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Abstract—Detecting causality or the happens before relation
between events in an asynchronous distributed system is a
fundamental building block for distributed applications. To the
best of our knowledge, this problem has not been examined in a
system with Byzantine processes. We prove the following results
for an asynchronous system with Byzantine processes. (1) We
prove that it is impossible to determine causality between events
in the presence of even a single Byzantine process when processes
communicate by unicasting. (2) We also prove a similar im-
possibility result when processes communicate by broadcasting.
(3) We also prove a similar impossibility result when processes
communicate by multicasting. (4) In an execution where there
exists a causal path between two events passing through only
correct processes, the impossibility result for unicasts remains. (5)
However, when processes communicate by broadcasting and there
exists a causal path between two events passing through only
correct processes, it is possible to detect causality between such
a pair of events. (6) In an execution where processes communicate
by multicasting and there exists a causal path between two
events passing through only correct processes, we prove that the
impossibility result for multicasts remains.

Index Terms—Byzantine fault-tolerance, Happens Before,
Causality, Asynchronous message-passing

I. INTRODUCTION

Causality is an important tool in understanding and reason-
ing about distributed systems [1]. In a seminal paper, Lamport
formulated the “happens before” or the causality relation
between events in an asynchronous distributed system [2].
Applications of causality tracking include determining con-
sistent recovery points in distributed databases, deadlock de-
tection, termination detection, distributed predicate detection,
distributed debugging and monitoring, the detection of race
conditions and other synchronization errors [3]. The causality
relation between events is also used to define causality between
messages, and forms the basis of causal ordering of messages
[4], which has numerous applications such as in distributed
data stores, fair resource allocation, and collaborative appli-
cations such as social networks, multiplayer online gaming,
group editing of documents, event notification systems, and
distributed virtual environments.

The causality relation between events can be captured by
tracking causality graphs [5], scalar clocks [2], vector clocks
[6]–[8], and numerous other variants (such as hierarchical
clocks [9], [10], plausible clocks [11], incremental clocks [12],

dotted version vectors [13], interval tree clocks [14], logical
physical clocks [15], encoded vector clocks [16], and Bloom
clocks [17], [18] to mention a few), proposed since Lamport’s
seminal paper [2]. See [1], [3] or a more recent survey included
in [19]. Some of these variants track causality accurately while
others introduce approximations and inaccuracies as trade-offs
in the interest of savings on the space and/or time and/or
message complexity overheads. As enunciated by Schwarz and
Mattern [1], the search for the holy grail of the ideal causality
tracking mechanism is on. However, all these works in the
literature assume that processes are correct (non-faulty).

To the best of our knowledge, there has been no work on
detecting the causality relation between events in the presence
of Byzantine processes in the system. It is important to solve
this problem under the Byzantine failure model as opposed to
a failure-free setting because it mirrors the real world. Causal
ordering of messages under the Byzantine failure model has
recently been examined in [20] for broadcast communication
and in [21]–[23] for unicast, multicast, as well as broadcast
communication. Causal consistency of replicated data stores
under Byzantine failures based on broadcasts has been con-
sidered in [24]–[27].

Our main result is that it is impossible to determine the
causality or the happens before relation → between two events
e1 and e2 when there is even a single Byzantine process in
an asynchronous distributed system. In light of this negative
result, we investigated whether any positive result can be
shown in a system with stronger assumptions. For this, we
introduced the Byzantine happens before relation B−→ by which
e1 is related to e2 if e1 → e2 and there exists a causal
path from e1 to e2 via the transitive closure of the local
order of events and the order of message-passing send and
corresponding receive events, going through only correct (non-
Byzantine) processes. If e1 B−→ e2, then we show that causality
can be determined for broadcast communication.

Contributions: We prove the following results for an asyn-
chronous system with Byzantine processes.

