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Abstract—Causal ordering of broadcasts is a widely used
requirement in collaborative distributed software systems. We
consider Byzantine-tolerant causal ordering of broadcasts in a
replicated data store implemented over an incomplete graph
network topology, wherein messages of the broadcast are sent
via flooding. We propose two protocols to achieve this. The
incomplete graph topology also occurs naturally in wireless
networks and in overlay peer-to-peer networks. We identify four
properties – safety, liveness, no impersonation, and no avatars
– that a Byzantine-tolerant causal broadcast algorithm for a
replicated data store over an incomplete graph must satisfy. We
also reformulate the traditional properties – validity, integrity,
self-delivery, and reliability (or termination) – specified for a
complete graph in the literature for a replicated data store system
over an incomplete graph topology. We then analyze whether
Byzantine processes can mount attacks on these properties in our
two protocols. We show results for the classical communication
model and the local broadcast model.

Index Terms—Byzantine fault-tolerance, Causal order, Causal
broadcast, Incomplete graph, Causality, Wireless network, Peer-
to-peer, Flooding, Asynchronous message-passing

I. INTRODUCTION

Causality is widely used in providing useful application-
level semantics in distributed systems [1]. Causality is defined
by the happens before [2] relation on the set of events. If
message m1 causally precedes m2 and both are sent to pi,
then m1 must be delivered before m2 at pi to enforce causal
order [3]. Causal ordering ensures that causally related updates
to data occur in a valid manner respecting that causal relation.
Applications of causal ordering include distributed data stores,
fair resource allocation, and collaborative applications such as
social networks, multiplayer online gaming, group editing of
documents, event notification systems, and distributed virtual
environments.

Causal ordering under the Byzantine failure model is
recently studied by Auvolat et al. [4] which consid-
ered Byzantine-tolerant causal broadcasts. The solvability of
Byzantine-tolerant causal ordering problems is also considered
in [5]–[7]. The works in [8]–[11] for causal consistency of
replicated data under Byzantine failures relied on broadcasts.
All these except [10] assumed the complete graph topology.
Our interest is in incomplete graph topologies and arbitary (in-
complete) graph peer-to-peer (P2P) overlay topologies because
they are the ones that occur in practice rather than complete
graph topologies. Complete (point-to-point) graph topology

for which many of the results in the literature on Byzantine
fault-tolerance exist require a higher (hidden) cost because the
point-to-point channels abstraction is provided over underlying
incomplete topologies and there is much redundancy in their
provisioning.

Incomplete graph topologies also occur naturally in wire-
less communication. Here hop-by-hop transmissions occur to
achieve broadcast via flooding in the network. Furthermore,
incomplete graph topologies also appear as P2P overlays. The
modern real-time interactive applications mentioned above that
depend on causal ordering use geo-replication. If using a small
number of servers, the client-server delays in large systems are
significant. Hence it is preferred that clients locally replicate
state and synchronize among themselves over an incomplete
graph (peer-to-peer) overlay. An update generated at a client
peer has to be broadcast/propagated to all other client peers
over the P2P overlay and the only way to achieve this is
through flooding. This requires solving the Byzantine-tolerant
causal broadcast problem over an incomplete graph.

In the classical communication model, it is possible for
a Byzantine node to equivocate, i.e., transmit conflicting
information to its neighbours. Such behaviour is possible if
the message sent by a node to one neighbour is not heard by
the other neighbours. In contrast, for the local broadcast model
[12], [13], a message sent by a node is received identically by
all its neighbours. Therefore in this model, an attempt by a
node to equivocate can be detected by its neighbours. This
model is more pertinent to wireless networks.

We also consider two types of Byzantine behaviour. First,
a process may be rational, i.e., it behaves in a Byzantine way
and mounts an attack only if it knows it will not be detected
and identified as having mounted the attack. The second type
of behaviour is irrational, i.e., a process mounts an attack even
if it may be suspected or detected and identified as having
mounted the attack.

The main contributions of this paper are as follows:
1) We identify four properties – safety, liveness, no im-

personation, and no avatars – that a Byzantine-tolerant
causal broadcast algorithm for a replicated data store
over an incomplete graph must satisfy. Traditional prop-
erties – Validity, Integrity, Self-Delivery, and Reliabil-
ity (or Termination) – specified for Byzantine Causal
Broadcast based on Byzantine Reliable Broadcast [14],
[15] for a complete graph exist in the literature; we979-8-3503-9730-7/22/$31.00 ©2022 IEEE



reformulate these for a replicated data store system over
an incomplete graph topology.

