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Abstract—In this paper, we examine the inherent properties
of the Byzantine Reliable Broadcast (BRB) primitive as pertain
to the ability to provide causal ordering. We prove the following
results. First, we analyze Bracha’s BRB algorithm and show
that under the failure-free model, safety is guaranteed across
broadcasts. Second, we also prove that Bracha’s BRB algorithm
guarantees safety across broadcasts under the crash failure model
tolerating any number of crash failures. Third, we prove that
Bracha’s BRB algorithm cannot provide weak or strong safety
under the Byzantine failure model. Fourth, we prove that neither
the Imbs-Raynal BRB protocol nor any (2,*)-round BRB protocol
can provide causal order even if all processes are correct, and
they must incur additional latency to causally order messages at a
higher layer. The inherent causal ordering properties of Bracha’s
BRB can be of use under favourable circumstances in practical
applications, given the widespread adoption of the protocol.

Index Terms—Byzantine Reliable Broadcast, Byzantine fault-
tolerance, Happens Before, Causality, Asynchronous message-
passing

I. INTRODUCTION

Causality is a critical tool for designing and reasoning in
distributed systems [1]. Theoretically causality is defined by
the happens before [2] relation on the events in a distributed
execution. In practice, logical clocks [3] are used to times-
tamp events and messages, to track causality. If message m1
causally precedes m2 then m1 must be delivered before m2 at
all common destinations to enforce causal order [4]. Causal
ordering ensures that concurrent updates do not render data
invalid in distributed systems. Applications of causal ordering
include implementing distributed shared memory over mes-
sage passing, distributed databases, collaborative applications,
social networks, multiplayer online gaming, group editing of
documents, event notification systems, and distributed virtual
environments.

Causal ordering of messages under the Byzantine failure
model is studied in [5], which considered causal broadcasts,
and in [6]–[8] which considered unicasts, multicasts, and
broadcasts. The works in [9]–[12] relied on broadcasts for
causal consistency of replicated data under Byzantine behav-
ior. The notions of strong safety and weak safety for causal
ordering of messages were defined in [6]. Weak safety is
essentially the weakest possible form of safety that can exist
under the Byzantine failure model. It only considers messages
that are both sent by and delivered to correct processes. Strong

safety is the regular safety property that considers all messages
regardless of whether they are sent/delivered by Byzantine pro-
cesses. It was proved in [6] that an algorithm to causally order
broadcast messages in the presence of Byzantine processes
under the strong safety condition cannot exist. Therefore,
the notion of weak safety becomes critical in identifying the
merits of any Byzantine Causal Broadcast primitive. In [5], a
Byzantine Causal Broadcast primitive that ensures weak safety
(defined in section II) was developed as a layer above Bracha’s
Byzantine Reliable Broadcast (BRB) abstraction [13], [14].

BRB is a fundamental underlying abstraction in designing
distributed software systems. BRB essentially guarantees that
all processes deliver the exact same set of messages in the
presence of Byzantine adversaries. Bracha’s BRB primitive
has been widely used as a fundamental building block in
distributed protocols [15], [16]. Recent work has shown the
utility of Bracha’s BRB for implementing cryptocurrencies
[17]–[19]. Bracha’s BRB also serves as a reference point
for further theoretical work on reliable broadcast, such as
the recent work under the message adversarial model where
Byzantine channels were considered in addition to Byzantine
processes [20]. Despite its popularity, Bracha’s BRB has not
been analyzed for its intrinsic properties related to causal
ordering of the reliable broadcasts. Another BRB protocol
is by Imbs-Raynal [21], and yet another is that recently
introduced by Abraham et al. [22].

The contributions of this paper are as follows:

1) Given the widespread practical and theoretical adoption
of Bracha’s BRB protocol, it is important to study the
causal ordering properties intrinsically provided by it.
We analyze Bracha’s BRB protocol under the fault-free,
the crash failure, and the Byzantine fault models.

a) We prove that Bracha’s BRB protocol implic-
itly causally orders broadcast messages under the
strong and weak safety conditions in the presence
of correct processes.

b) We prove that Bracha’s BRB protocol causally
orders broadcast messages under strong safety and
weak safety in the crash failure model with any
number of crashed processes.

c) We prove that a single Byzantine process can pre-
vent Bracha’s BRB protocol from causally ordering
broadcast messages, thereby attacking weak safety.979-8-3503-9730-7/22/$31.00 ©2022 IEEE



2) We also prove that neither the Imbs-Raynal BRB pro-
tocol [21] nor any (2,*)-round latency BRB protocol,
defined as one that has a good-case (where the broad-
caster is a correct process) latency of 2 message hops
(for correct processes to deliver a message) [22], can
provide causal order even if all processes are correct, and
must incur additional latency to causally order messages
at a higher layer.