1) We prove that it is impossible to determine causality
between events in the presence of even a single Byzan-
tine process when processes communicate by unicasting.
This is because both false positives and false negatives
can occur.979-8-3503-9730-7/22/$31.00 ©2022 IEEE



Mode of communication Detecting “happens Detecting “Byzantine

before” e → e′ happens before” e
B−→ e′

Unicasts Impossible, Theorem 1 Impossible, Theorem 4
FP, FN FPB(=⇒ FP ), FNB ∧ FN

Broadcasts Impossible, Theorem 2 Possible, Theorem 5
FP , FN FP (=⇒ FPB), FNB ∧ FN

Multicasts Impossible, Theorem 3 Impossible, Theorem 6
FP, FN FPB(=⇒ FP ), FNB ∧ FN

TABLE I: Detecting causality between events under different communication modes. FP is false positive, FN is false negative.
FPB is false positive under B−→. FNB is false negative under B−→.

2) We also prove a similar impossibility result when pro-
cesses communicate by broadcasting. In this case, false
positives cannot occur but false negatives can occur.

3) We also prove a similar impossibility result when pro-
cesses communicate by multicasting. Both false posi-
tives and false negatives can occur.

4) In an execution where there exists a causal path between
two events passing through only correct processes, we
prove that the impossibility result for unicasts remains.
In this case, false positives can occur but false negatives
cannot occur.

5) However, when processes communicate by broadcasting
and there exists a causal path between two events
passing through only correct processes, we prove that
it is possible to detect causality between such a pair of
events. Neither false positives nor false negatives can
occur.

6) In an execution where processes communicate by mul-
ticasting and there exists a causal path between two
events passing through only correct processes, we prove
that the impossibility result for multicasts remains. False
positives can occur but false negatives cannot occur.

Table I summarizes these results. The structure of our proofs
is motivated by the structure of proofs about enforcing causal
order in asynchronous systems with Byzantine processes [21],
[23].

Roadmap. Section II gives the system model. Section III
formulates the problem of detecting causality. Section IV
proves the results outlined under “Contributions” above. Sec-
tion V gives a discussion and concludes.

II. SYSTEM MODEL

This paper deals with an asynchronous distributed system
having Byzantine processes which are processes that can
misbehave [28], [29]. A correct process behaves exactly as
specified by the algorithm whereas a Byzantine process may
exhibit arbitrary behaviour including crashing at any point
during the execution. A Byzantine process cannot impersonate
another process or spawn new processes.

The distributed system is modelled as an undirected graph
G = (P,C). Here P is the set of processes communicating
asynchronously in the distributed system. Let |P | = n. C is
the set of (logical) communication links over which processes

communicate by message passing. The channels are assumed
to be FIFO. G is a complete graph.

The distributed system is assumed to be asynchronous, i.e.,
there is no known fixed upper bound δ on the message latency,
nor any known fixed upper bound ψ on the relative speeds of
processors [30].

We do not consider the use of digital signatures or crypto-
graphic techniques in the system model because of their high
cost as well as hidden/implicit assumptions such as bounds
on message latency which makes them inappropriate for truly
asynchronous systems.

Let exi , where x ≥ 1, denote the x-th event executed by
process pi. An event may be an internal event, a message send
event, or a message receive event. Let the state of pi after exi
be denoted sxi , where x ≥ 1, and let s0i be the initial state.
The execution at pi is the sequence of alternating events and
resulting states, as ⟨s0i , e1i , s1i , e2i , s2i . . .⟩. The happens before
[2] relation, denoted →, is an irreflexive, asymmetric, and
transitive partial order defined over events in a distributed
execution that is used to define causality.

Definition 1. The happens before relation → on events con-
sists of the following rules:

1) Program Order: For the sequence of events ⟨e1i , e2i , . . .⟩
executed by process pi, ∀ j, k such that j < k we have
eji → eki .

2) Message Order: If event exi is a message send event
executed at process pi and eyj is the corresponding
message receive event at process pj , then exi → eyj .