2) We formulate the No Dependency Tracking protocol
and the Dependency Tracking protocol for peer-to-peer
overlays, based on folklore flooding algorithms [1],
[16]. The former has the advantage that it is a no-
frills lightweight protocol and works fine when there
are no Byzantine processes. The latter tracks causal
dependencies in its meta-data, which is more expen-
sive, but is more resilient to some types of Byzantine
process attacks. These protocols are developed in the
literature and we present them as lightweight solutions
to Byzantine-tolerant causal broadcast.

3) For each of the properties identified in Item 1 above,
We analyze the solvability of Byzantine-tolerant causal
broadcasts under the No Dependency Tracking and the
Dependency Tracking protocols for the classical com-
munication model. Table I summarizes these results.
A superscript R (I) next to a result denotes that the
annotated result holds when the Byzantine processes are
rational (irrational). We also analyze how these results
for the classical communication model vary in the local
broadcast model.

Roadmap. Section II reviews previous work. Section III
gives our system model and the definitions of correctness
criteria for Byzantine-tolerant causal broadcasts over an in-
complete graph topology (or overlay). Section IV gives the
No Dependency Tracking and the Dependency Tracking pro-
tocols. Section V gives the main results about satisfiability of
safety, liveness, no impersonation, and no avatars correctness
properties by the two protocols. Section VI gives additional
correctness properties and results about their satisfiability by
the two protocols. Section VII gives the conclusions.

II. PREVIOUS WORK

Besides a large body of work on causal order broadcasts
in failure-free settings (e.g., [16], [17] and references therein),
there has been only some work on causal broadcasts under
various failure models. Causal ordering of broadcast messages
under crash failures in asynchronous systems was introduced
in [3]. This algorithm required each message to carry the entire
set of messages in its causal past as control information. The
algorithm in [18] implements crash fault-tolerant causal broad-
cast in asynchronous systems with a focus on optimizing the
amount of control information piggybacked on each message.

The first algorithm for causally ordering broadcast messages
in an asynchronous system with Byzantine failures is proposed
in [4]. The solvability of Byzantine-tolerant causal ordering
problems is considered in [5]–[7]. The paper [5] showed
that although the algorithm in [4] claims to satisfy safety of
m1 → m2 where → is the causality relation on messages,
that can be considered only a weak form of safety that holds
if there is a causal path from the sending of message m1 to
sending of message m2 going through only correct processes.
However, this weak form of safety may not always be useful in
practice. The results in [5] went on to prove that unconditional

or strong safety is not possible in an asynchronous message-
passing system with even a single Byzantine process. The
above works used the complete graph topology.

There has also been recent interest in applying the Byzantine
fault model to implement causal consistency in distributed
shared memory and replicated databases [8], [9], [11]. These
rely on broadcasts, e.g., on Byzantine reliable broadcast [15]
in [9] and on PBFT (total order broadcast) [19] in [8]. In [11],
Byzantine reliable broadcast is used to remove misinformation
induced by the combination of asynchrony and Byzantine
behaviour. These use the client-server model or complete
graph and do not apply to an incomplete graph topology (or
peer-to-peer overlay) over processes. The impact of rational
misbehaving clients on causal consistency of replicated data
in a P2P overlay has been studied in [10]. Algorithms for three
models of secure causal consistency were outlined. Some of
the attacks could be dealt with by relying on cryptographic
primitives, a trusted central server, and trusted hardware. Ex-
perimental results evaluating the costs such as latency imposed
by the algorithms were given. In contrast, our work considers
all possible attacks by Byzantine processes as identified by
traditional correctness properties, on causal broadcast, and
analyzes whether/how they can be prevented by our simple
protocols.

Causal order in mobile wireless networks has been con-
sidered in [20], [21], but this considers the cellular network
model and not the peer-to-peer model. Furthermore, it does
not consider Byzantine processes.

Raynal and Cao [22] discussed how to implement
Byzantine-tolerant broadcast assuming a complete graph
topology over a network which is incomplete, using a
bbai broadcast primitive. This is possible if the vertex-
connectivity of the underlying incomplete graph is 2f +1 and
f < n/3, where f is the maximum number of Byzantine
processes and n is the total number of processes in the
graph (system). Using a layered approach, Byzantine Causal
Broadcast (which cannot really give strong safety as shown in
[5]) can be run above Byzantine Reliable Broadcast (both of
which assume a complete graph topology) over the incomplete
graph topology running bbai broadcast. Drawbacks of this
approach are: (i) inherently it cannot provide true safety or
strong safety [5], (ii) it incurs an added latency for Byzantine
Reliable Broadcast and O(n) control message broadcasts per
application broadcast. Further overheads/restrictions are: (iii)
to implement Byzantine-tolerant broadcast over an incomplete
graph requires complete knowledge of the graph topology and
of 2f + 1 node-disjoint paths to each other pj , and (iv) when
pi broadcasts, it needs to send messages along 2f + 1 node-
disjoint paths to each other node j, which incurs its message
overheads and latency overheads for the multi-hop paths to
each other pj . In contrast, our lightweight approach explores
Byzantine tolerant causal broadcast without any of these
overheads/restrictions (ii), (iii), and (iv), nor the requirement
that f < n/3.