The inherent causal ordering properties of Bracha’s BRB
will be of use under favourable circumstances in practical
applications, given the widespread adoption of the protocol.
In particular, when during periods of execution the system
does not exhibit Byzantine behavior, no extra delays will be
incurred at a higher layer above Bracha’s BRB to provide
strong and weak safety of Byzantine-tolerant causal broadcast.
In contrast, even during periods of execution when the system
exhibits fault-free behavior, the Raynal-Imbs algorithm and
any (2,*)-round latency BRB algorithm will incur delays at
the layer above to provide strong or weak safety of Byzantine-
tolerant causal broadcast.

Roadmap. Section II gives the system model. Section III
gives the properties to be satisfied by Byzantine Reliable
Broadcast (BRB) and reviews Bracha’s famous algorithm for
BRB. Section IV gives our results on whether Bracha’s BRB
satisfies safety of causal order if there are no failures, only
crash failures, and in the presence of Byzantine adversaries.
Sections V and VI analyze the causal ordering properties of
the Imbs-Raynal BRB algorithm and (2,*)-round latency BRB
algorithms. Section VII gives the conclusions.

II. SYSTEM MODEL

The distributed system is modelled as an undirected graph
G = (P,C). Here P is the set of processes communicating
asynchronously over a geographically dispersed network. Let
n be |P |. C is the set of communication channels over which
processes communicate by message passing. The channels are
assumed to be FIFO. G is a complete graph. For a message
send event at time t1, the corresponding receive event occurs
at time t2 ∈ [t1,∞). A correct process behaves exactly as
specified by the algorithm whereas a Byzantine process may
exhibit arbitrary behaviour including crashing at any point
during the execution. A Byzantine process cannot impersonate
another process or spawn new processes.

Let exi , where x ≥ 0, denote the x-th event executed
by process pi. In order to deliver messages in causal or-
der, we require a framework that captures causality as a
partial order on a distributed execution. The happens before
[2] relation, denoted →, is an irreflexive, asymmetric, and
transitive partial order defined over events in a distributed
execution that captures causality. We do not allow the usage
of cryptographic primitives due to their substantial overhead
and due to assumptions about message latencies in existing
protocols based on them.

Definition 1. The happens before relation on events consists
of the following rules:

1) Program Order: For the sequence of events ⟨e1i , e2i , . . .⟩
executed by process pi, ∀ j, k such that j < k we have
eki → eji .

2) Message Order: If event exi is a message send event
executed at process pi and eyj is the corresponding
message receive event at process pj , then exi → eyj .

3) Transitive Order: Given events e and e′′ in execution
trace α, if ∃ e′ ∈ α such that e → e′ ∧ e′ → e′′ then
e → e′′.

Next, we define the happens before relation → on the set
of all application-level messages R.

Definition 2. The happens before relation on messages con-
sists of the following rules:

1) The set of messages delivered from any pi ∈ P by a
process is totally ordered by →.

2) If pi sent or delivered message m before sending mes-
sage m′, then m → m′.

3) If m → m′ ∧m′ → m′′ then m → m′′.

Definition 3. The causal past of message m is denoted as
CP (m) and defined as the set of messages in R that causally
precede message m under →.

We require an extension of the happens before relation
on messages to accommodate the possibility of Byzantine
behaviour. We present a partial order on messages called
Byzantine happens before, denoted as B−→, defined on S, the
set of all application-level messages that are both sent by and
delivered at correct processes in P .

Definition 4. The Byzantine happens before relation consists
of the following rules:

1) The set of messages delivered from any correct process
pi ∈ P by any correct process is totally ordered by B−→.

2) If pi is a correct process and pi sent or delivered
message m (to/from another correct process) before
sending message m′ to a correct process, then m

B−→ m′.
3) If m B−→ m′ ∧m′ B−→ m′′ then m

B−→ m′′.

The Byzantine causal past of a message is defined as
follows:

Definition 5. The Byzantine causal past of message m,
denoted as BCP (m), is defined as the set of messages in
S that causally precede message m under B−→.