3) Transitive Order: If e→ e′ ∧ e′ → e′′ then e→ e′′.

Definition 2. The causal past of an event e is denoted as
CP (e) and defined as the set of events in E that causally
precede e under →.

We require an extension of the happens before relation on
events to accommodate the possibility of Byzantine behaviour.
We present a partial order on messages called Byzantine
happens before, denoted as B−→, defined on Ec, the set of all
events at correct processes in P .

Definition 3. The Byzantine happens before relation B−→ on
events at correct processes consists of the following rules:

1) Program Order: For the sequence of events ⟨e1i , e2i , . . .⟩
executed by a correct process pi, ∀ j, k such that j < k

we have eji
B−→ eki .



2) Message Order: If event exi is a message send event
executed at correct process pi and eyj is the correspond-
ing message receive event at correct process pj , then
exi

B−→ eyj .

3) Transitive Order: If e B−→ e′ ∧ e′
B−→ e′′ then e B−→ e′′.

The Byzantine causal past of an event is defined as follows:

Definition 4. The Byzantine causal past of event e, denoted
as BCP (e), is defined as the set of events in Ec that causally
precede e under B−→.

When e B−→ e′, then there exists a causal chain from e to e′

along correct processes that sent messages along that chain.

III. PROBLEM FORMULATION

An algorithm to solve the causality determination problem
collects the execution history of each process in the system
and derives causal relations from it. Let Ei denote the (actual)
execution history at pi and let E =

⋃
i{Ei}. For any causality

determination algorithm, let Fi be the execution history at pi
as collected by the algorithm and let F =

⋃
i{Fi}. F thus

denotes the execution history as collected by the algorithm.
Let e1 → e2|E and e1 → e2|F be the evaluation (1 or 0)

of e1 → e2 using E and F , respectively. Byzantine processes
may corrupt the collection of F to make it different from
E. We assume that a correct process pi needs to determine
exh → e∗i . We assume an oracle that is used for determin-
ing correctness of the causality determination algorithm; this
oracle has access to E which can be any suffix of CP (e∗i ).
Byzantine processes may collude as follows.

1) To delete exh from Fh and manipulate F such that exh →
e∗i |F = 0, while exh → e∗i |E = 1, or

2) To add a fake event exh in Fh and manipulate F such
that exh → e∗i |F = 1, while exh → e∗i |E = 0.

Let T (E) and T (F ) denote the set of all events in E and F ,
respectively. We have that exh ∈ T (E) ∪ T (F ). Note that exh
belongs to T (F ) \ T (E) when it is a fake event in F .

Observe that for Item 1 above, it suffices to consider only
send events as exh because an internal event or a receive event
euh can be deleted from F if and only if a subsequent send
event exh, where u < x, and satisfying exh → e∗i |E can be
deleted from F . For Item 2 above, it suffices to consider
only send events as exh because a fake internal event or a
fake receive event euh can be added to F if and only if a
subsequent fake send event exh, where u < x, and satisfying
exh → e∗i |F can be added to F . Therefore, rather than consider
exh ∈ T (E)∪T (F ), it suffices to consider exh ∈ S(E)∪S(F ),
where S(E) and S(F ) denote the set of all send events in E
and F , respectively.

Definition 5. The causality determination problem
CD(E,F, e∗i ) is to devise an algorithm to collect the
execution history E as F and evaluate F at a correct process
pi such that: the problem returns 1 iff ∀exh, exh → e∗i |E =
exh → e∗i |F .

When 1 is returned, the algorithm output matches God’s
truth and solves CD correctly. Thus, returning 1 indicates that
the problem has been solved correctly by the algorithm using
F . 0 is returned if either

• ∃exh such that exh → e∗i |E = 1∧exh → e∗i |F = 0 (denoting
a false negative, abbreviated FN ), or

• ∃exh such that exh → e∗i |E = 0∧exh → e∗i |F = 1 (denoting
a false positive, abbreviated FP ).

