
Predicate Detection Using Event Streams in
Ubiquitous Environments

Ajay D. Kshemkalyani

Computer Science Department, Univ. of Illinois at Chicago, Chicago, IL 60607, USA
ajayk@cs.uic.edu

Abstract. Advances in clock synchronization techniques for sensor net-
works as well as wireless ad-hoc networks allow an approximated global
time for an increasing number of configurations in ubiquitous and perva-
sive computing environments. This paper presents an event stream based
on-line algorithm that fuses the data reported from the heterogenous
processors in the network to detect predicates of interest. The algorithm
detects properties that can be specified using predicates under a rich
palette of time modalities. The algorithm has low space, time, and mes-
sage complexities. The main idea used to design the algorithm is that
the predicate is decomposed as a collection of predicates between pairs of
system devices. The algorithm leverages the pairwise interaction between
processes so as to incur a low overhead and hence be highly scalable.

1 Introduction

Event-based data streams represent relevant state changes that occur at the pro-
cesses that are monitored. The paradigm of analyzing event streams to mine data
of interest to various applications uses data fusion. This paper gives an on-line
algorithm to detect predicates from event streams that are reported by the vari-
ous components of an ubiquitous computing environment. Such an environment
includes ad-hoc networks and sensor networks [1, 19].

In the system model, the devices of the ubiquitous network are modeled by
processes. The model assumes a loosely-coupled ad-hoc asynchronous message-
passing system in which any two processes belonging to the process set N =
{P1, P2, . . . , Pn} can communicate over logical channels. For a wireless commu-
nication system, a physical channel exists from Pi to Pj if and only if Pj is within
Pi’s range; a logical channel is a sequence of physical channels representing a
multi-hop path. The only requirement is that each process be able to send its
gathered data eventually and asynchronously (via any routes) in a FIFO stream
to a data fusion server P0.

Ei is the linearly ordered set of events executed by process Pi in an execution.
Variable x local to process Pi is denoted as xi. Given a network-wide predicate
on the variables, the intervals of interest at each process are the durations during
which the local predicate is true. Such an interval at process Pi is identified by
the (totally ordered) corresponding adjacent events within Ei, for which the
local predicate is true. Intervals are denoted by capitals X , Y , and Z. The types

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 807–816, 2005.
c© IFIP International Federation for Information Processing 2005

808 A.D. Kshemkalyani

L1

L2

L3

L4
S3

L3

S4

L1

S1

L4
(a) (b)

S2

L2 Legend:

time

interval in which
local predicate is true

Fig. 1. Intervals within an ubiquitous network. (a) A network. S1 – S4 are sensors at
locations L1 – L4. (b) Timing diagram for intervals at L1 – L4.

of predicates our algorithm handles are conjunctive predicates. A conjunctive
predicate is of the form

∧
i φi, where φi is any predicate defined on variables

local to process Pi. An example is: (xi > 4) ∧ (yj = 94), where xi and yj are
variables at Pi and Pj , respectively. Figure 1 shows four locations and intervals
in their timing diagrams, during which the local predicates are true.

The problem we address is informally described as follows. Event streams from
the processes report intervals in which the local predicates are true. Information
about the reported intervals is “fused” or correlated and examined to detect
global states of the execution that satisfy a given input predicate. This problem
was defined and addressed earlier [3, 4, 5, 12] to detect predicates in distributed
executions, using causality relationships defined in [11, 12].

Physical clocks in sensor networks, ad-hoc networks, and wireless networks
– when synchronized via GPS [15], NTP [16], or any of the many efficient syn-
chronization protocols for wired as well as wireless media, such as those surveyed
in [8, 9, 17, 18] – allow the assumption about an approximate single global time
axis. We assume such synchronized physical clocks. This assumption simplifies
the detection of a global state [7] in the ubiquitous environment, which is es-
sentially a form of a distributed asynchronous message-passing system. With
synchronized clocks, a distributed execution is the interleaving of all the local
executions Ei on a common time axis. A global state contains one local state of
each process. Using a common time axis, a global state can be specified (i) as
occurring at the same time instant at each process, or (ii) in terms of specific
relationships among the local states (one local state from each processes).