The correctness of a Byzantine causal order broadcast is
specified on (R,→) and (S,

B−→). We now define the cor-
rectness criteria that a causal ordering algorithm must satisfy.
Ideally, strong safety and liveness should be satisfied because
as shown in [6], strong safety is desirable over weak safety
for application semantics.

Definition 6. Weak Safety [6]: ∀m′ ∈ BCP (m) such that
m′ and m are sent to the same correct process(es), no correct
process delivers m before m′.



Definition 7. Strong Safety [6]: ∀m′ ∈ CP (m) such that m′

and m are sent to the same correct process(es), no correct
process delivers m before m′.

Definition 8. Liveness: Each message sent by a correct
process to another correct process will be eventually delivered.

When m
B−→ m′, then all processes that sent messages along

the causal chain from m to m′ are correct processes. This
definition is different from m →M m′ [5], where M was
defined as the set of all application-level messages delivered
at correct processes, and MCP (m′) could be defined as the set
of messages in M that causally precede m′. When m →M m′,
then all processes, except the first, that sent messages along
the causal chain from m to m′ are correct processes. The
definition of B−→ (Definition 4) allows for the purest notion of
safety – weak safety. Our definition of B−→ and →M [5] both
make the assumption that from the second to the last process
that send messages along the causal chain from m to m′, are
correct processes.

III. BYZANTINE RELIABLE BROADCAST

Byzantine Reliable Broadcast (BRB) has traditionally been
defined based on Bracha’s Byzantine Reliable Broadcast
(BRB) [13], [14]. For this algorithm to work, the number of
Byzantine processes, t must less than one third of the overall
number of processes, n (t ≤ ⌊(n − 1)/3⌋). When a process
does a broadcast, it invokes br_broadcast() and when it
is to deliver such a message, it executes br_deliver(). In
the discussion below, it is implicitly assumed that a message is
uniquely identified by a (sender ID, sequence number) tuple.
BRB satisfies the following properties.

• Validity: If a correct process br_delivers a message
m from a correct process ps, then ps must have executed
br_broadcast(m).

• Integrity: For any message m, a correct process executes
br_deliver at most once.

• Self-delivery: If a correct process executes
br_broadcast(m), then it eventually executes
br_deliver(m).

• Reliability (or Termination): If a correct process executes
br_deliver(m), then every other correct process also
(eventually) executes br_deliver(m).

As causal broadcast is an application layer property, it runs
on top of the BRB layer. Byzantine Causal Broadcast (BCB)
is invoked as bc_broadcast(m) which in turn invokes
br_broadcast(m′) to the BRB layer. Here, m′ is m plus
some control information appended by the BCB layer. A
br_deliver(m′) from the BRB layer is given to the BCB
layer which delivers the message m to the application via
bc_deliver(m) after the processing in the BCB layer. The
control information is abstracted by the causal barrier [5],
[23] which tracks the immediate or direct dependencies and is
bounded by O(n). In addition to the BCB-layer counterparts
of the properties satisfied by BRB, BCB must satisfy safety
and liveness. Liveness and weak safety can be satisfied as

given by the protocol in [5]. The BRB protocol by Bracha
is given in Algorithm 1. Actually, Algorithm 1 gives a minor
variant of Bracha’s protocol that enhances the original with
local sequence numbers added to broadcasts. We prove in
Lemma 3 and Theorem 3 that this BRB broadcast does not
provide causal ordering guarantees under the Byzantine failure
model.

Algorithm 1: Bracha’s Byzantine Reliable Broadcast
Protocol, t ≤ ⌊(n− 1)/3⌋
Data: Each process pi maintains an integer seqi

initialized to 0. seqi is used to provide sequence
numbers to outgoing messages.

1 when the application is ready to BRB broadcast
message m:

2 broadcast INIT(pi,seqi,m)
3 seqi = seqi + 1

4 when INIT(pj ,seqj ,m) is received for the first time:
5 broadcast ECHO(pj ,seqj ,m)

6 when ECHO(pj ,seqj ,m) is received and
READY(pj ,seqj ,m) not yet broadcast:

7 if ECHO(pj ,seqj ,m) received from more than
(n+ t)/2 different processes then

8 broadcast READY(pj ,seqj ,m)

9 when READY(pj ,seqj ,m) is received:
10 if READY(pj ,seqj ,m) received from (t+ 1) different

processes ∧ READY(pj ,seqj ,m) not yet broadcast
then

11 broadcast READY(pj ,seqj ,m)