To determine whether CD is solved correctly, we have to
evaluate ∀exh, exh → e∗i |E = exh → e∗i |F even if exh ∈ (S(E) ∪
S(F ))\S(E) because such an exh is recorded by the algorithm
as part of F . The key observation we make is that in CD, a
single Byzantine process pb can cause F (as recorded by the
algorithm) to be different from E. This is not just a mismatch
between Eb and Fb but also between other Ez and Fz by
contaminating Fz via direct and transitive message passing
originated at pb.

IV. IMPOSSIBILITY AND POSSIBILITY RESULTS

A. Results for “Happens Before”

Theorem 1. It is impossible to solve causality determination
(Definition 5) as specified by CD(E,F, e∗i ) in an asynchronous
unicast-based message passing system with one or more
Byzantine processes.

Proof. We prove the impossibility of solving the CD problem
by showing:

1) a reduction (denoted ⪯) from Black Box to CD, where
Black Box is defined below,

2) a reduction from the Consensus problem (which by the
FLP result [31] is unsolvable in the presence of a single
Byzantine process) to the Black Box problem.

Specifically, we show how Consensus can be solved by invok-
ing a black box that solves Black Box, and how Black Box
can be solved by solving CD. If CD were solvable, Black Box
would be solvable, and then Consensus would also be solvable
but that contradicts the unsolvability of Consensus. Therefore,
there cannot exist any algorithm to solve CD.

Black Box(V ,E, F, e∗i ) takes as input a vector V of initial
boolean values, one per process, E, F , and event e∗i at a correct
(non-Byzantine) process pi. Black Box acts as follows. The
correct process pi broadcasts the value w where:

w =


0 if each correct pj has V [j] = 0
1 if each correct pj has V [j] = 1∧

exh
(exh → e∗i |E =

exh → e∗i |F ) otherwise

Black Box is solvable if CD at pi is solvable correctly
because solving CD requires using the execution histories of
potentially Byzantine processes as recorded by the algorithm
in F . In order for any algorithm to correctly solve CD, it must
ensure that F matches E. For this, the following must hold.

• A Byzantine process may attempt to insert a fake entry
in Fh and contaminate the reporting of histories in F ,
leading to a false positive because S(F ) \ S(E) ̸= ∅.



Therefore, either contamination of F has be prevented
or malicious entries have to be filtered out from F
within bounded time. But due to unicasting, a message
send event in Fh from a potentially Byzantine ph to
a potentially Byzantine pg cannot be verified within
bounded time by other processes while collecting the
reported execution history as the message itself cannot
be broadcast or communicated to any process other than
pg to keep it private. Therefore identification of Byzantine
processes, their actual execution histories, and causal
chains from them is required.

• Let there be a message m sent at exh from ph to pg in
Eh. During the collection of Eh to pi for reporting Fh,
Byzantine processes may delete information about exh and
m from Fh, leading to a false negative when exh → e∗i ;
note that we also have S(E) \S(F ) ̸= ∅ because of this.
Therefore, either deletion of information from E in F has
to be prevented, or such deletions from E when presented
with F have to be recognized within bounded time. This
requires identification of the Byzantine processes, their
actual execution histories, and causal chains from them.

If there were an algorithm to make F match E, it requires
identifying whether each of the processes that input their
execution histories is correct or Byzantine (to trace and deal
with/resolve the impact of contamination via message passing
by the Byzantine processes from those Byzantine sources on
the execution histories of other processes). Thus, Black Box
⪯ CD.

In the Consensus problem, each process has an initial value
and all correct processes must agree on a single value. The
solution needs to satisfy the following three conditions [28],
[29].

• Agreement: All non-faulty processes must agree on the
same single value.

• Validity: If all non-faulty processes have the same initial
value, then the agreed-on value by all the non-faulty
processes must be that same value.

