
Analysis Models for Blind Search in Unstructured Overlays

Bin Wu
Univ. of Illinois at Chicago

bwu@cs.uic.edu

Ajay D. Kshemkalyani
Univ. of Illinois at Chicago

ajayk@cs.uic.edu

Abstract

Flooding and random walk are two basic mechanisms
for blind search in unstructured peer-to-peer overlays. Al-
though these mechanisms have been widely studied exper-
imentally and via simulations, they have not been analyt-
ically modeled. Time overhead, message overhead, and
success rate are often used as metrics for search schemes.
This paper shows that node coverage is an important met-
ric to estimate performance metrics such as the message
efficiency, success rate, and object recall of a blind search.
The paper then presents two simple models to analyze node
coverage in random graph overlays. These models are use-
ful to set query parameters, evaluate search efficiency, and
to estimate object replication on a statistical basis.

1 Introduction

Peer-to-peer networks aim to allow Internet users to
loosely organize themselves to share their resources with
ease of implementation and maintenance [6]. Unstructured
peer-to-peer overlays have the following advantages over
structured overlays [9]: they can handle high churn rates
easier, they do not incur much overhead for maintaining the
logical structure, and they support keyword searches [8],[5]
based on semantic identification and information retrieval
techniques [10], and complex queries such as range queries.
More realistic P2P applications have recently been devel-
oped with unstructured overlays than with structured ones
due to these advantages. Flooding, random walk, and ex-
panding ring, in conjunction with the Time-to-Live (TTL)
constraint ([7]), are the widely used algorithms for blind
search, (a.k.a. unguided search).

Existing studies of blind search are based on empirical
rationale and the performance of blind search is studied
primarily through simulations. Using extensive modeling
and simulations, Lv et al. [7] studied the performance of
P2P systems under three considerations: network topology,
query distribution, and replication distribution. A study of
random walk based on graph theory and Chernoff bounds
compared the performance of random walk with that of

flooding [4]. The study shows that the effect of a -step
random walk is statistically similar to that of taking inde-
pendent samples in a well-connected graph. Using this ap-
proximation of independent sampling, simplified formulae
for the success rate, message overhead, and time overhead
of random walk as functions of TTL, object popularity, and
number of walkers were given [2]. The success rate was
statistically characterized by the probability of a successful
search, , where is the popularity of the
object (i.e., the ratio of the nodes that have an object copy),

is the TTL, and is the number of random walkers. This
approach relies on an accurate estimate of the popularity,
which is usually not available.

Contributions. This paper shows that node coverage is
a useful metric in analyzing the performance of blind
searches – specifically, to estimate the message efficiency,
success rate, and object recall. Node coverage is defined
as the fraction of nodes visited in a query search. There
has been no analytic model for node coverage computation.
The paper then formulates two simple theoretical models
for analyzing the properties of the random walk and flood-
ing search methods in unstructured P2P networks. These
models are based on node coverage analysis on the ran-
dom graph topology, which is a small-world network. The
models provide a guideline to understand how the settings
of the querying parameters and network characteristics im-
pact the efficiency of the search strategies. This will allow
system designers to tune parameters to achieve desired per-
formance trade-offs and to estimate object replication on a
statistical basis.

Random graph topology. We assume a random graph
overlay [3], as this is the simplest unstructured topology un-
derlying all small-world models, and can offer reasonable
guidelines for more refined topologies. The degree distri-
bution among nodes in a random graph is much more uni-
form than that in a Power-Law random graph and a Gnutella
Graph [7]. In the simplest random graph model, there ex-
ists a link with probability between any two nodes. For
a graph that has nodes, the expected number of links is:

and the average node degree is: .

Fifth IEEE International Symposium on Network Computing and Applications (NCA'06)
0-7695-2640-3/06 $20.00 © 2006

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:51 UTC from IEEE Xplore. Restrictions apply.

: total number of nodes
: probability of a link between two nodes (random graph)
: average degree of a node
: number of random walkers

: number of object replicas
: number of query messages
: number of query hops
: number of visits to nodes
, , , : number of distinct nodes visited

: node coverage
: success probability for a search

Table 1. Notations for the models.

