g., 
Figure 5 for Example 3, and Figure 6 for Example 5, show that r
can be any one of several relations in a subset of . We now need 
to identify the counterpart of Lemma 2. To better illustrate this 
issue, let us reconsider Fig. 4, where we see that for Example 3, 
r*

j,k={c, fb}. The intervals considered are Y and Z, and let us 
assume, that a relation (other than c or fb) ‘precedes’ p(Y, Z), and 
hence, pb(Z, Y) holds between them. We want to check whether it 
is possible to remove either of the intervals, Y and Z. This is 
illustrated in Fig. 6. 

Figure 6. Example of “no queue pruning” of Qk (for Pk) 
• We can see that p H(c), but pb H(cb). Even though Y

will not form a part of a solution satisfying relation c with 
any future Z’, Z can form a solution satisfying relation cb
with any future Y’, i.e., cb(Z, Y’) may be true. So, the 
record of Z must be retained in Qk.  

• Similarly, for the other relation fb, p H(fb), pb H(f). 
Even though Y will not form a part of a solution satisfying 
relations fb with any future Z’, Z can form a solution 
satisfying relation f with any future Y’, So, as before, f(Z, 
Y’) may be true for some future Y’, So, the record of Z
must be retained in Qk. 

So, in neither case, Qk can be pruned, i.e., records of Z cannot be 
deleted from its interval queue. Next we define the CONVEXITY 
property [14] on r*

i,j. 

Definition 2. CONVEXITY: 

∈∈∀∉∀ RrrrR jijiji ,(: *
,,

*
, H(ri,j) ∈∈∀∨ −1*

,, ,Rrr ijij H(rj,i)) 

It guarantees that either X or Y or both get deleted if R(X, Y) r*
i,j

and, hence, there is no explosion of global states. The following 
results from [14] are used. 
Lemma 3. If the relation R(X, Y) between intervals X and Y (at 
processes Pi and Pj, respectively) is contained in the set 

*
,, jiji rr ∈ H(ri,j), then interval X can be removed from Qi.

Lemma 4. If the relation R(X, Y) between a pair of intervals X 
and Y (at processes Pi and Pj, respectively) does not belong to the 
set r*

i,j, where r*
i,j satisfies CONVEXITY, then either interval X or 

Y is removed from the queue.
From the above lemmas we can say that if a r*

i,j can satisfy 
CONVEXITY, it can be solved and our algorithm (given later) 
can be used to detect Relativepred. We apply the lemmas on the r*

i,j
of Example 5 and verify that it satisfies CONVEXITY. We 
proceed as follows: 



1. We know that Example 5 have the sets of relations between 
the intervals (X, Y and Z), r*

i,j = {cb}, r*
j,k = {c}, and r*

i,k = 
{o, ob, s, sb, f, fb, c, cb, q}.  

2. For each R in  \ r*
i,j = {p, pb, m, mb, o, ob, s, sb, f, fb, c, 

q}, observe from Table 1 that R H( ) or R-1 H ( -1), 
where r*

i,j. Similarly, it is true for the other two sets, r*
j,k

and r*
i,k. So, CONVEXITY is satisfied by r*

i,j, r*
j,k and r*

i,k
and our algorithm can be used.  

Algorithm: Online Algorithm for Relativepred

Interval: (Val, ts, tf) 
Number of processes: n = 3 = {i, j, k} 
Queue of intervals: Qi, Qj, Qk = (default, t, ) 
Set of integer: updatedQs, newupdatedQs = {} 
On receiving interval from process P   at P0  
(1) Enqueue the interval onto Q
(2) if (|Q | = 1) then
(3) updatedQs = {P } 
(4) while (updatedQs  NULL) 
(5) newupdatedQs ={} 
(6) for each updatedQs
(7) if(Q  NULL) then
(8) U = head of Q
(9) for  in {i, j, k}, ( ) 
(10) if (Q  NULL) then 
(11) V = head of Q
(12) case    
//Test for R(U,V) using interval timestamps (Fig.5) 
(13) ( , ) = (i, j) or (j, i): 

(14) if (R(U, V) *
,, jiji rr ∈

H(ri,j) and R r*
i,j) then

(15) newupdatedQs ={i} newupdatedQs

(16) if (R(V, U) *
,, ijij rr ∈ H(rj,i) and R r*

j,i) then

(17) newupdatedQs ={j} newupdatedQs
(18) ( , ) = (i, k) or (k, i):

(19) if (R(U, V) *
,, kiki rr ∈ H(ri,k) and R r*

i,k) then

(20) newupdatedQs ={i} newupdatedQs

(21) if (R(V, U) *
,, ikik rr ∈ H(rk,i) and R r*

k,i) then

(22) newupdatedQs ={k} newupdatedQs
(23) ( , ) = (j, k) or (k, j):

(24) if (R(U, V) *
,, kjkj rr ∈ H(rj,k) and R r*

j,k) then

(25) newupdatedQs ={j} newupdatedQs

(26) if (R(V, U) *
,, jkjk rr ∈ H(rk,j) and R r*

k,j) then

(27) newupdatedQs ={k} newupdatedQs
(28) Delete heads of all Qt where t newupdatedQs
(29) updatedQs = newupdatedQs
(30) if (all queues are non-empty) then
(31) Heads of queues identify intervals that form the solution 