• Termination: Each non-faulty process must eventually
decide on a value.

When Consensus(V ) is to be solved, the black box is
invoked for Black Box(V ,E, F, e∗i ). Each correct process out-
puts as its consensus value the value that it receives from pi
and terminates. Agreement, Validity, and Termination clauses
of Consensus can be seen to be satisfied. So Consensus ⪯
Black Box.

If CD is (correctly) solvable, it returns 1 for ∀exh, exh →
e∗i |E = exh → e∗i |F , (and implicitly for all e∗i ). We now have

Consensus ⪯ Black Box ⪯ CD

This implies that if the CD problem is solvable, then Con-
sensus is also solvable. That contradicts the FLP impossibility
result when applied to a Byzantine system, hence CD is not
solvable.

Digression. It is worth observing that under the crash-failure
model, even though Consensus ⪯ Black Box, we have that

Black Box ̸⪯ CD. This latter relation ̸⪯ is because solving
CD does not require identifying the crashed processes; their
(correct) execution histories can be faithfully transmitted to
other processes (transitively) via the execution messages sent
in the execution history itself as it grows and be present at the
other (correct) processes’ execution histories and in in-transit
messages. The execution histories of senders that might crash
can transitively propagate to other non-crashed processes.
In other words, the execution history of any prefix of an
execution can be represented by that execution. Therefore,
S(E) = S(F ). Hence, it suffices to consider the execution
histories Ei of non-crashed processes (that include pi) to
determine exh → e∗i without having to identify the crashed
processes.

When the communication pattern is by broadcasts, the proof
analyzing the CD problem uses Byzantine Reliable Broadcast
(BRB) [32], [33] as a layer beneath the broadcast invocation.
Without loss of generality, this proof considers the strongest
form of broadcast that gives the highest resilience to Byzantine
behavior, namely BRB. BRB has been defined to satisfy the
following properties.

• Validity: If a correct process delivers a message m
from a correct process ps, then ps must have executed
broadcast(m).

• Integrity: For any message m, a correct process executes
deliver(m) at most once.

• Self-delivery: If a correct process executes broadcast(m),
then it eventually executes deliver(m).

• Reliability (or Termination): If a correct process executes
deliver(m), then every other correct process also (even-
tually) executes deliver(m).

Theorem 2. It is impossible to solve causality determination
(Definition 5) as specified by CD(E,F, e∗i ) in an asynchronous
broadcast-based message passing system with one or more
Byzantine processes.

Proof. The proof structure is similar to that for Theorem 1.
We outline the logic that CD (Definition 5) cannot be solved
for when the underlying send events are broadcasts. We show
that F cannot be made to match E.

• By doing broadcasts using the Byzantine Reliable Broad-
cast (BRB) [32], [33] layer, false positives can be pre-
vented by ensuring no fake events are added to F ,
whereby S(F ) \ S(E) = ∅. If a Byzantine process pb
attempts to insert a fake entry about broadcast of m by
ph in Fh (whether h = b or h ̸= b) at a correct process
pg via a message m′ sent to pg , pg can verify whether or
not this insertion is valid as based on the Reliability (or
Termination) property of BRB, m must be delivered by
the BRB layer at all correct processes including pg . Only
if m is delivered to pg is authenticity of m verified and the
entry about m can be inserted in Fh. Unless that happens,
the message m′ trying to insert the entry is ignored and
is not considered received/delivered. Now in particular,
pg may be pi because it is correct. Therefore, correct
processes including pi have a mechanism to prevent



fake send events from being inserted in F , ensuring
S(F ) \ S(E) = ∅.