Protocol Safety Liveness No No Avatars Validity Integrity Self-Delivery Reliability
Impersonation (or Termination)

No Dependency noR,I Theorem 3 yesR,I noI , yesR; yesR,I yesR,I yesR,I noI , yesR;
Tracking noI , yesR yesI,R (with TC) noI , yesR (Th. 3) (with TC)
Dependency noR,I Theorem 3 yesR,I noI , yesR; yesR,I yesR,I yesR,I noI , yesR;
Tracking noI , yesR yesI,R (with TC) noI , yesR (Th. 3) (with TC)

TABLE I: Solvability of Byzantine causal broadcast over an incomplete graph topology (or a peer-to-peer overlay) in a fully
asynchronous system for the classical communication model. All results hold for both protocols for the local broadcast model
except that the noI changes to yesI for the No avatars property and the Reliability (or Termination) property, without TC. TC
= trusted component. Results are specified for TC when different from the default without TC.

III. SYSTEM MODEL

The distributed system is modelled as an undirected graph
G = (P,C). Here P is the set of processes (peers) com-
municating asynchronously over a geographically dispersed
network. Let |P | = n. C is the set of communication channels
over which processes communicate by message-passing. The
channels are assumed to be FIFO. G is assumed to be an
arbitrary graph and in particular, we do not assume a complete
graph. A process can only send a message to its neighbors
to which it has an edge in C. For a message send event
at time t1, the corresponding receive event occurs at time
t2 ∈ [t1,∞). A correct process behaves exactly as specified
by the algorithm whereas a Byzantine process may exhibit
arbitrary behaviour including crashing at any point during the
execution. A Byzantine process cannot spawn new processes.
This model subsumes the ad-hoc wireless network model
where the peers communicate over channels to the peers
in their radio range. The system model also assumes that
messages can be authenticated with signatures (or with some
other form of authenticators such as MAC vectors).

In addition to this, we also consider the possibility of the
addition of trusted components (TC) [23], [24] as part of
a separate analysis for the satisfiability or unsatisfiability of
the properties of Byzantine causal broadcast. In this analysis,
we consider each node containing a trusted component in
the form of specialized hardware. This specialized hardware
continues to function normally even in the case where the node
is compromised and becomes Byzantine. For the purposes of
this paper, the trusted component is abstracted as a public
key–secret key pair (Pi, Si) residing at each process pi.
The secret key is used to sign messages and assign mono-
tonically increasing sequence numbers to messages. Every
process knows every other process’s public key, ensuring that
processes can determine whether incoming messages and their
sequence numbers are legitimate. As the TC facility may not
be available, we analyze the properties of Byzantine causal
broadcast separately without the TC and with the TC – the
default is a system without the TC.

Processes locally replicate state and synchronize among
themselves over the incomplete graph topology (or P2P in-
complete graph overlay) C. An update or an operation that
is generated at a process pi is identified by a tuple (i, seqi)
and is broadcast over C via flooding. This flooding is initiated
by pi by sending the operation to its neighbors in C. When a

process pj receives an operation (that it has not seen before),
it executes the operation on the local replica and floods the
same operation to its other neighbors in C atomically.

In order to deliver messages in causal order, we require
a framework that captures causality as a partial order on a
distributed execution. The happens before [2] relation, denoted
→, is an irreflexive, asymmetric, and transitive partial order
defined over events in a distributed execution that captures
causality. When applied to replicated data stores, the →
relation on operations o, o′ ∈ O, the set of operations in the
entire execution, is as follows [25].

Definition 1. o → o′ if and only if o′ is generated in a replica
where o has already been executed.

(O,→) is an irreflexive, symmetric, and transitive partial
order.

Definition 2. The causal past of operation o is denoted as
CP (o) and defined as the set of operations in O that causally
precede operation o under →.