For a single time axis, it has been shown [10, 2] that there are 13 ways in
which two time intervals can be related to one another on that time axis. For
intervals X and Y , the thirteen relations are:

– precedes and preceded by (which is precedes−1)
– meets and met by (which is meets−1)
– overlaps and overlapped by (which is overlaps−1)
– contains and contained by (which is contains−1)
– starts and started by (which is starts−1)
– finishes and finished by (which is finishes−1)
– equals

The set of these 13 relations is denoted � and is illustrated in Figure 2. There
are six pairs of inverses, and equals is its own inverse.

Predicate Detection Using Event Streams in Ubiquitous Environments 809

Legend: X Y

X contains (c) Y X contained by (cb) Y

X finished by (fb) YX finishes (f) Y

X starts (s) Y X started by (sb) Y

X precedes (p) Y X preceded by (pb) Y

X meets (m) Y

X overlapped by (ob) YX overlaps (o) Y

X equals (q) Y

X met by (mb) Y

Fig. 2. The 13 relations � between intervals

Our problem is now formally defined. Event streams generated by the different
processors need to be fused at a central server to solve the following global
predicate detection problem [3, 4, 5, 6, 12].

Problem Predicate Rel statement. Given a relation ri,j from � for each pair
of processes Pi and Pj , identify the intervals (if they exist), one from each
process, such that each relation ri,j is satisfied for the (Pi, Pj) pair.

Example specification: We assume that intervals Xi, Yj , and Zk occur at
different locations i, j, and k, respectively, but global time is available in the
system at all sites. Two example specifications of predicates are:

(a) (Xi precedes Yj) AND (Xi overlaps Zk) AND (Zk finishes Yj)
(b) (Xi overlaps Yj) AND (Yj contains Zk) AND (Zk met by Xi)

The problem in each case is to identify the global state in a distributed execution
when the predicate is true. Example solutions are illustrated in Figure 3.

The performance of the proposed algorithm is summarized in Table 1. P0 is
the data fusion server that processes the event streams. The metrics are the time
complexity at P0, the network-wide count of the messages sent by the processes
to P0, the total space complexity at P0, the cumulative size of all the messages
sent to P0, and the space at each process Pi. n = number of processes, p =
maximum number of intervals occurring at any process.

2 Outline of the Algorithm

An interval at Pi begins when the local predicate φi becomes true and ends when
φi becomes false. We assume the physical clock has infinitely fine granularity so

810 A.D. Kshemkalyani

(Z finishes Y)
(X precedes Y) & (X overlaps Z) &

(b)

(X meets Z)
(X overlaps Y) & (Y contains Z) &

(a)

Z

Y

X

Z

Y

X

Fig. 3. Example problem specifications. The intervals Xi, Yj , and Zk are at different
processes in the distributed ubiquitous system.

Table 1. Space, message and time complexities of the proposed algorithm

Time complexity Total number Space at P0 Space at Pi,
at P0 of messages (=total message space) i ∈ [1, n]

O((n − 1)np) np 2np 2

each (event-triggered) state transition at a process occurs at a distinct tick (local
discreteness). There are two consequences of local discreteness and the model
for intervals. (1) An interval has a non-zero duration, implying points are not
allowed. (2) An interval can begin at Pi only after the previous interval at Pi

ends (see Fig. 1(b)) – termed the local interval separation property.
Processes P1, P2,, Pn representing the n devices in the ubiquitous network

track the start and end timestamps of their local intervals. The timestamps are
as per the synchronized physical clock based on a global time axis. t−i and t+i
denote the timestamps at process Pi at the start and at the end of an interval,
respectively. This information is sent using the network asynchronously to the
central data fusion server P0. The only requirement is that between any process
and P0, the logical link must be FIFO. Recall that in a ubiquitous network,
the numerous small devices operating collectively, rather than as stand-alone
devices, form a dynamic ambient network that connects each device to more
powerful networks and processing resources. Thus, the design using P0 as the
more powerful “server” fits this model.