• However, a Byzantine process pg can delete from Fg

information about a broadcast of m by ph at exh that it has
received, despite doing broadcasts using the BRB layer.
Even if exh → e∗i where the causality chain passes through
a message broadcast event subsequently by pg , pi has no
way of knowing about exh and the message sent to it at
exh, without waiting indefinitely. Thus, S(E) \ S(F ) ̸= ∅
and false negatives may occur. To prevent such false
negatives, Byzantine processes, their actual execution
histories, and causal chains from such processes need to
be identified.
Note that in the bullet above regarding prevention of false
positives, if m is not delivered to pg within the time to
report F , the entry about sending of m is not added to
Fh even though m might have been sent. However the
message m′ carrying information about sending of m is
not considered received/delivered, and hence exh ̸→ e∗i .
So this particular scenario does not contribute to a false
negative.

Thus, to solve CD, it is necessary to identify Byzantine
processes, their actual execution histories, and causal chains
from them. Therefore Black Box ⪯ CD and hence Consensus
⪯ CD. As Consensus is unsolvable, CD is also unsolvable.

When processes communicate by multicasting, each send
event sends a message to a group G consisting of processes
in a subset of P . Different send events can send to different
subsets of processes in P . The number of possible groups is
2|P | − 1. Communicating via unicasts and communicating via
broadcasts are special cases of multicasting.

Theorem 3. It is impossible to solve causality determination
(Definition 5) as specified by CD(E,F, e∗i ) in an asynchronous
multicast-based message passing system with one or more
Byzantine processes.

Proof. Unicast is a special case of multicast where each
group is of size 1 (or 2 if the sender is included in the
multicast group). From Theorem 1, causality determination
in the presence of even a single Byzantine process in an
execution with unicast communication is impossible to solve.
As a special case of group size 1 (or 2) is not solvable, the
general case of multicast is also not solvable.

B. Results for “Byzantine Happens Before”

The CD problem (Definition 5) defined in terms of the →
relation is now redefined in terms of the B−→ relation for the
correctness criteria for causality determination.

Definition 6. The causality determination problem
CD(E,F, e∗i ) is to devise an algorithm to collect the
execution history E as F and evaluate F at a correct process
pi such that: the problem returns 1 iff ∀exh, exh

B−→ e∗i |E =
exh

B−→ e∗i |F .

The problem is solved correctly iff 1 is returned. Observe,
e

B−→ e′ is equivalent to the following: (e → e′ ∧ there
is a causal path from event e to event e′ going through
correct processes in the execution). e B−→ e′|F is defined as
(e→ e′|F ∧ there is a causal path from e to e′ going through
correct processes in the execution). (Likewise for e B−→ e′|E .)
Note that evaluating e

B−→ e′|F does not involve determining
whether there actually exists the causal path going through
correct processes.

Value 0 is returned to CD if either
• ∃exh such that exh → e∗i |E = 1 ∧ exh → e∗i |F = 0∧

there exists a causal path from exh to e∗i going through
correct processes (denoting a false negative under B−→,
abbreviated FNB), or

• ∃exh such that exh → e∗i |E = 0 ∧ exh → e∗i |F = 1∧ there
exists a causal path from exh to e∗i going through correct
processes (denoting a false positive under B−→, abbreviated
FPB).

Theorem 4. It is impossible to solve causality determination
(Definition 6) as specified by CD(E,F, e∗i ), now defined in
terms of the B−→ relation, in an asynchronous unicast-based
message passing system with one or more Byzantine processes.

Proof. The proof of Theorem 1 carries identically, subject to
the following changes. In the specification of Black Box, the
definition

∧
exh

(exh
B−→ e∗i |E = exh

B−→ e∗i |F ) instead of
∧

exh
(exh → e∗i |E = exh → e∗i |F ) is used.

That Consensus ⪯ Black Box still holds is self-evident.
Black Box ⪯ CD still holds because solving CD correctly still
requires using the execution histories of Byzantine processes
as recorded by the algorithm in F , similar to the proof for
Theorem 1. In order for any algorithm to correctly solve CD,
it must ensure that F matches E. For this, the following must
hold.

