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Abstract
This paper addresses the problem of how to service web

requests quickly in order to minimize the client response
time. Some of the recent work uses the idea of the Short-
est Remaining Processing Time scheduling (SRPT) in Web
servers in order to give preference to requests for short files.
However, by considering only the size of the file for de-
termining the priority of requests, the previous works lack
in capturing potentially useful scheduling information con-
tained in the interaction between networks and end systems.
To address this, this paper proposes and implements an al-
gorithm, SWIFT, that focuses on both server and network
characteristics in conjunction. Our approach prioritizes re-
quests based on the size of the file requested and the dis-
tance of the client from the server. The implementation is
at the kernel level for a finer-grained control over the pack-
ets entering the network. We present the results of the ex-
periments conducted in a WAN environment to test the ef-
ficacy of SWIFT. The results show that for large-sized files,
SWIFT shows an improvement of 2.5% - 10% over the SRPT
scheme for the tested server loads.

1 Introduction
The World Wide Web has probably become one of the

most important objects of study and evaluation, and as it is
not centrally planned or configured, many basic questions
about its nature are wide open. A basic question that has
motivated much work is: how do we make the slow Web
fast? Typical Web servers today have to service several hun-
dred requests concurrently. Some very popular web-sites
like google.com receive several million hits per day. In such
a scenario, a client accessing a busy Web server can expect
a long delay. This delay is due to several factors like queue-
ing delays at Web servers, the current network conditions,
and delays introduced by network protocols like TCP due to
slow start, congestion, and network loss. All these delays,
together, comprise the response time which is defined as the
duration from when a client makes a request until the entire
file is received by the client.

Traditional human factors research shows the need for
response times faster than a second. Unfortunately, subsec-
ond response times on the Web are yet to be achieved. Cur-
rently, the minimum goal for response times should, there-
fore, be to get pages to users in no more than 10 seconds,
as that is the limit of people’s ability to keep their atten-
tion focused while waiting [15]. Our focus is on what we

can do to improve the client response time, and thereby bet-
ter the user’s experience. In this paper, we propose a new
scheduling algorithm on the Web server, called SWIFT. The
algorithm keeps with the response time requirements set in
[15] and focuses on reducing the delays.

Critical path analysis done by Barford and Crovella [6]
for web transactions has shown that for a busy server, delay
at the server is the predominant factor (up to 80%) in the
overall response time. The experiments monitored transac-
tions that were restricted to three sizes of files: 1KB, 20KB,
and 500 KB corresponding to small, medium, and large
files, respectively. The authors noted that since small files
were common in the web, performance improvements were
possible by improving the server’s service for small files;
this result corroborates the validity of size-based schedul-
ing like [3]. The other observation made in [6] was that for
medium-sized files, network delays (network variation and
propagation) dominated when server load was low. How-
ever, when the server was highly loaded, both the network
and the server contributed comparably to the delay. Finally,
for large files, the network delays were the dominating com-
ponent in the overall response time. All these observations
suggest that one cannot ignore the effect of network de-
lays while scheduling medium and large-sized files. It is
for these reasons that we decided to account for network
delays in designing scheduling policies for Web servers.

The proposed idea, SWIFT, is based on the Shortest Re-
maining Processing Time (SRPT) scheduling policy which
has long been known to be optimal for minimizing mean
response time [17, 18]. However, the belief that SRPT pe-
nalizes large jobs in favor of shorter jobs led to the adop-
tion of ‘fair’ scheduling policies such as Processor-Sharing
(PS), which did little to improve the mean response time.
Recently, Mor Harchol-Balter et. al. [3, 5] have taken up
work on SRPT scheduling in Web servers and they opened
a trend for so-called ‘unfair’ scheduling policies. Bansal
et. al. [5] give the theoretical basis for the viability of an
SRPT scheme in the current scenario. The important as-
sumption made is that file size distributions in the Web ex-
hibit heavy tails, including files requested by users, files
transmitted through the network, and files stored on servers
[11, 13].