A linear extension (O,<) of a partial order set (O,→) is
defined to be a serialization Sx =(O,<). Thus, ∀o, o′ ∈ O,
o → o′ ⇒ o < o′. A history is causally consistent, i.e.,
enforces causal order, if and only if for each process pi there
is a serialization Si that respects the order (O,→) [25]. Thus,
a history is causally consistent if and only if all processes
execute operations as per some causal serialization.

We identify four properties that should be satisfied by causal
broadcast over an incomplete graph topology in the face of
Byzantine attacks.

Definition 3. Safety: ∀o′ ∈ CP (o), no correct process
executes o before o′.

Definition 4. Liveness: Each operation o generated by a
correct process is eventually executed at each correct process.

Definition 5. No impersonation: An operation associated with
identifier (i, seqi) that is executed at a process pj should have
been generated by process pi.

No impersonation corresponds to the terms authenticity and
non-repudiation used in the literature.

Definition 6. No avatars: The operation o associated with
identifier (i, seqi) when executed at pj should be identical



to the operation o′ associated with the same identifier when
executed at pk for all correct pj , pk.

Additional properties for the replicated data store sys-
tem over incomplete graphs, that are counterparts of Byzan-
tine Causal Broadcast and Byzantine Reliable Broadcast in
message-passing systems over a complete overlay topology,
are formulated and the protocols are analyzed for these refor-
mulated properties in Section VI.

IV. PROTOCOLS FOR CAUSAL ORDERING OVER
INCOMPLETE GRAPH

The No Dependency Tracking protocol and Dependency
Tracking protocols for flooding in an incomplete graph given
in this section are based on folklore and literature [1], [16];
we present them in the context of Byzantine-tolerant causal
broadcast.

A. No Dependency Tracking Protocol

Processes locally replicate state and synchronize among
themselves over the incomplete graph topology (or the P2P
incomelete graph overlay) C. An update or an operation that
is generated at a process pi is identified by a tuple (i, seqi) and
is broadcast over C via constrained flooding. This flooding is
initiated by pi by sending the operation to its neighbors in C.
A process pi maintains a next seq no expected[j] for each
other process pj which is 1+ the sequence number of the
latest operation from pj that it has seen and executed. When a
process pi receives an operation (j, seqj) (that it has not seen
before) generated by pj from neighbor pk:

1) If seqj > next seq no expected[j], the operation is
buffered and not executed locally nor forwarded.

2) If seqj = next seq no expected[j], pi executes the
operation on the local replica and floods/forwards the
same operation to all neighbors in C except pk atom-
ically. If there are other buffered operations in a con-
tinuous window generated by pj , those are also exe-
cuted on the local replica and forwarded in sequence.
next seq no expected[j] is updated to 1+ the upper
edge of the window of operations executed and for-
warded.

Theorem 1. In a fault-free system, the No Dependency Track-
ing protocol guarantees safety and liveness of causal order.

Proof. Safety: Let oi → o′j . This implies that once oi was
generated at pi, it was flooded and reached pj where it was
executed and forwarded onwards for flooding, after which o′j
was generated at pj and then forwarded onwards as part of
flooding o′j . Due to FIFO channels, the nature of flooding, and
the assumption of no faulty processes which guarantees that
all operations are forwarded in sequential order of sequence
number seql for each (l, seql) identifier, operation oi will reach
and be executed at each process pk before o′j reaches and is
executed at pk.

Liveness: Due to FIFO channels, the nature of flooding, and
the assumption of no faulty processes which guarantees that

all operations are forwarded in sequential order of sequence
number seql for each (l, seql) identifier, an operation oi will
reach and be executed at each process in the system. Hence
each operation generated is eventually executed at each other
process.

As a further modification to the protocol, as explained
in Section V-A, each process should also sign the message
containing its operation that it generates, to thwart certain
attacks on safety.

B. Dependency Tracking Protocol

Processes locally replicate state and synchronize among
themselves over the incomplete graph topology (or the incom-
plete graph P2P overlay) C. An update or an operation that is
generated at a process pi is identified by a tuple (i, seqi) and
is broadcast over C via constrained flooding. This flooding is
initiated by pi by sending the operation to its neighbors in C.
When a process pj receives an operation (that it has not seen
before), if it is safe (defined below) to execute the operation
on the local replica, it executes the operation on the local
replica and floods the same operation to its other neighbors in
C atomically.