The data fusion server maintains queues Q1, Q2, ,Qn for interval infor-
mation from each of the processes. The server runs the proposed algorithm to
process the interval information it receives in the queues. For any pair of inter-
vals, observe from Figure 2 that there is a overhead of O(1) time complexity
to test for each of the 13 relations using the start and end timestamps of the
intervals. The algorithm detects “concurrent” pairwise interactions for each pair
of intervals, considering only one interval from each process at a time as being a
part of a potential solution. A challenge to solve Predicate Rel is to formulate
the necessary and sufficient conditions to determine when to eliminate the re-
ceived information about intervals from the queues, so as to process the queues

Predicate Detection Using Event Streams in Ubiquitous Environments 811

type Log = record Start of an interval: End of interval:
start : integer; Logi.start = t−

i . Logi.end = t+i
end: integer; Send Logi to central process P0.

end

Fig. 4. Data structures and operations to construct Log at Pi (1 ≤ i ≤ n)

efficiently. These conditions are important because intervals that are determined
as not being part of a solution should not be used in testing with other intervals.

We assume that interval X occurs at Pi and interval Y occurs at Pj . For any
two intervals X and X ′ that occur at the same process, if precedes(X, X ′), then
we say that X is a predecessor of X ′ and X ′ is a successor of X . The algorithm
to solve problem Predicate Rel is given in two parts. The processing on each of
the n processes P1 to Pn is given next. The processing by P0 is given in Section 3.

Processing at Pi, (1 ≤ i ≤ n)

Each process Pi, where 1 ≤ i ≤ n, maintains the data structure Logi that
contains the information of the start and end of the (latest) interval to be sent
to P0. Logi is constructed and sent to P0 using the protocol shown in Figure 4.
P0 uses the Logs reported to determine the relationship between interval pairs.

Complexity Analysis at Pi (1 ≤ i ≤ n)

Space Complexity of Log. at each Pi, 1 ≤ i ≤ n. Each Log at a process stores
the start (t−) and the end (t+) of an interval. As only one Log entry exists at a
time, the space needed at a process Pi at any time is 2 integers.

Space Complexity of Control Messages. sent to P0 by processes P1 to Pn.

– As one message is sent per interval, the number of messages is p for each Pi

(i �= 0). This gives a total number of messages as np.
– The size of each message is 2 as each message contains a Log. The total

message space overhead for any process is the sum over all the Logs for that
process, which is 2p. Hence the total message space complexity is 2np.

3 Algorithm Predicate Rel

The algorithm detects a set of intervals, one on each process, such that each pair
of intervals satisfies the relationship specified for that pair of processes. If no such
set of intervals exists, the algorithm does not return any interval set. The central
process P0 maintains n queues, one for Logs from each process and determines
which relation holds between pairs of intervals. The queues are processed using
the formalism in [3, 4, 5]. If there exists an interval at the head of each queue and
these intervals cannot be pruned, then these intervals satisfy ri,j ∀ i, j, where
i �= j and 1 ≤ i, j ≤ n. Hence these intervals form a solution set.

We use the prohibition function H(ri,j) and the allows relation � [3, 4, 5, 6].
For each ri,j ∈ �, its prohibition function H(ri,j) is the set of all relations R such

812 A.D. Kshemkalyani

Table 2. Prohibition functions H(ri,j) for the 13 independent relations ri,j in �

Relation r H(ri,j(Xi, Yj)) H(rj,i(Yj , Xi))
p = pb−1 ∅ {p, m, mb, o, ob, s, sb, f, fb, c, cb, q}

m = mb−1 {p, m, o, s, f, fb, cb, q} {p, m, mb, o, ob, s, sb, f, fb, c, cb, q}
o = ob−1 {p, m, o, s, f, fb, cb, q} {p, m, mb, o, ob, s, sb, f, fb, c, cb, q}
s = sb−1 {p, m, mb, o, ob, s, sb, f, fb, c, cb, q} {p, m, mb, o, ob, s, sb, f, fb, c, cb, q}
f = fb−1 {p, m, o, s, f, fb, cb, q} {p, m, mb, o, ob, s, sb, f, fb, c, cb, q}
c = cb−1 {p, m, o, s, f, fb, cb, q} {p, m, mb, o, ob, s, sb, f, fb, c, cb, q}
q = q−1 {p, m, mb, o, ob, s, sb, f, fb, c, cb, q} {p, m, mb, o, ob, s, sb, f, fb, c, cb, q}

that if R(X, Y) is true, then ri,j(X, Y ′) can never be true for some successor
Y ′ of Y . H(ri,j) is the set of relations that prohibit ri,j from being true in the
future. Two relations R′ and R′′ in � are related by the allows relation � if the
occurrence of R′(X, Y) does not prohibit R′′(X, Y ′) for some successor Y ′ of Y .