For our implementation, we consider heavy-tailed web
workloads and focus on static requests only. The latter as-
sumption is based on the measurement study done by Man-
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ley et. al. [14], where they suggest that most servers process
relatively little dynamic (CGI) content, and the traffic gen-
erated accounts for a small fraction of the site’s traffic.

Unlike previous work which focuses only on the size of
the request, our idea is to prioritize the requests based on
the size of the request and the propagation delay. The size
of the request can be approximated by the size of the file
and the propagation delay can be proportional to the aver-
age round-trips. The server can estimate the average round-
trip time (RTT) after receiving the web requests. This is
commonly done in today’s generation of Web servers. We,
however, use a trace-driven web request generator and for
experimental purpose, assume that the RTT is embedded in
the request. Based on these two parameters, the SWIFT
scheduling policy can be implemented. We conducted ex-
periments in a WAN environment and used the Apache Web
server (the Feb. 2001 NetCraft Web server survey found
that 60% of the web sites on the Internet are using Apache).
The clients made use of a trace-based workload to generate
requests. The experiments were repeated at different server
loads. The server load in our experiments was defined as the
load at the bottleneck resource. As in [3], this is the network
link out of the Web server [12], on which the client requests
arrive. Memory is not a bottleneck because the RAM on the
server can be available at low costs. Moreover, servers can
use File System Cache to service most of the requests from
the cache, e.g., IIS 5.0 uses 50% of the available physical
memory as cache. This reduces the number of hard page
faults. Similarly, processors are not bottleneck resources as
their speeds are doubling every 18 months as per Moore’s
Law, thereby ensuring that the CPU is much faster than net-
work connections. As network bandwidth is the most likely
source of a performance bottleneck for a site consisting of
static content, we define load as the fraction of bandwidth
used on the network link out of the Web server. Our exper-
iments show that for large files, SWIFT shows an improve-
ment of 2.5% - 10% over the SRPT scheme in [3] (which is
the most closely related work and along which this paper is
structured) for the tested server loads.

2. Related work
There has been considerable research on minimizing the

response time of web requests. Some of this focuses on re-
ducing server delays. This includes work towards building
efficient HTTP servers or improving the operating system
of servers. Other research addresses how to reduce the net-
work latency. This can be accomplished by caching web
requests or improving the HTTP protocol itself. Our work
focuses on reducing delays at the server and hence, touches
on several related areas in server design, and in the theory
and practice of scheduling in operating systems.

In our work, we focus on servers that serve static content,
i.e., files whose size can be determined in advance. We do
this based on the measurement studies undertaken in [14],
which suggested that most servers serve mainly static con-
tent. The work also noted that dynamic content was served
mainly from a relatively small fraction of the servers in the
web. Since Web servers can serve dynamic content as well,
a heuristic policy to estimate the size of files can be em-
ployed. We can then use these estimated file sizes to im-
prove the performance of shorter requests. In this case, our
methods are less directly applicable. However, our technol-
ogy may be expanded to schedule dynamic pages also.

It is well understood from traditional operating system
schedulers that if the task sizes are known, the work-
conserving scheduling strategy that minimizes mean re-
sponse time is Shortest Remaining Processing Time first -
SRPT. Schrage and Miller first derived the expressions for
the response time in an

� � � � � � 
 � � �
queue [18]. Be-

sides SRPT, there are many algorithms in the literature, de-
signed for the case where the task size is known.

The earliest paper related to our work is that of Bender et
al. [9]. This paper discusses a size-based scheduling on the
Web and raises an important point: in choosing a scheduling
policy, it is important to consider not only the scheduling
policy’s performance, but also whether the policy is fair.
Roberts and Massoulie [16] consider bandwidth sharing on
a link and suggest that SRPT scheduling may be beneficial
for heavy-tailed (Pareto) flow sizes.