Each operation that is generated is associated with a set of
dependencies to enforce causal ordering. The standard ways to
represent these dependencies are using version vectors [26] or
direct (immediate) dependencies [27], [28]. When an operation
arrives at a process via the flooding, it is executed only when
it is safe to do so, i.e., the dependencies as specified in the
version vector or direct dependency set associated with the
operation are satisfied. Thus, the operations corresponding
to those dependencies have also been locally received and
executed before this operation is executed. There are two
options about the forwarding of an operation – either (i) it
can be forwarded once it is received and possibly before its
dependencies are satisfied and the operation is executed, or
(ii) only after its dependencies are satisfied and the operation
is executed. We assume option (ii) because if a dependency oj
is not satisfied when an operation oi is received, the receiver
can pinpoint the sender peer as a Byzantine process that is not
following the protocol. Thus, a rational Byzantine process will
not mount such an attack of forwarding an operation whose
dependencies have not been forwarded. Further, there is no
advantage forwarding oi as the next process to receive it will
not be able to execute it either without receiving oj which is
yet to be forwarded.

Theorem 2. In a fault-free system, the Dependency Tracking
protocol guarantees safety and liveness of causal order.

Proof. Safety: Let oi → o′j . This implies that once oi was
generated at pi, it was flooded and reached pj where it was
executed once its causal dependencies were satisfied, and for-
warded onward for flooding, after which o′j was generated at
pj and then forwarded onward as part of flooding o′j . oi could
be a direct causal dependency of o′j . Due to FIFO channels, the
nature of flooding, and the assumption of no faulty processes



which guarantees that an operation is forwarded after its direct
causal dependencies and hence transitively after its indirect
dependencies are satisfied, locally executed, and forwarded,
operation oi will reach and be executed at each process pk
before o′j reaches and is executed at pk.

Liveness: We prove by contradiction. Assume oi is the
first operation that is not executed when received by some
process, say pk, from some process, say pj , because its causal
dependencies are not satisfied. Therefore when pj received
oi, it was executed and forwarded to pk because the causal
dependencies were satisfied, i.e., those causal dependency
operations were previously received, executed, and forwarded.
As channels are FIFO, pk would also have received those
operations before receiving oi, contradicting the assumption
that such an oi exists.

As a further modification to the protocol to thwart certain
attacks on safety, which we explain and justify in Section V-A,
each process should sign the message containing the operation
it generates and its direct dependencies. In addition, it should
also include a hash (cryptographic summary) of its direct
causal dependencies.

V. ANALYSIS OF PROTOCOLS AND ATTACKS

A. Safety

1) Dependency Tracking protocol: We identify several
types of safety attacks by a Byzantine process on the De-
pendency Tracking protocol, and analyze whether they can be
countered. Let x be an operation generated at a Byzantine
process. Let z, y, and w be other operations. Let z → y →
x → w. Here z is in the causal past of y and both are in
the causal past of x which is at the Byzantine process. w is
in the causal future of x and by transitivity, of z and y. The
Byzantine process can mount attacks as follows.

1) Delete dependency of y on z. To mount this attack,
operation z should not be forwarded by the Byzantine
process until after y arrives, y’s dependency on z is
deleted, and y is forwarded.
As a result, y can get executed before z at some correct
process pq , resulting in a safety violation.

2) Add to dependencies of z the dependency on y. To
mount this attack, the dependency of y on z should also
be deleted, so that z will be executed before y. Further,
forwarding of operation z, which arrives first at the
Byzantine process, should wait until operation y arrives
and the Byzantine process learns of it so dependency y
can be added to dependencies of z.
As a result, y can get executed before z at some correct
process pq , resulting in a safety violation.

3) Add to dependencies of y the dependency on x. To
mount this attack, the dependency of x on y should also
be deleted, so that x will be executed before y. Further,
forwarding of operation y, which arrives first, should
wait until operation x is executed and the Byzantine
process generates x so dependency x can be added to
dependencies of y.

As a result, x can get executed before the causally earlier
operation y at some correct process pq , resulting in a
safety violation.

4) Delete dependency of x on y. As x is generated locally
at the Byzantine process, this deletion or non-insertion of
the dependency on y in the dependencies of x is entirely
under the local control of the Byzantine process. As part
of the attack, the propagation of y, which arrives at the
Byzantine process before it generates x, is postponed to
after propagating x.
This attack can be mounted and there cannot exist any
counter to this attack. The deletion of this dependency
makes x concurrent to y and x can get executed before
its causally earlier operation y at some correct process
pq , resulting in a safety violation.

5) Add to dependencies of y/x the dependency on w. To
mount this attack, the Byzantine process will need a
way to learn about or guess the future operation w
and add it as a dependency to dependencies of y/x
before forwarding y/x. (If w cannot be guessed, the
Byzantine process waits to receive w and do this before
forwarding y/x.) Also, the dependency of w on y/x
should be deleted when w arrives at and is executed
at the Byzantine process and before forwarding w, so
that w may be executed before y/x.
This addition of a dependency on a future operation w
causes y/x to be executed after the future operation is
executed at some correct process pq , resulting in a safety
violation.