12 if READY(pj ,seqj ,m) received from (2t+ 1) different
processes then

13 br_deliver(m)

IV. CAUSAL ORDERING PROPERTIES OF BRACHA’S BRB
PROTOCOL

In this section we formally analyze the causal ordering
properties of Bracha’s BRB. Lemma 1 and Theorem 1 prove
that Bracha’s BRB causally orders broadcast messages under
strong/weak safety (in the absence of Byzantine processes
strong safety is the same as weak safety) in the fault-free
setting. Lemma 2 and Theorem 2 prove that Bracha’s BRB
provides a causal ordering guarantee in the crash failure
model as well. Lemma 3 and Theorem 3 prove that Bracha’s
BRB cannot guarantee causal order under the weak safety
condition across broadcast messages in the presence of a single
Byzantine process. (In [6], it was proved that no algorithm can
order broadcast messages under strong safety in the presence
of even one Byzantine process). However, since Bracha’s BRB
protocol intrinsically provides causal order in the absence of
Byzantine processes as we show, the Byzantine processes will
have to launch an attack on weak safety in order to prevent
this causal ordering.



A. Behaviour in a Fault-free Setting

Lemma 1. For correct processes pi, pj and pk executing
Algorithm 1: If pi executes br_broadcast(m1) which is
delivered at pj , then pj executes br_broadcast(m2), pk
will deliver m1 before m2 in a fault-free setting.

Proof. In order for pj to deliver m1, it must receive at least
(2t+1) READY(m1) messages. Let C1 be the set of processes
that have broadcast READY(m1). |C1| = (2t + 1 + x),
0 ≤ x ≤ t. Let the remaining set of processes be in set
C2. |C2| = (t − x). Now, pj BRB broadcasts m2. Since
all processes in C1 have broadcasted READY(m1) before pj
BRB broadcasted m2, due to the FIFO property, all outgo-
ing channels from processes in C1 will have READY(m1)
ahead of READY(m2). Due to FIFO channels, all chan-
nels from processes in C1 to pk will deliver READY(m1)
before READY(m2) at pk. Processes in C2 can broadcast
READY(m2) messages when they receive:

1) Either (2t+ 1) ECHO(m2) messages
2) Or (t+ 1) READY(m2) messages

We prove that all processes in C2 broadcast READY(m1)
before READY(m2), by induction on τ , where pτ is the
τ th process in C2 to broadcast READY(m2). The induction
hypothesis is that pτ broadcasts READY(m1) before broad-
casting READY(m2).

1) The first process pl ∈ C2 to broadcast READY(m2), will
need to receive either at least (t+1) ECHO(m2) or (t+
1) READY(m2) messages from processes in C1 (pl may
receive at most t ECHO(m2) messages from within C2).
However, since all processes in C1 have broadcasted
READY(m1) before pj BRB broadcasted m2, due to the
FIFO property of channels, pl will receive READY(m1)
before READY(m2) or ECHO(m2) from each process
in C1. This means that pl is guaranteed to receive (t+
1) READY(m1) messages before (t + 1) READY(m2)
messages and (2t+1) ECHO(m2) messages. Therefore
pl will broadcast READY(m1) before READY(m2).

2) Assume the induction hypothesis that pτ , the τ th

process in C2 to broadcast READY(m2), broadcasts
READY(m1) before broadcasting READY(m2).

3) pτ+1 is the (τ + 1)th process in C2 to broad-
cast READY(m2). It needs (2t + 1) ECHO(m2) or
(t + 1) READY(m2) messages in order to broadcast
READY(m2). All channels within the system directed
to pτ+1 have the one of the following in transit:

a) READY(m1) ahead of READY(m2) (from the
induction hypothesis, this is true for τ channels
from processes in C2 to pr). These channels may or
may not have ECHO(m2) ahead of READY(m1).
Therefore, from these channels, τ ECHO(m2) mes-
sages may arrive before any READY(m1) mes-
sages arrive and at most (τ−1) READY(m2) mes-
sages may arrive before τ READY(m1) messages.

b) ECHO(m1) and READY(m1) ahead of ECHO(m2)
and READY(m2) ((2t + 1 + x) channels from
processes in C1 to pr). Therefore, from these
channels, t ECHO(m2) messages may arrive before
any (t + 1) READY(m1) messages arrive and at
most t READY(m2) messages may arrive before
(t+ 1) READY(m1) messages.

c) ECHO(m2) in transit ((t − x − τ) channels from
processes in C2 to pr). These are the processes that
are yet to broadcast READY(m2). (At this point in
time, τ processes have broadcast READY(m2)).