Almeida et. al [2] investigated approaches to differen-
tiated quality of service by assigning priorities to requests
based on the requested documents. They presented priority-
based scheduling at both the user and kernel-level. In the
user-level approach, a scheduler process is included in the
Apache Web server. The scheduler restricts the maximum
number of concurrent processes servicing requests of each
priority. All the modifications are in the application level
and as a result, there is no control over what the operat-
ing system does when servicing the requests. In the kernel-
level approach, the Linux kernel is modified such that re-
quest priorities are mapped into priorities of the HTTP pro-
cesses handling them. The experiments showed that the
high-priority requests benefit by up to 20% and the low-
priority requests suffer by up to 200%.

Our paper is most closely related to the work done by
Mor Harchol-Balter [3], which deals with SRPT scheduling
at Web servers. The implementation is at the kernel level
and the idea is to give preference to those requests that are
short, or have small remaining processing time. Another
implementation of the same idea as [3] was proposed ear-
lier by Crovella et. al. in [10]. However, [10] did con-
nection scheduling at the application level only. Although
the kernel-level implementation of [3] is better, it does not
consider the distance of clients from the server in prioritiz-
ing the requests. This drawback is overcome in our work
because we consider the round-trip times (RTT is a mea-
sure of the distance of client from the server), as well, when
making priority decisions of client requests.

Bansal et. al. [5] give the theoretical basis for con-
sidering SRPT scheduling and show that for a large range
of heavy-tailed distributions, every request performs better
under SRPT scheduling as compared to processor-sharing
scheduling.

3. Design and implementation

In [3, 12], the authors conclude: “On a site consisting pri-
marily of static content, network bandwidth is the most
likely source of a performance bottleneck. Even a fairly
modest server can completely saturate a T3 connection or
100Mbps Fast Ethernet connection.” Another reason why
the bottleneck resource is the bandwidth on the access link
out of the web site is that these links (T3, OC3) cost a for-
tune per month compared to the CPU’s speed/$ ratio [3].
As the network link is the bottleneck resource, the SWIFT
scheduling is done on the bandwidth on the access link out
of the Web server. We consider only static content as in [3].

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03) 
0-7695-1938-5/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:39:47 UTC from IEEE Xplore.  Restrictions apply. 



Processes

Socket 1 Socket 2 Socket n

TCP

Network Interface Queue
Medium

To Physical

Application

Queue
Priority
Single

IP

Feed fairly
from socket buffers
in Round−Robin

fashion

Figure 1. Data flow in Linux [3]

3.1. Differentiated services in Linux
Figure 1 shows the processing of stream sockets (TCP) in
standard Linux. These sockets provide reliable two-way
sequenced data streams. Linux uses these socket buffers
to pass data between the protocol layers and the network
device drivers. The packet streams corresponding to each
connection drain fairly (in a round-robin fashion) into a sin-
gle priority queue. Packets leaving this queue drain into
a particular device queue. Every network device has its
own queueing discipline. The Linux default is FIFO. As
we schedule requests based on their size and the RTT of the
clients (generating the requests) from the server, we need
several priority levels to which the data packets correspond-
ing to the requests can be directed. To do so, Differentiated
Services (DiffServ) [1] needs to be integrated into the Linux
Kernel. This can be done by building the Linux kernel with
the following configuration options enabled [1].

� User/Kernel Netlink Socket (CONFIG NETLINK)
� QoS and/or Fair Queueing (CONFIG NET SCHED)
� The simplest PRIO Pseudoscheduler (CON-

FIG NET SCH PRIO)

By configuring the kernel for PRIO Pseudoscheduler, the
queueing discipline of the network device is changed to
priority-based rather than a FIFO default configuration.

Once the DiffServ patch [1] (known to work with Ver.
2.2.14 and above of Linux kernel) is applied, the iproute2
package is installed. This package includes the Linux Traf-
fic Control utility – tc which is used to switch from a single
priority queue to 16 priority queues. Figure 2 shows the data
flow with the DiffServ patch, as in [3]. There are now 16
priority queues, numbered 0 through 15. The lowest num-
bered priority queue (number 0) has the highest priority;
priority queue 15 has the lowest priority. The new SWIFT
module is used to determine the priority of the connection
based on the size of the request and round-trip time param-
eters. Connections of priority

�
go to the

�
th priority queue.