Attacks (1)-(3) can be prevented by requiring each process
to sign the message containing the operation it generates and
its direct dependencies. A Byzantine process cannot forge the
signature of another process.

Attack (5) can be prevented by requiring a message contain-
ing an operation and its direct dependencies to also include
a hash (cryptographic summary) of its direct causal depen-
dencies. A Byzantine process cannot create a valid hash of
its direct causal dependencies in which it wants to include w
because w is a future yet-to-occur operation. If it attempts to
do so, the invalid hash can be detected by a correct process
receiving the message that includes the hash along with the
operation.

Attack (4) cannot be prevented as it is entirely within the
control of the Byzantine process. By deleting the dependency
of x on y and delaying the propagation of y to after that of
x, x can get executed before y at some other processes pq .
Even though y → x in actuality, the attack makes x logically
concurrent to y. Process pq has no way of identifying or even
suspecting the process that mounted the attack, and hence even
rational processes can fearlessly mount this attack. This attack
cannot be prevented by using a TC.

Local broadcast model: The above results hold for the
local broadcast model because mounting the attack requires
addition/deletion of dependencies and/or operation-forwarding
order swapping actions that can be implemented in this model.



Type of safety attack No Dependency Dependency
Tracking Tracking
protocol protocol

Delete dependency of y on z noR,I yesR,I

Add to dependencies of z the dependency on y noR,I yesR,I

Add to dependencies of y the dependency on x noR,I yesR,I

Delete dependency of x on y noR,I noR,I

Add to dependencies of y/x the dependency on w noR,I yesR,I

TABLE II: Guarantee of safety of Byzantine causal broadcast over an incomplete graph topology (or a peer-to-peer overlay)
in a fully asynchronous system. x is an operation at a Byzantine process. w is a future operation. z → y → x → w. These
results hold for both the classical communication model and the local broadcast model.

2) Safety of the No Dependency Tracking Protocol: As this
protocol does not track direct dependencies, except implicitly
the dependencies on operations generated by the same initiator,
we examine how the equivalents of the safety attack types for
the Dependency Tracking protocol can be executed on the No
Dependency Tracking protocol.

As before, let x be an operation at a Byzantine process. Let
z → y → x → w. The Byzantine process can mount attacks
as follows.

1) Delete dependency of y on z. As z arrives before y, to
mount this attack, operation z should not be forwarded
by the Byzantine process until after y arrives and is
forwarded.
As a result, y can get executed before z at some correct
process pq , resulting in a safety violation.

2) Add to dependencies of z the dependency on y. As z
arrives before y, to mount this attack, operation z should
not be forwarded by the Byzantine process until after y
arrives and is forwarded.
As a result, y can get executed before z at some correct
process pq , resulting in a safety violation.

3) Add to dependencies of y the dependency on x. As y
arrives before x is generated, to mount this attack, the
Byzantine process should not forward y until after x is
generated and forwarded.
As a result, x can get executed before the causally earlier
operation y at some correct process pq , resulting in a
safety violation.

4) Delete dependency of x on y. As x is generated locally
at the Byzantine process, this logical deletion or non-
insertion of the dependency on y in the dependencies of
x is entirely under the local control of the Byzantine pro-
cess. To mount the attack, the propagation of y, which
arrives at the Byzantine process before it generates x, is
postponed to after generating and propagating x.
The deletion of this dependency makes x concurrent
to y and x can get executed before its causally earlier
operation y at some correct process pq , resulting in a
safety violation.

5) Add to dependencies of y/x the dependency on w. To
mount this attack, the Byzantine process will need a
way to learn about the future operation w. When x
is generated or y is received, the Byzantine process
delays forwarding y/x until after the future operation w

arrives, is executed at, and is forwarded by the Byzantine
process.
This addition of a dependency on a future operation w
causes y/x to be executed after the future operation is
executed at some correct process pq , resulting in a safety
violation.

None of these attacks can be prevented. Signing messages
does not help because the Byzantine process is not tampering
with them, but is merely swapping the order of forwarding
arrived operations. A process has no way of identifying or
even suspecting the process that mounted the attack, and hence
even rational processes can fearlessly mount this attack. The
use of a TC cannot prevent these attacks.

Observe that swapping the order of forwarding arrived
operations generated by a common process does not amount
to an attack because a correct process executes operations in
sequence number order as generated by the generator process;
and signing messages prevents tampering with the sequence
number field. Hence, messages need to be signed.