Combining (a), (b) and (c), it becomes clear that pτ+1

can receive at most t READY(m2) and (τ + (t) +
(t − x − τ)) = (2t − x) ECHO(m2) messages before
receiving (t + 1) READY(m1) messages. Therefore,
pτ+1 broadcasts READY(m1) before READY(m2).

In order for pk to deliver m2 before m1, it must re-
ceive (2t + 1) READY(m2) messages before (2t + 1)
READY(m1) messages. Since, all processes in the system
broadcast READY(m1) before READY(m2), pk can receive
at most 2t READY(m2) messages before it receives (2t+ 1)
READY(m1) messages. Therefore, pk is guaranteed to deliver
m1 before m2. The lemma follows.

Theorem 1. Algorithm 1 ensures causal order (strong/weak
safety) across broadcast messages in the absence of Byzantine
processes.

Proof. From Lemma 1, if pi executes br_broadcast(m1)
which is delivered at pj , then pj executes
br_broadcast(m2), pk will deliver m1 before m2.
Similarly, by Lemma 1 if a process broadcasts m3 after
delivering m2, it will be delivered after m2 at all other
processes. Using transitivity, given any causal chain of
messages m0 → m1 → ... → mq , m0 is guaranteed to be
delivered before mq at all processes. Therefore, Algorithm
1 ensures causal order across broadcasts in the absence of
Byzantine processes. This proves the theorem.

B. Behaviour under Crash Failures

Lemma 2. For correct processes pi, pj and pk executing
Algorithm 1: If pi executes br_broadcast(m1) which is
delivered at pj , then pj executes br_broadcast(m2), pk
will deliver m1 before m2 in the crash failure fault model if
less than or equal to (n− 1) processes crash.

Proof. Let pi broadcast m1 which is delivered to pj which
then broadcasts m2. We show that no process delivers m2

before m1 in the face of any number of crash failures.
When pi’s message m1 is delivered to pj , it has received

at least (2t + 1) READY(m1) messages. Based on this, the
strongest assumptions that are guaranteed to hold are:

• at least (2t + 1) processes received either (2t + 1)
ECHO(m1) messages or at least (t + 1) READY(m1)
messages, and reached the step of broadcast
READY(m1).



• Of these at least (2t + 1) processes, if READY(m1) is
not sent on a outgoing channel, then neither READY(m2)
nor ECHO(m2) will be sent on that outgoing channel as
the process has crashed.

At the time of delivery to pj , let C1 be defined as the
set of processes that have reached the step of broadcasting
READY(m1). Let |C1| = 2t + 1 + x, where t ≥ x ≥ 0. Let
C2 be the set of the remaining (t − x) processes. We show
that all processes in C1 and in C2 are guaranteed to broadcast
READY(m1) before READY(m2). Based on the above men-
tioned assumptions, all processes in C1 (including processes
that may have crashed) start broadcasting READY(m1) prior
to pj broadcasting INIT(m2). Therefore, due to the FIFO
property of channels, all outgoing channels from processes
in C1 (to processes in C1 and in C2) will contain either
READY(m1) before READY(m2) or READY(m1) and not
READY(m2) (this may happen in the event of a crash failure),
or neither. So all processes will receive READY(m1) before
receiving READY(m2) from a process in C1.

All (t − x) processes in C2 may receive INIT(m2) before
INIT(m1) and broadcast ECHO(m2) before ECHO(m1). No
process in C2 can broadcast READY(m2) until it receives
(2t + 1) ECHO(m2) messages or (t + 1) READY(m2) mes-
sages. (2t + 1) − (t − x) = (t + 1 + x) ECHO(m2) are
required from processes in C1 by the first process in C2 in
order to broadcast READY(m2). On (t + 1 + x) (C1,C2)
channels, when (t + 1 + x) ECHO(m2) messages arrive,
READY(m1) messages have arrived earlier. This is because all
processes in C2 arrive at the step of broadcasting READY(m1)
before pj broadcasts INIT(m2). So the first process in C2 to
broadcast READY(m2) would first broadcast READY(m1).
We now show by induction that the αth process in C2 to
broadcast READY(m2) will broadcast READY(m1) before
READY(m2). Having shown the induction hypothesis is true
for the base case α = 1, we now show for α > 1. Assume the
hypothesis is true for α. First note that for any value of α, as
in the case for α = 1, it is impossible for any process in C2 to
obtain the required number of (t+1+x) ECHO(m2) messages
from processes in C1 to broadcast READY(m2) before getting
at least (t+ 1) READY(m1) messages from processes in C1.
The (α+ 1)th process (for α ≥ 1) to broadcast READY(m2)
can get α READY(m2) messages from processes in C2,
however, by the induction hypothesis, it would have received
α READY(m1) messages due to FIFO channels. It will also
require t+1−α READY(m2) messages from C1. However, on
these channels from C1, READY(m1) will be received before
before READY(m2) as shown earlier. Therefore, the (α+1)th