Packets are drained from the multiple priority queues into
the network device queue in a prioritized fashion. priority
queue

�
is allowed to flow only if queues 0 to

� � �
are empty.

Some additional fixes were recommended in [3]. We use
these fixes in our scheme. The startup time for connec-
tions is an important component of the total response time.

Processes

Socket 1 Socket 2 Socket n

Application

IP

TCP

SWIFT

Queue
2nd Priority

Queue
16th Priority1st Priority

Queue

Network Interface Queue
Medium

To Physical

different queues
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Figure 2. Data flow in Linux after changes [3].
SWIFT module is added new in this figure.

This is more true for shorter requests. In SRPT schedul-
ing, during the connection startup, it is unclear whether the
request would be large or small. “The packets sent dur-
ing the connection startup might therefore end up waiting
in long queues, making connection startup very expensive”
[3]. Hence, the SYNACKs must be given the highest prior-
ity queue 0. Also, it must be ensured that when assigning
priority queues, no sockets are assigned to priority queue 0,
but are assigned to queues of lower priority than queue 0.
As the SYNACKs make up only a negligible fraction of the
total load, giving them high priority does not degrade the
performance, and also reduces their loss probability.

3.2. SWIFT: Algorithm and implementation

A key characteristic of DiffServ is that flows are aggregated
in the network, so that core routers only need to distin-
guish a comparably small number of aggregated flows, even
if those flows contain thousands or millions of individual
flows. Once the Linux kernel is compiled with the DiffServ
support, we made changes to the Web server code for prior-
itizing connections. As mentioned earlier, the RTT which is
a measure of propagation delay is assumed to be embedded
in the request. The web-server, on receiving an HTTP GET,
determines the priority level of the request based on its size
and the embedded RTT. We give weights to the size of the
request and propagation delay parameters, based on obser-
vations of their magnitude in [6]. We then use the weighted
sum of these two parameters to determine the priority level
of the request. Apache sets the priority of the socket by call-
ing setsockopt. After every IOBUFSIZE (8192) bytes of the
file are sent, a check is made whether the priority level of
the request has fallen below the threshold for its current pri-
ority level. If it is so, the socket priority is updated with
another call to setsockopt.
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3.2.1 Determining weight criteria
Barford and Crovella [6] have done detailed work in pin-
pointing where delays are introduced into applications like
HTTP by using critical path analysis. We use their obser-
vations to heuristically determine weights for the size of the
request and propagation delay.

� Small files (0 - 20KB): During low load conditions,
the network delays dominate. When the server load
is high, the server delays can be responsible for as
much as 80% of the overall response time. We there-
fore choose a weight of 0.8 for request size and 0.2 for
propagation delay.

� Medium-sized files (20 - 500KB): Network delays
dominate when the server load is low; but when server
load is high, the contribution to delay from network
and server are comparable. So for these files, we assign
a weight of 0.6 and 0.4 to request size and propagation
delay, respectively.

� Large files (500KB and above): Network delays domi-
nate transfer time, irrespective of the load at the server.
We use the weight value of 0.75 for propagation delay
and 0.25 for the request size.

3.2.2 Cutoffs for RTT and file size
The requests are partitioned into priority classes based on
the rules given in [3]. Unlike [3] which has a single prior-
ity array based on the file size to store the size cutoffs, we
maintain two priority arrays – one corresponding to the file
size (request size) and the other corresponding to the RTT
(propagation delay). Let us first discuss the cutoffs for file
size, denoted as � � � � � � 
 
 
 � � � . Under the assumption
that workload is heavy-tailed, we have [3]:

� The lowest size cutoff � � is such that 50% of requests
have size smaller than � � .

� The highest size cutoff � � is such that only the largest
2% of the requests have size greater than � � .

� The in-between cutoffs have logarithmic spacing be-
tween them.