Local broadcast model: The above results hold for the
local broadcast model because mounting the attack requires
swapping the order of forwarding operations and this can be
implemented in this model.

B. Liveness

For a liveness attack to be successful, an operation generated
by a correct process should be forever prevented from being
executed at some other correct process.

Theorem 3. In a system with up to f Byzantine processes,
a liveness attack can be mounted if and only if the vertex
connectivity k of the overlay graph topology is at most f .

Proof. By definition, a graph is k-connected if n > k and the
removal of less than k nodes does not disconnect the graph.
From Menger’s Theorem [29], a graph is k-connected if and
only if for any two nodes u, v ∈ P , there exist k node-disjoint
uv-paths.

If k ≤ f , there are at most f node-disjoint paths connecting
some correct node u that generates an operation and some
correct node v on which the liveness attack is to be mounted.
If there is at least one Byzantine process on each of these at
most f node-disjoint paths, they can each block the forwarding
of u’s operation towards v. Thus, if k ≤ f , a liveness attack
can be mounted.



If k > f , there is at least one (more precisely, there are
≥ k−f ) node-disjoint uv-paths on which there is no Byzantine
process and hence nodes along this path will forward u’s
operation towards and to v. Thus, u’s operation can get
executed at v. Hence, if k > f , a liveness attack cannot be
mounted.

Liveness subject to Theorem 3 can be seen to be satisfied
by both the No Dependency Tracking protocol and the De-
pendency Tracking protocol.

If the Byzantine processes collectively mount a liveness
attack on a particular operation, they simply withold forward-
ing that operation to any of the neighbours. Even though
the attack is successful (subject to the above theorem), they
will be detected when they forward (messages signed by the
generator process containing) other later operations whose
dependency set contains the operation that was withheld in
the liveness attack (Dependency Tracking protocol) or whose
sequence number is not the next expected sequence number
for the same source (No Dependency Tracking protocol). Thus,
rational Byzantine processes will not mount a liveness attack
but irrational Byzantine processes may; the use of a TC cannot
prevent this attack.

If a Byzantine process adds a dependency of operation o
on a fake operation x that was never generated, a liveness
attack can be mounted, but this can be prevented by requiring
that each process sign each operation it generates and asso-
ciated dependency meta-data. This prevents addition of fake
dependencies.

Local broadcast model: The results above also hold for the
local broadcast model because mounting the attack is simply
to withold forwarding the operation to any of the neighbours,
which can be implemented in this model.

C. No impersonation

An impersonation attack can be mounted if a process pj
generates an operation and associates it with identifier (i, seqi)
and this gets executed at a correct process pk by being
attributed to pi. Such an attack can be prevented by requiring
each process to sign the operation (and its direct causal
dependencies) that it generates and forwards via flooding.
A Byzantine process pj will be unable to sign using pi’s
signature, any operation it creates but wants to associate with
identifier (i, seqi).

The above analysis holds for both the No Dependency
Tracking protocol and the Dependency Tracking protocol.

Local broadcast model: The above results hold for the
local broadcast model because no new form of attack can be
mounted in the model (compared to the classical communica-
tion model), and preventing the attack by signing can be done
in both models.

D. No avatars

An avatar attack can be mounted if a process pi propagates
two different operations associated with its own identical
identifier (i, seqi) and causes these two different operations

with the same identifier to be executed at different correct
processes pj and pk.

It is not explicitly possible to prevent such an attack. Re-
quiring signed messages does not help because the Byzantine
process signs the two different operations as generated by
itself. However, when a correct processes receives the two
different signed operations with the same identifier along
different paths in the overlay topology, it can detect that an
avatar attack has been mounted and pinpoint the process that
has mounted the attack. This detection prevents a rational
process from mounting the attack as its identity as a Byzantine
process will become known in the system. The attack can be
mounted by an irrational Byzantine process.

However, if we assume a TC that can provide unique
sequence numbers, then signing such messages can prevent
avatar attack.

The above analysis holds for both the No Dependency
Tracking protocol and the Dependency Tracking protocol.

Local broadcast model: Mounting the attack requires send-
ing different messages with the same sequence number to
different neighbours – and this is not allowed in this model.
Thus, neither rational nor irrational processes will be able to
mount the attack.

VI. ADDITIONAL CORRECTNESS PROPERTIES

In addition to the correctness properties – safety, liveness,
no impersonation, and no avatars – for a replicated data store
over an incomplete graph topology that we defined, there can
be stated four additional properties which have counterparts for
the complete graph overlay in message-passing systems. For
the complete graph (overlay) for message-passing systems, the
following properties have been defined for Byzantine causal
order reliable broadcast [4].