2 Node coverage

In a random graph overlay where object distributions are
also random, the more nodes that a query process covers,
the higher the chance that a specified object is found, and
the more the expected number of copies of qualifying ob-
jects that can be retrieved. We define node coverage as the
fraction of nodes visited by query messages. We express
it as a function of parameters such as the number of query
hops or the message overhead. Node coverage is indepen-
dent of object characteristics and depends only on the search
strategy and graph topology. We identify the following uses
of node coverage.

1. Node coverage gives a more reasonable basis to cal-
culate success rate, defined as the probability that a
search yields a satisfactory object within the specified
constraints, such as the number of hops or the message
overhead. For example, “what is the probability that a
search could find a matching object within 3 hops of
message forwarding?” Knowing such answers is use-
ful in setting the parameters such as TTL or the number
of walkers for the search. Observe that a query may be
forwarded to a node that it has already visited; thus
the node coverage, rather than the message overhead,
should serve as the basis for calculating the success
rate (assuming the object exists in the network).

2. For keyword searches and range searches, it is often
desirable to find as many objects as possible (the re-
call metric) that satisfy the search criteria. Message
efficiency, defined as the number of qualifying objects
retrieved (i.e., recall) per query message, is another im-
portant metric in such environments. The recall is esti-
mated by using the node coverage and the total number
of qualifying objects in the network.

3. It may happen that a queried object does not exist in
the network. A high node coverage without a query
success indicates a high likelihood of this condition.
This can be used as a guideline to call off the search.

4. The statistics of node coverage of a search along with
that of recall can be used to estimate the replication
ratio of an object. Low node coverage and high recall
implies a high replication ratio and vice-versa.

The notation used in this paper is given in Table 1.

3 The algebraic model

This model performs a node coverage analysis but makes
no distinction among the search methods when node cover-
age is computed. Each query message is treated as an inde-
pendent sample. This model gives the expected node cover-
age in terms of the message overhead, and then in terms of
the hop count.

The first hop of message forwarding always covers
distinct nodes in random walk, or expected nodes in
flooding (including the initiator). Due to the randomness of
node links, from the second hop onwards, a message for-
warding may visit a node that has already been visited.

Suppose a randomly chosen link is being probed by a
message, and is the expected number of distinct nodes that
have been visited so far. The probability that a new node
is discovered by this message is . Thus, the expected

number of distinct nodes visited would be after
this message.

Let denote the number of query messages so far. Then:

(1)

which can be approximated as:

(2)

This equation can be solved as:

(3)

Here is a constant determined by the initial condition.

Random Walkers. Within the first hop, distinct
nodes (including the initiator itself) are visited. The initial
condition takes the following form:

(4)

We can then solve for the constant :

(5)

Then the complete solution for equation (3) is:

if
if

(6)

Fifth IEEE International Symposium on Network Computing and Applications (NCA'06)
0-7695-2640-3/06 $20.00 © 2006

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:51 UTC from IEEE Xplore. Restrictions apply.

If we express in terms of , where is the number of
query hops and , we obtain:

if
if

(7)

Flooding. The difference between for random walk
and for flooding is that for flooding, message overhead is
exponential in number of hops.

The initial condition for Equation (3) for flooding is:

(8)

We can then solve for the constant :

(9)

Then the complete solution for Equation (3) is:

if
if

(10)
As , we can express in terms

of as:

if
if

(11)

Replication. We assume random replication – replicas
of an object are randomly distributed in the network. The
probability of finding a replica then becomes:

(12)

The term is the node coverage.

4 Combinatorial model for random walk

In an unstructured overlay with random graph topology,
the expected success rate of a specific query depends on the
fraction of nodes covered by the search and the number of
copies of the queried object. In this model, we derive the
expected node coverage in terms of the number of message
hops. The coverage analysis begins by analyzing the behav-
ior of a single random walker and then extends the results
to multiple walkers. The behavior of a single walker can be
treated as a random sampling and multiple walkers are con-
sidered to be independent. For a single random walker, if
we consider the node coverage as a state variable, the state
after the next hop depends only on the current state. The
walk can thus be modeled as a Markov process.

Let be the number of nodes visited so far. Let
denote the probability that after node visits, distinct
nodes have been visited.

For the first hop ():
.

For the second hop ():

For the third hop ():

For the fourth hop ():

For the fifth hop ():

Based on this pattern, the inductive expression for prob-
ability is given in Figure 1.