The cutoffs for propagation delay (the new parameter we
introduce), denoted as � � � � � � 
 
 
 � � � , are much easier
to determine. We used the average RTT from a location as
an estimate of the propagation delay incurred during trans-
fer of data from the server to that location. To date, no work
has been done which shows the distribution pattern of prop-
agation delay for web traffic and so we simply assign higher
priorities to larger RTTs. For our experiments we have used
16 priority levels. The lowest size cutoff � � is for client lo-
cations that are less than 10ms from the server. The highest
cutoff � � is chosen to be 350ms. The intermediate cutoffs
are at equal intervals. Higher cutoffs are given higher pri-
ority than lower cutoffs. Thus, locations like Urbana (RTT
5.6ms), which are close to Chicago, are given lesser priority.
while Berkeley (RTT 50ms), is given higher priority. Like-
wise, locations in U.K (RTT 115ms) are rated more impor-
tant. In future, studies on propagation delay characteristics

can be used to attain cutoffs that are more representative of
the web traffic.

3.2.3 Algorithm

The SWIFT algorithm works as follows.

1. During connection set-up phase, a request is given a
socket with the highest priority (priority 0). (Sec-
tion 3.1.)

2. The request size and RTT of the client-generated re-
quest are then determined.

3. Corresponding to the size of the file, the weights for
the request size and propagation delay are looked up.

4. The weighted sum of these two parameters determines
the priority of the socket corresponding to the request.

5. After every IOBUFSIZE (8192) bytes of the file are
transmitted, a running count of the bytes sent is saved.
A call is then made to determine the new weights and
the priority of the socket is changed dynamically.

The setsockopt system call is used to assign priority to the
socket corresponding to the request. As only a limited num-
ber (equal to the number of priority queues) of such calls are
made, they do not contribute much overhead. The steps re-
quire determining the priority level of the request based on
its size and the embedded RTT in the request.

To determine the algorithm complexity, we analyze steps
2 to 4. Step 2 determines the size of the file requested by the
client and the RTT of the client generating the request. For
static requests, the size of the file can be determined trivially
when the GET action fired by the client is received by the
server. As our trace-driven experiments made a simplistic
assumption that RTT was embedded in the request, it took
constant time to determine the RTT. In a more realistic sce-
nario, the server measures the RTT on-the-fly. A way to do
this efficiently is to use the TCP timestamp option (TSopt)
- RFC 1323. There are two 4-byte timestamp fields. Times-
tamp Value (TSval) contains the current value of the times-
tamp clock of the TCP sending the option and Timestamp
Echo Reply (TSecr) is the value of the most recent times-
tamp option that was received when the ACK bit was set.
Thus, by sending the TSopt in an initial SYN segment the
server can calculate the RTT with a single subtraction. Steps
3 and 4 look up the RTT and requested file’s size in the static
array of cut-offs (Section 3.2.2). This has a worst-case com-
plexity of O( � � � � � ), where � is the size of the array or the
number of priority levels. Once the individual priority lev-
els corresponding to RTT and request-size cutoffs are deter-
mined, the algorithm makes use of weights (Section 3.2.1)
to compute the weighted sum that determines the priority of
the socket corresponding to the request.

The overhead is bounded by � ( � � � � � ) + � (1), as � (1)
is the time taken for the arithmatic to calculate RTT and
weighted sum. As the bottleneck is the look-up on the array
which is small ( � � 16), the solution takes time � (1).
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4. Experimental Setup
4.1. Testbed description

We used the Linux 2.4.18 operating system on a Dell In-
tel Pentium 3 machine which ran the Apache Web Server
1.3.14. The main memory of the server was large enough
to fit all the files requested by the clients, during the experi-
ments. There were two more PCs (Dell Intel Pentium 3) that
were used to generate local load using the Scalable URL
Reference Generator (SURGE) [8]. We chose SURGE be-
cause it generates analytically-based Web reference streams
that match a realistic Web workload. The HTTP requests
generated to the server are such that they follow empirically
measured properties of web workloads like request size dis-
tribution, server file size distribution, relative file popularity,
etc. These additional two machines that were used solely to
generate background traffic were connected by a 10 Mbps
switched Ethernet to the server.