process will also broadcast READY(m1) before READY(m2).
As all processes broadcast READY(m1) before

READY(m2), FIFO channels guarantee that each process
receives (2t + 1) READY(m1) messages before (2t + 1)
READY(m2) messages. Therefore, pk will deliver m1 before
m2.

Theorem 2. Algorithm 1 ensures causal order (strong/weak
safety) across broadcast messages in the crash failure model

as long as less than (n− 1) processes crash.

Proof. From Lemma 2, if pi executes br_broadcast(m1)
which is delivered at pj , then pj executes
br_broadcast(m2), pk will deliver m1 before m2.
Similarly, by Lemma 2 if a process broadcasts m3 after
delivering m2, it will be delivered after m2 at all other
processes. Based on this, given any causal chain of messages
m0 → m1 → ... → mq , m0 is guaranteed to be delivered
before mq at all processes. Therefore, Algorithm 1 ensures
causal order across broadcasts in the presence of crash
failures. This proves the theorem.

Corollary 1. Bracha’s BRB protocol will guarantee the safety
condition under upto (n − 1) crash failures, however if the
number of crash failures exceed ⌊(n − 1)/3⌋, liveness may
not be guaranteed because some (or all) correct processes
may not receive the required number of READY messages to
deliver the application message that has been broadcasted.

C. Behaviour under Byzantine Failure Model

Lemma 3. For correct processes pi, pj and pk executing
Algorithm 1: If pi executes br_broadcast(m1) which is
delivered at pj , then pj executes br_broadcast(m2), pk
may deliver m2 before m1 if a single Byzantine process is
present.

Proof. This is a proof by counter-example. Let pl be the
single Byzantine process. There are 3t correct processes in the
system. Consider the following (ordered) sequence of events:

1) pi BRB broadcasts m1.
2) pj receives (2t + 1) READY(m1) messages. At least

2t correct processes must have broadcast READY(m1)
for this to be possible. Let these 2t correct processes
be in set C1 of correct processes that have broadcast
READY(m1) by the time pj receives 2t+1 READY(m1)
messages, where |C1| = (2t + x) (0 ≤ x ≤ t). Let
the remaining correct processes (those who have not
broadcast READY(m1)) be in set C2, |C2| = (t − x).
|C1| + |C2| = 3t. The Byzantine process pl has sent
ECHO(m1) and READY(m1) messages only to pro-
cesses in C1 (which includes pj).

3) pj delivers m1.
4) pj BRB broadcasts m2.
5) pl, the Byzantine process had previously sent

ECHO(m1) and READY(m1) only to processes in
C1; now it broadcasts ECHO(m2) and READY(m2).

6) All processes in C2 receive INIT(m2) (whereas
INIT(m1) is yet to arrive), broadcast ECHO(m2).

7) All processes in C1 broadcast ECHO(m2).
8) All processes in C1 receive (2t + 1) ECHO(m2) mes-

sages and broadcast READY(m2).
9) All channels from processes in C1 to processes in C2

now have in left to right order the following messages :
[ECHO(m1), READY(m1), ECHO(m2), READY(m2)].
These messages will be delivered in left to right order
due to FIFO channels.



10) Let t channels get flushed from all processes in C1 to
all processes in C2. All other messages in channels from
C1 to C2 are in transit. All processes in C2 have now
received (t+ 1) READY(m2) (t messages from correct
processes and 1 message from Byzantine process pl)
messages and t READY(m1) messages (all from correct
processes). All processes in C2 broadcast READY(m2).

11) All channels from processes in C2 to processes in C2

((t− x) channels per process) now have in left to right
order: [ECHO(m2), READY(m2)].