• Validity [15]: If a correct process delivers a message m
from a correct process ps, then ps must have executed
broadcast(m).

• Integrity [15]: For any message m, a correct process
executes deliver(m) at most once.

• Self-delivery [15]: If a correct process executes
broadcast(m), then it eventually executes deliver(m).

• Reliability (or Termination) [15]: If a correct process
executes deliver(m), then every other correct process also
(eventually) executes deliver(m).

• Causal order [5]: Let the → relation on messages m →
m′ be such that the send event of m happens before the
send event of m′. If m → m′ then no correct process
delivers m′ before m.

The equivalents of these above properties can be stated for
the incomplete graph topology (or the incomplete graph P2P
overlay) for our replicated data store model. Next, we state
these equivalents and show that they (except the causal order
and Reliability/Termination properties) are satisfied by No
Dependency Tracking and Dependency Tracking protocols.

• Validity: If a correct process pi executes operation o
generated by another correct process pj , then o must have
been generated, executed, and flooded by pj .



It is evident that Validity is satisfied for both No Depen-
dency Tracking and Dependency Tracking protocols.

• Integrity: For an operation with identifier (i, seqi),
(signed by the generator process pi), the operation is
executed at correct process pj at most once.
It is evident that Integrity is satisfied by both the No De-
pendency Tracking and Dependency Tracking protocols.

• Self-delivery: An operation generated by a correct process
is also eventually executed by that correct process.
It is evident that Self-delivery is satisfied by both the
protocols.

• Reliability (or termination): If a correct process executes
an operation with identifier (i, seqi), then every other
correct process (eventually) executes the same operation
with the same identifier.
From the liveness property (Section V-B) for both the
protocols, if a correct process executes an operation,
it is forwarded via flooding and exposed to a liveness
attack by irrational processes subject to Theorem 3.
However, as the No Avatars property is not satisfied even
if a liveness attack cannot be mounted when irrational
Byzantine processes generate operations in the classical
communication model, different correct processes may
receive and execute different operations with the same
identifier and hence Reliability/termination is also not
guaranteed. In the local broadcast model, the No Avatars
property is satisfied by rational and irrational Byzantine
processes, hence Reliability/termination is exposed to a
liveness attack by irrational processes subject to Theo-
rem 3.
If a TC is assumed, the No avatars property is satisfied but
irrational processes may mount a liveness attack, subject
to Theorem 3, for both the classical communication and
the local broadcast models for both protocols.

• Causal order: This is covered in our definition of safety
(Definition 1) for replicated data stores and was analyzed
in Section V-A.

VII. CONCLUSIONS

We identified four properties – safety, liveness, no imper-
sonation, and no avatars – that should be satisfied for causal
consistency of a replicated data store communicating over
an incomplete graph topology (or an incomplete graph P2P
overlay) and considered two flooding-based protocols from the
literature. The No Dependency Tracking protocol is prone to
more types of safety attacks than the Dependency Tracking
protocol; however the Dependency Tracking protocol is also
subject to one type of safety attack. Liveness is satisfied if a
certain relationship is satisfied by the vertex connectivity k of
the overlay topology and the maximum number of Byzantine
processes f , namely k > f . The No Impersonation property
can be satisfied by the two protocols. The No Avatars property
can be satisfied by both protocols if the Byzantine processes
are rational. The above results for the classical communication
model also hold, with some exceptions, for the local broadcast
model which is more prevalent in wireless ad-hoc networks.

Although our protocols cannot provide safety in some of
the cases analyzed due to the impossibility result of [5],
neither can the approach of layering Byzantine Causal Broad-
cast over Byzantine Reliable Broadcast (both for complete
graph overlays) over bbai broadcast (which is over an incom-
plete graph) and our lightweight direct approach avoids the
overheads of this layering approach. Our approach uses the
bare minimum number of messages |C| in each broadcast,
eliminates the latency and message overheads of Byzantine
Reliable Broadcast and the bbai broadcast, and does not
require knowledge of the graph topology. Further, liveness
is guaranteed in a graph with vertex connectivity (f + 1)
and f is not restricted to be less than n/3. We do not
require 2f + 1 vertex connectivity in the incomplete graph,
as is required by the bbai broadcast primitive in the layered
approach. Furthermore, standard approaches for dealing with
the dependency vector/ direct dependency representation in the
face of churn as well as a dynamically changing incomplete
topology can be adapted. Thus our approach is suited to real-
time collaborative applications such as social networking and
massive multiplayer online gaming.
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