Above, we present our algorithm to solve the Relativepred problem. 
The algorithm is written in a way to solve an instance of the 
Example 5 described earlier. As we already know that the set of 
relations between every pair of processes in Example 5 satisfies 
CONVEXITY, it is possible to detect the specified relative timing 
relations between the same processes using the above algorithm. 
In the above algorithm, we can replace some expressions with the 
following values. From Table 1, we have: 
For r*

i,j= {cb}, the set 

*
,, jiji rr ∈

H(ri,j) = {p, m, mb, o, ob, s, sb, f, fb, c, cb, q}…(1) 

*
,, jiji rr ∈ H(ri,j)\ r*

i,j = {p, m, mb, o, ob, s, sb, f, fb, c, q}…(2) 

For r*
j,i= {c}, the set 

*
,, ijij rr ∈ H(rj,i) = { p, m, o, s, f, fb, cb, q }…(1’) 

*
,, ijij rr ∈

H(rj,i)\ r*
j,i = { p, m, o, s, f, fb, cb, q }…(2’) 

For r*
i,k= {o, ob, s, sb, f, fb, c, cb, q}, the set 

*
,, kiki rr ∈

H(ri,k) = {p, m, o, s, f, fb, cb, q} ...... (3) 

*
,, kiki rr ∈

H(ri,k) \ r*
i,k = {p, m} …… (4) 

For r*
k,i = {o, ob, s, sb, f, fb, c, cb, q}, the set 

*
,, ikik rr ∈

H(rk,i) = {p, m, o, s, f, fb, cb, q} ...... (3’) 

*
,, ikik rr ∈

H(rk,i)\ r*
k,i = {p, m} …… (4’) 

For r*
j,k= { c }, the set 

*
,, kjkj rr ∈

H(rj,k) = {p, m, o, s, f, fb, cb, q} ……(5) 

*
,, kjkj rr ∈

H(rj,k) \ r*
j,k = { p, m, o, s, f, fb, cb, q }... (6) 

For r*
k,j= { cb }, the set 

*
,, jkjk rr ∈

H(rk,j) = { p, m, mb, o, ob, s, sb, f, fb, c, cb, q } …(5’) 

*
,, jkjk rr ∈

H(rk,j)\r*
k,j = {p, m, mb, o, ob, s, sb, f, fb, c, cb, q}.. (6’)  

Substituting the values in lines 14-17, 19-22, and 24-27 of 
Algorithm gives the code in the following Fig. 7. 
Analysis of worst case time complexity: The time complexity is 
the product of the number of steps needed to determine a 
relationship and the number of relations determined. For each 
interval considered from one of the queues in updatedQs (lines 6-
12), the number of relations determined is (p-1). Thus, number of 
relations determined for each iteration of the while loop is (p-
1)|updatedQs|. But, |updatedQs| over all iterations of the while
loop is less than the total number of intervals over all of the 
queues. Thus, the total number of relations determined is less than 
(p-1).X, where X = p.  is the upper bound on the total number of 
intervals over all the queues. As the time required to determine a 
relationship is O(1) (follows trivially from Fig. 4), the total time 
complexity is O(p2 ).  



(14)    if R(U, V) {p, m, mb, o, ob, s, sb, f, fb, c, q} then
(15)         newupdatedQs ={i} newupdatedQs
(16)  if R(V, U) { p, m, o, s, f, fb, cb, q} then 
(17)         newupdatedQs ={j} newupdatedQs
(19)    if R(U, V) {p, m} then
(20)         newupdatedQs ={i} newupdatedQs
(21)    if R(V, U) {p, m} then 
(22)         newupdatedQs ={k} newupdatedQs
(24)    if R(U, V) {p, m, o, s, f, fb, cb, q} then
(25)         newupdatedQs ={j} newupdatedQs
(26)    if R(V, U) { p, m, mb, o, ob, s, sb, f, fb, c, q } then
(27)         newupdatedQs ={k} newupdatedQs

Figure 7. Algorithm Relativepred replacing for Example 5 

5. CONCLUSION AND FUTURE WORKS 
In this paper we presented a context map structure which is a 
graph showing contextual interconnection between several smart 
physical objects and people of our surrounding environment. 
Contextual links are added between smart objects based on 
multiple context-based relations, such as, co-location (‘located in 
the same room’), or colleague (‘employed by the same 
company’), etc. Since, the dynamic context attributes (e.g., 
location) of an object may change with time, the contextual links 
may also be created or deleted with changes in context values. 
Tracking these changes and answering queries on the context map 
in a timely and consistent manner is non-trivial in asynchronous 
pervasive computing environments. We showed how to adapt an 
existing theoretical algorithm for detecting contextual events with 
relative timing relations in a real-life example in a pervasive 
environment. Our proposed algorithm is applicable to a wide 
range of pervasive applications.  
In future, we want to develop decentralized algorithm for 
detecting contextual events which can maintain context map 
through autonomous coordination of smart objects. We also want 
to carry out more experiments to verify our algorithms. 
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