The client systems were located at two off-site locations,
in Austin (RTT: 30ms) and Seattle (RTT: 50ms). These
client machines generated the monitored requests to the
server. The Client 1 at Austin (running Debian 2.2) was
15 hops from the server in Chicago. The Client 2 at Seat-
tle (running Red Hat Linux 7.1) was 16 hops away. The
path to both the client locations included UCAID/Internet
2 Abilene and StarTap research networks. The clients
used a modified version of SCLIENT [4] to make requests.
SCLIENT is a web request generator that provides a scal-
able means of generating realistic HTTP requests, includ-
ing peak loads that exceed the capacity of the server. In
the modified version of SCLIENT, the clients made use of a
trace-based workload to generate requests. The sclient tool
read in traces and made requests to the server according to
the arrival time and file names given in the trace. In order
to simulate the effects of the varying client locations from
a single location e.g., Austin (RTT: 30ms), we needed to
introduce artificial delays. So for example, to simulate the
effects of a location with an RTT of 50ms, we needed to
introduce additional delays amounting to 20ms at our client
location in Austin. This would then give the effect that the
request from Austin was generated from further away.

4.2. Workload description
As our experiments were trace-driven, we downloaded

our trace-based workload from the IETF traffic archive. We
made use of the same workload as used in [3]. This is an
actual trace of the Soccer Worldcup 1998 collected between
April 30,1998 and July 26, 1998; and consists of 1.3 bil-
lion Web requests made to 33 different World Cup HTTP
servers at four different geographic locations. Our work-
load consisted of a part of a single day trace. Most of the
one-day trace we used contained static requests. Each en-
try of the trace described a request made to the server and
included the time of the request, client identifier, URL re-
quested, the size of the request, the GET method contained
in the client’s request, HTTP version and other status infor-
mation, the type of the file requested (e.g., HTML, IMAGE,
etc.), and the server that handled the request.

For the experiments, we used the busy hour (10 – 11a.m)
of the trace. This hour consisted of about 1 million requests,
during which close to a thousand files were requested. The
files requested ranged from 40 bytes to 2 MB and they fol-
lowed the heavy-tailed distribution. The main memory on
the server was large enough to cache all the files in the file
set so after the initial request (disk reads), all the subsequent
requests for a file were served from the main memory. Thus,
the disk was not a bottleneck resource.

To study the effects of server load, we used the local load
generators (SURGE) on the server side of the testbed to
generate either light load (40 SURGE equivalents) or heavy
load (500 SURGE equivalents). Each SURGE equivalent
is a single bursty process in an endless loop that alternates
between making requests for Web files, and lying idle [8].

5. Results
Figures 3, 4, 5, and 6 show the mean response time as

a function of the percentile of the request size distribution.
This set of graphs is for the client in Austin. For the client
in Seattle we have Figures 7, 8, 9, and 10. For each client
location, we have four graphs corresponding to a load of
0.5, 0.7, 0.8, and 0.9. Each graph shows a set of lines for an
average RTT of 50ms, 100ms, 150ms, and 250ms. These
correspond to locations of client that range from near to a
very large distance from the Web Server in Chicago. As ex-
plained in Section 4, all the client requests are in fact gen-
erated in Austin and Seattle.

Every request generated to the server from the client sites
was repeated five times and the response time given in the
graphs was calculated as an average of these five runs.

The graphs for clients locations at Austin and Seattle are
similar in nature but the response time for a given percentile
of job size and RTT under a given load may be different
in some cases. This is because the measurements are de-
pendent on the queuing delays in the intermediate routers
between client locations and the server in Chicago. Also,
the bandwidth of the network link out of the client locations
can affect the response time. However, this should not affect
the validity of our conclusions as our goal was to compare
SWIFT with existing algorithms, hence we are more con-
cerned with the percentage differences.