Define the expected number of distinct nodes covered
by random walkers after traveling hops to be .
Then can be expressed as follows. (Note that

.)

if
if

(14)

Assuming replicas of the desired object, the success
rate for a single walker is expected to be:

(15)

Consider random walkers. When all walkers
are modeled to walk synchronously, the node coverage state
variable of the Markov process gets a complex distribution
and incurs high calculation overhead. We adopt a simpler
approach.

As multiple () walkers travel independent of each
other, any walker is expected to visit “distinct”
nodes after hops of forwarding. Here, “distinct” refers
to the nodes witnessed by a single walker. It is possible
that some of those nodes have been visited by other
walkers. To compute for , assume they travel
the network sequentially.

Fifth IEEE International Symposium on Network Computing and Applications (NCA'06)
0-7695-2640-3/06 $20.00 © 2006

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:51 UTC from IEEE Xplore. Restrictions apply.

(for)

if
if

if

if

(13)

Figure 1. for the combinatorial model.

After the first walker finishes, distinct nodes
were visited. Let .

The second walker sees distinct nodes accord-
ing to its own witness. Among those nodes,

are expected to be new from the
previous walk. Denote these by .

For the walker, the expected number of additional
distinct nodes it visits is:

(16)

The expected total number of distinct nodes visited by
random walkers is:

(17)

The success rate (defined as the probability that at least
one of the copies of the desired object is found by the

walkers), can be expressed using node coverage:

(18)

This model has computational complexity due
to the nature of Equations (13) and (14). In contrast, the
algebraic model has complexity .

5 Conclusions

The contributions were summarized in Section 1. Some
of the following ongoing work is reported in [11].

1. Compare the accuracy of the two proposed models
with each other, and with experiments/simulations.

2. Compare the accuracy of success probability as com-
puted using our formulations of node coverage, with
the earlier formulation of [2] that used popularity esti-
mates and assumed independent sampling.

3. Analyze other overlay topologies, such as scale-free
networks and other small-world networks [1]. These
have power-law distribution for node degree, small av-
erage path lengths, and high clustering coefficients.

4. Explore analytical expressions for other metrics that
can be derived from node coverage.

References

[1] R. Albert, A.-L. Barabasi, Statistical Mechanics of Complex
Networks, Reviews of Modern Physics, 74(47-97), 2002.

[2] N. Bisnik, A. Abouzeid, Modeling and Analysis of Random
Walker Search Algorithm in P2P Networks. IEEE Workshop
on HOT-P2P, 2005.

[3] P. Erdos, A. Renyi, Random Graphs. Publ. math. (Debre-
cen), Vol 6, p. 290-, 1959.

[4] C. Gkantsidis, M. Mihail, A. Saberi, Random Walks in Peer-
to-Peer Networks. IEEE Infocom, 2004.

[5] L. Liu, K. D. Ryu, K.-W. Lee, Supporting Efficient
Keyword-based File Search in Peer-to-Peer File Share Sys-
tems. IEEE Global Internet and Next Generation Networks
Symposium, 2004.

[6] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim,
A Survey and Comparison of Peer-to-Peer Overlay Net-
work Schemes. IEEE Communications Survey and Tutorial,
7(2):72-93, 2005.

[7] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, Search and
Replication in Unstructured Peer-to-Peer Networks. 16th
ACM Int. Conf. on Supercomputing, 2002. p. 84-95.

[8] P. Reynolds, A. Vahdat, Efficient Peer-to-Peer Keyword
Searching. Middleware 2003, p. 21-40.

[9] J. Risson, T. Moors, Survey of Research towards Robust
Peer-to-Peer Networks: Search Methods. Computer Net-
works, 2006/2007 (to appear).

[10] C. Tang, Z. Xu, S. Dwarkadas, Peer-to-peer Information Re-
trieval Using Self-organizing Semantic Overlay Networks.
ACM SIGCOMM 2003, p. 175-186.

[11] B. Wu, A. Kshemkalyani, Evaluation of Models for An-
alyzing Unguided Search in Unstructured P2P Networks,
2nd IFIP Workshop on Network-Centric Ubiquitous Sys-
tems, LNCS, Springer 2006.

Fifth IEEE International Symposium on Network Computing and Applications (NCA'06)
0-7695-2640-3/06 $20.00 © 2006

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:53:51 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