• Due to unicasting, a message m from a potentially
Byzantine ph to pg in Fh, cannot be verified within
bounded time by other processes while collecting the
reported execution history as the message itself cannot
be broadcast or communicated to any process other
than pg to keep it private. Thus, a fake entry may be
inserted/injected in Fh by a (some) Byzantine process,
even if there exists one causal path going through correct
processes from ph to pi. This leads to a false positive
because S(F )\S(E) ̸= ∅. Thus FPB holds and it implies
FP also holds. Therefore, either contamination of F has
to be prevented or malicious entries have to be filtered out
from F within bounded time. This requires identifying
Byzantine processes, their actual execution histories, and
causal message chains from them.

• Let there be a message m from correct process ph to
pg sent at exh in Eh. During the collection of Eh to pi
for reporting Fh, as there are no Byzantine processes
along some causal path from exh to e∗i , it is possible to
ensure that no Byzantine processes can cause deletion of



information about exh from Fh, thus (S(E))B\S(F ) = ∅,
where (S(E))B is the set of send events of S(E) from
which there exists a path through correct processes to e∗i .
Thus, false negatives (with respect to events in (S(E))B)
can be prevented at pi and hence FNB . However, other
false negatives can occur and hence FN also holds.

If there were an algorithm to make F match E, it still requires
identifying whether each of the processes that input their
execution histories is correct or Byzantine (to trace and deal
with/resolve the impact of contamination via message passing
by the Byzantine processes from those Byzantine sources on
the execution histories of other processes). Hence Black Box
⪯ CD. The theorem follows.

Theorem 5. It is possible to solve causality determination
(Definition 6) as specified by CD(E,F, e∗i ), now defined in
terms of the B−→ relation, in an asynchronous broadcast-based
message passing system with one or more Byzantine processes.

Proof. The proof structure is similar to that of Theorems 2, 4.
We outline the logic that CD (Definition 6 with → replaced
by B−→) can be solved when the underlying send events are
broadcasts. We show that F can be made to match E.

• S(F ) \ S(E) = ∅, hence false positives cannot occur.
Same reasoning as in the first bullet in Theorem 2. Thus
FP holds and it implies FPB .

• (S(E))B \S(F ) = ∅, hence false negatives cannot occur.
Similar reasoning as in the second bullet of Theorem 4.
Let a message m be broadcast at exh. During the collection
of Eh to pi for reporting Fh, as exh

B−→ e∗i there are
no Byzantine processes along some causal path from exh
to e∗i , hence it is possible to ensure that no Byzantine
process can cause deletion of information of exh from Fh,
thus (S(E))B \ S(F ) = ∅. Both FNB and FN hold.

Thus to solve CD under broadcasts, it is not necessary to
identify whether each process is Byzantine, hence Black Box
̸⪯ CD and hence Consensus ̸⪯ CD.

Although Theorem 5 is a positive result, in practice it is not
possible to know whether the B−→ relation holds between exh
and e∗i because knowing it requires identifying each process as
being either Byzantine or non-Byzantine. All it can be used for
is to guarantee that if the B−→ relation holds, then it is possible
to determine causality between the corresponding two events.

Theorem 6. It is impossible to solve causality determination
(Definition 6) as specified by CD(E,F, e∗i ), now defined in
terms of the B−→ relation, in an asynchronous multicast-based
message passing system with one or more Byzantine processes.

Proof. Unicast is a special case of multicast where each
group is of size 1 (or 2 if the sender is included in the
multicast group). From Theorem 4, causality determination
in the presence of even a single Byzantine process in an
execution with unicast communication is impossible to solve.
As a special case of group size 1 (or 2) is not solvable, the
general case of multicast is also not solvable.

1) Algorithm Outline for CD of Byzantine Happens Before
under Broadcasts: Each process pi maintains Fz(∀z) in which
it tracks pz’s execution history. The goal is to make Fz match
Ez for correct pz , at each process pi.