The graph shows two curves, one for SWIFT, one for
SRPT. For lower-sized file requests, the SWIFT scheme is
similar to the SRPT; response times are not adversely af-
fected by much. However, for large-sized requests, there is
2.5% - 10% improvement with SWIFT vis-a-vis SRPT. We
make the following observations from the graphs.

� Nearly, 40% to 80% of the jobs (the larger ones) ben-
efit with the SWIFT scheme compared to the SRPT
scheme, whereas for the others (the smaller ones), the
response times are not adversely affected much.

� As the distance of the client increases from the server,
a larger percentage of the jobs shows improvement for
server loads of 0.5, 0.7 and 0.8.
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� Under server load of 0.5 and 0.7, the percentage im-
provement for large files increases with increasing
RTT.

By decreasing the response time for larger files while re-
taining the general features of SRPT, the user’s experience
can be bettered. Distant requests for large files also begin to
receive a response earlier.

6. Conclusions and discussion
The size-based SRPT scheduling presented by Mor

Harchol-Balter et. al. [3] is, to date, the best known method
to minimize the client response time. By using an additional
parameter, the propagation delay, to prioritize requests, ini-
tial experiments show a reduction in the response time for
large files. We see an improvement in response time for all
job sizes greater than the bottom 40 percentile under low
load. We also see improvement for all job sizes greater than
the bottom 20 percentile under high load. SWIFT performs
better than SRPT as the distance of the client increases from
the server. The percentage improvement of SWIFT over
SRPT ranges from 2.5% to 10% for larger-sized job re-
quests, with the percentage improvement being lower un-
der high load conditions than under low load conditions.
These gains do not adversely impact by much the response
time for small-sized job requests. This is surprising and the
algorithm needs to be analysed carefully to explain these
experimental results.

Concerning unfairness to large requests under heavy
load, SWIFT still shows improvement compared to SRPT.
But when we compare SWIFT and SRPT to standard Linux
with an unchanged web server, the mean response time for
the largest size request goes up. But as these requests are so
large, their response time is not affected much.

SWIFT leveraged the useful scheduling information con-
tained in the interaction between networks and end systems,
by making the scheduling decisions based on both the dis-
tance of the client from the server and the size of the re-
quest. During the course of the implementation of the algo-
rithm, we examined several weight criteria for propagation
delay and request size. Our choice of criteria for assigning
weights is based on the critical path analysis of HTTP ap-
plication done by Barford et. al. in [6]. We do not claim
that this choice of weights is optimal, but after experiment-
ing with different weights, we found that this choice gave
good results. The assignment of weights needs formal in-
vestigation. Our approach can also benefit from the studies
on the distribution of propagation delay patterns in web traf-
fic. This requires further study.

Another goal is to experiment with alternative means of
prioritizing requests, such as using the knowledge of client’s
bandwidth to determine priorities for requests, and using
some algorithms from the area of ’locality aware’ request
distribution policies.

SWIFT is currently limited to scheduling static requests.
However, an increasing number of Web servers today serve
dynamic content as well. In such a scenario, a heuristic
policy to improve the performance of short tasks needs to

be employed. Future work can enhance our technology to
also schedule dynamic pages.
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Figure 3. SWIFT Vs SRPT for server load 0.5
[client at Austin]
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Figure 4. SWIFT Vs SRPT for server load 0.7
[client at Austin]
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Figure 5. SWIFT Vs SRPT for server load 0.8
[client at Austin]
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Figure 6. SWIFT Vs SRPT for server load 0.9
[client at Austin]
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Figure 7. SWIFT Vs SRPT for server load 0.5
[client at Seattle]
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Figure 8. SWIFT Vs SRPT for server load 0.7
[client at Seattle]
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Figure 9. SWIFT Vs SRPT for server load 0.8
[client at Seattle]
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Figure 10. SWIFT Vs SRPT for server load 0.9
[client at Seattle]
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