12) Let all the (t − x) channels from processes in C2 to
pk ∈ C2 now get flushed.

13) pk now has (2t + 1 − x) READY(m2) messages
((t − x) READY(m2) messages from processes in
C2, t READY(m2) messages from processes in C1

and 1 READY(m2) message from Byzantine pl) and
t READY(m1) messages (All from processes in C1).
When x = 0, pk has received exactly (2t + 1)
READY(m2) messages and will deliver m2.

14) Due to the Reliability property of BRB broadcast pk
eventually delivers m1.

The lemma follows.

Theorem 3. Algorithm 1 does not ensure causal order (under
strong or weak safety) across broadcast messages in the
presence of Byzantine processes.

Proof. From Lemma 3, if pi executes br_broadcast(m1)
which is delivered at pj , then pj executes
br_broadcast(m2), pk may deliver m2 before m1.
Clearly, m1

B−→ m2. Therefore, Algorithm 1 does not
guarantee causal order across broadcast messages in the
presence of Byzantine processes.

V. CAUSAL ORDERING PROPERTIES OF IMBS-RAYNAL
BRB PROTOCOL

Here, we analyze and show that the BRB protocol proposed
by Imbs and Raynal in [21] does not provide causal ordering
even in the fault-free setting. The Imbs-Raynal protocol differs
from Bracha’s protocol in the following aspects:

1) Imbs-Raynal operates in two phases whereas Bracha’s
protocol is a three phase protocol. Therefore, there is
reduced latency in message delivery.

2) Imbs-Raynal protocol has (n2−1) protocol messages per
broadcast as opposed to (2n2−n−1) protocol messages
per broadcast in Bracha’s protocol.

3) Imbs-Raynal protocol (t ≤ ⌊(n− 1)/5⌋) is less resilient
than Bracha’s protocol (t < ⌊(n− 1)/3⌋).

The Imbs-Raynal protocol is described in Algorithm 2,
and formal proof regarding its causal ordering properties are
provided in Lemma 4 and Theorem 4.

Lemma 4. For correct processes pi, pj and pk executing
Algorithm 2: If pi executes br_broadcast(m1) which is
delivered at pj , then pj executes br_broadcast(m2), pk
may not deliver m1 before m2 in a fault-free setting.

Algorithm 2: Imbs-Raynal Byzantine Reliable Broad-
cast Protocol, t ≤ ⌊(n− 1)/5⌋
Data: Each process pi maintains an integer seqi

initialized to 0. seqi is used to provide sequence
numbers to outgoing messages.

1 when the application is ready to BRB broadcast
message m:

2 broadcast INIT(pi,seqi,m)
3 seqi = seqi + 1

4 when INIT(pj ,seqj ,m) is received for the first time
and WITNESS(pj ,seqj ,−) not yet broadcast:

5 broadcast WITNESS(pj ,seqj ,m)

6 when WITNESS(pj ,seqj ,m) is received:
7 if WITNESS(pj ,seqj ,m) received from at least (n− 2t)

different processes and WITNESS(pj ,seqj ,m) not yet
broadcast then

8 broadcast WITNESS(pj ,seqj ,m)

9 if WITNESS(pj ,seqj ,m) received from (n− t) different
processes then

10 br_deliver(m)

Proof. This is a proof by counter-example. There are n =
5t+ 1 processes in the system. All processes are correct and
follow Algorithm 2. Consider the following (ordered) sequence
of events:

1) pi BRB broadcasts m1.
2) All processes except pl and pk receive INIT(m1) and

broadcast WITNESS(m1).
3) pj delivers m1.
4) pj BRB broadcasts m2.
5) pl receives INIT(m2) from pj and broadcasts

WITNESS(m2). At this point in time INIT(m1)
and all WITNESS(m1) messages are still in transit on
all incoming channels at pl (therefore pl has not yet
broadcasted WITNESS(m1)).

6) At this point in time no messages have arrived at pk.
7) All processes except pk deliver m1 and m2.
8) All channels except the channel from pl to pk now have

WITNESS(m1) followed by WITNESS(m2) in transit.
9) WITNESS(m2) gets delivered at pk from pl

10) (n − t − 1) incoming channels get flushed at pk. This
results in (n − t) WITNESS(m2) and (n − t − 1)
WITNESS(m1) messages getting delivered at pk.