• Byzantine Causal Broadcast (BCB) [20] is run over
Byzantine Reliable Broadcast (BRB) [32], [33]. The ath
broadcast by pi of message m is denoted (m, i, a) and is
done by invoking BCB(m, i, a, inc hist) where inc hist
is the local incremental history since its last broadcast
(a − 1). For the delivery event of a message m′ in
inc hist, pi also includes entry (m′, j, b), where m′ was
delivered locally by the BCB layer at pi and it was the
bth broadcast by pj .

• When pk BCB-delivers message (m, i, a, inc hist), pk
verifies whether each (m′, j, b) corresponding to a de-
livery event in the received inc hist has already been
locally BCB-delivered. It should have been due to causal
order of the BCB layer beneath, if it is not a fake entry
in inc hist; if it has not been BCB-delivered locally, pi
is a Byzantine process trying to enter a fake entry (about
a receive event of message (m′, j, b)) which is to be
ignored. For each (m′, j, b) that has been BCB-delivered
locally the corresponding receive/deliver event at pi and
internal events at pi up to the send event for (m, i, a) in
inc hist at pi and the send event for (m, i, a) are inserted
in Fi at pk. Note that the BCB layer delivers a message
(m, i, a, inc hist) only when all the causal dependencies
in its causal barrier have been BCB-delivered (as they
must be delivered by the BRB layer at pk if they are
not fake) but inc hist sent by pi may contain a fake
entry about an older delivery event for (m′, j, b) that has
dropped out of the causal barrier. Hence this verification
by pk is done.

The above logic can be seen to be correct due to the
properties of the BRB layer, on top of which the BCB layer
is run and invoked while doing an application-layer broadcast.
We now have that for a correct process pi:

exh
B−→ e∗i ⇐⇒ exh exists in Fh at pi.

Additionally, exh in Fh at pi implies exh → e∗i when exh is a
send or receive event. This is because a Byzantine process pb
cannot insert fake send and receive events eyb in Fb at a correct
process pi. Note that a Byzantine process can delete an actual
internal event as well as insert a fake internal event.

V. DISCUSSION AND CONCLUSIONS

We proved the results about possibility or impossibility
of determining causality between events in the presence of
Byzantine processes using executions, independent of specific
implementations such as causality graphs, vector clocks and
their variants, and other clock systems. The impossibility
of being able to determine causal order between a pair of
events in the presence of even a single Byzantine process
when message communication takes place by unicasting and
by multicasting are negative results. Only in the case of



broadcasting can there be a weak positive result in that if
there exists a causal path going through events at only correct
processes between the two events, then causal order can be
determined correctly. However, it is impossible to ascertain
whether such a path going through events at non-Byzantine
processes exists, so this result is of questionable practical use.
This is also an expensive operation because each broadcast
must be done via Byzantine Reliable Broadcast which requires
O(n) control message broadcasts per application message
broadcast and an increased latency that depends on the partic-
ular implementation of BRB used.

It remains to be explored whether the happens before
and the Byzantine happens before relations between events
can be determined in the unicast, multicast, and broadcast
communication models in a synchronous system.

Detecting causality between a pair of events is a fundamen-
tal problem [1]. Other problems that use this problem as a
building block include the following:

• detecting causality relation between two “meta-events”
[34], each of which spans multiple events across multiple
processes [35],

• detecting the interaction type between a pair of intervals
at different processes [36],

• detecting the fine-grained modality of a distributed pred-
icate [37], [38], and data-stream based global event
monitoring using pairwise interactions between processes
[39].

Impossibility results analogous to Theorem 1 (unicast, →),
Theorem 2 (broadcast, →), Theorem 3 (multicast, →), The-
orem 4 (unicast, B−→), Theorem 6 (multicast, B−→) may also
hold for these problems. If a reduction from the causality
determination problem to each of the above problems can
be established, then the impossibility of solving these above
problems would directly follow.
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