11) pk delivers m2.
12) Due to the BRB reliability property, pk eventually de-

livers m1

Therefore pk may deliver m2 before m1.

Theorem 4. Algorithm 2 does not guarantee causal order
(strong/weak safety) across broadcast messages in the failure-
free setting.



Proof. From Lemma 4, if pi executes br_broadcast(m1)
which is delivered at pj , then pj executes
br_broadcast(m2), pk may deliver m2 before m1.
Clearly, m1 → m2. Therefore, Algorithm 2 does not
guarantee causal order across broadcast messages in the
failure-free setting.

Corollary 2. Algorithm 2 cannot guarantee causal ordering
in both the crash failure and Byzantine failure models.

VI. RESULTS FOR GOOD-CASE LATENCY=2 BRB
ALGORITHMS

Good-case (bad-case) latency Rg (Rb) of a BRB algorithm
is defined as the number of message hops or rounds it
takes for the correct processes to deliver a message when
the broadcaster is a correct (not necessarily correct) process
[22]. A (Rg, Rb)-round BRB alogrithm has good case latency
Rg and bad-case latency Rb. Bracha’s BRB is a (3,4)-round
algorithm where n ≥ 3t+1 whereas the Imbs-Raynal BRB is
a (2,3)-round algorithm where n ≥ 5t+1. Abraham et al. [22]
also proposed a (2,4)-round BRB algorithm where n ≥ 4t.

Here we make a case that any (2,*)-BRB algorithm does
not satisfy causal order even if the broadcasters are correct.
Observe that any conceivable (2,*)-round BRB algorithm
operates as follows in the good case. First, the broadcaster
sends an INIT message to all processes. Then on receiving
the first INIT message, a process sends a WITNESS message
to all processes. Finally on the good path, a process BRB-
delivers a message when it receives WITNESS messages from
n− t different processes, (to also accommodate the bad-case).
The counter-example we gave for the Imbs-Raynal algorithm
in Section V in Lemma 4 also applies to such a (2,*)-round
BRB alogrithm by considering the good-case path. This leads
to the following results.

Lemma 5. For correct processes pi, pj and pk ex-
ecuting any (2,*)-round BRB algorithm: If pi executes
br_broadcast(m1) which is delivered at pj , then pj exe-
cutes br_broadcast(m2), pk may not deliver m1 before
m2 in a fault-free setting.

Theorem 5. Any (2,*)-round BRB algorithm does not guar-
antee causal order (strong/weak safety) across broadcast mes-
sages in the failure-free setting.

Corollary 3. A (2,*)-round BRB algorithm cannot guarantee
causal ordering in both the crash failure and Byzantine failure
models.

Significance: Although a (2,*)-round BRB algorithm has
lower latency than Bracha’s (3,4)-round BRB algorithm in
the good-case, it cannot provide causal ordering even if all
processes are correct. Thus, a higher-layer protocol is needed
for Byzantine causal ordering and this will introduce addi-
tional variable latency. In contrast, Bracha’s (3,4)-round BRB
protocol which has higher good-case latency is guaranteed to
incur no additional delays to enfocrce causal order when the
processes are correct or even under the crash-failure model.

VII. CONCLUSION

This paper analyzed Bracha’s BRB protocol which is one
of the most popular protocols for reliable broadcast under the
Byzantine failure model for satisfiability of causal ordering.
We discovered that Bracha’s BRB protocol has an inherent
capability to causally order broadcasts when there are no
failures. Further, this paper proved that the BRB protocol can
also causally order broadcasts under the crash failure model
with any number of crash failures. However, we showed that
a single Byzantine process can mount an attack that prevents
Bracha’s BRB from providing causal order. We also proved
that neither the Imbs-Raynal BRB protocol nor any (2,*)-
round latency BRB protocol can provide causal order even
if all processes are correct, and must incur additional latency
to causally order messages at a higher layer.

The inherent causal ordering properties of Bracha’s BRB
will be of use under favourable circumstances in practical
applications, given the widespread adoption of the protocol.
In particular, when during periods of execution the system
does not exhibit Byzantine behavior, no extra delays will be
incurred at a higher layer above Bracha’s BRB to provide weak
safety of Byzantine-tolerant causal broadcast. In contrast, even
during periods of execution when the system exhibits fault-
free behavior, the Raynal-Imbs algorithm and any (2,*)-round
latency BRB algorithm will incur delays at the layer above to
provide weak safety of Byzantine-tolerant causal broadcast.
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