Definition 1. Function H : � → 2� is defined to be H(ri,j) = {R ∈ � | if
R(X, Y) is true then ri,j(X, Y ′) is false for all Y ′ that succeed Y }.

Definition 2. � is a relation on �×� such that R′ � R′′ if the following holds.
If R′(X, Y) is true then R′′(X, Y ′) can be true for some Y ′ that succeeds Y .

Examples
(i) c � o because if c(X, Y) is true, then there is a possibility that o(X, Y ′) is
also true, where Y ′ succeeds Y .
(ii) m−1 � f because if m−1(X, Y) is true, then there is a possibility that
f(X, Y ′) is also true, where Y ′ succeeds Y .

Lemma 1. If R ∈ H(ri,j) then R �� ri,j else if R �∈ H(ri,j) then R � ri,j .

Proof. If R ∈ H(ri,j), using Definition 1, it can be inferred that ri,j is false
for all Y ′ that succeed Y . This does not satisfy Definition 2. Hence R �� ri,j . If
R �∈ H(ri,j), it follows that ri,j can be true for some Y ′ that succeeds Y . This
satisfies Definition 2 and hence R � ri,j . �	

Table 2 gives H(ri,j) for the 13 interaction types in �. It is constructed by
analyzing each interaction pair.

Example: The third row of Table 2 gives the relations o and ob.
– In column two, H(oi,j(Xi, Yj)) = {p, m, o, s, f, fb, cb, q}. Hence, p(Xi, Yj) or

m(Xi, Yj) or o(Xi, Yj) or s(Xi, Yj) or f(Xi, Yj) or fb(Xi, Yj) or cb(Xi, Yj)
or q(Xi, Yj) implies that o(Xi, Y

′
j) can never hold for any successor Y ′

j of Yj .
– In column three, H(obj,i(Yj , Xi)) = {p, m, mb, o, ob, s, sb, f, fb, c, cb, q}.

Hence, p(Yj , Xi) or m(Yj , Xi) or mb(Yj , Xi) or o(Yj , Xi) or ob(Yj , Xi) or
s(Yj , Xi) or sb(Yj , Xi) or f(Yj , Xi) or fb(Yj , Xi) or c(Yj , Xi) or cb(Yj , Xi) or
q(Yj , Xi) implies that ob(Yj , X

′
i) can never hold for any successor X ′

i of Xi.

The following theorem states that if R′ allows R′′, then Theorem 1 states that
R′−1 necessarily does not allow relation R′′−1.

Predicate Detection Using Event Streams in Ubiquitous Environments 813

Table 3. The “allows” relation � on � × �, in matrix form, to verify Theorem 1

� p pb m mb o ob s sb f fb c cb q

p 1
pb 1 1 1 1 1 1 1 1 1 1 1 1 1
m 1
mb 1 1 1 1 1
o 1
ob 1 1 1 1 1
s 1
sb 1 1 1 1 1
f 1
fb 1
c 1 1 1 1 1
cb 1
q 1

Theorem 1. For R′, R′′ ∈ � and R′ �= R′′, if R′ � R′′ then R′−1 �� R′′−1.

The theorem can be observed to be true from Lemma 1 and Table 2 by using
a case-by-case analysis. Table 3 shows the grid of the � relation for this analysis.
A “1” indicates that the row header allows the column header. Alternately, this
analysis is easier by using the following form of Theorem 1: “For R′ �= R′′, if
R′ �∈ H(R′′), then R′−1 ∈ H(R′′−1)”.

(Example 1.) c � o ⇒ c−1 �� o−1, which is true.
(Example 2:) m−1 � f ⇒ m �� f−1, which is true.

Note R′ �= R′′ in Theorem 1; otherwise R′ � R′ holds as for p, pb, and c,
leading to R′−1 �� R′−1, a contradiction.

Lemma 2. If the relationship R(X, Y) between intervals X at Pi and Y at Pj

is contained in the set H(ri,j) and R �= ri,j , then X can be removed from the
queue Qi.

Proof. By definition of H(ri,j), ri,j(X, Y ′) cannot exist, where Y ′ is any suc-
cessor of Y . As ri,j �= R, X cannot be a part of the solution. So X can be
deleted. �	

Lemma 3. If the relationship between a pair of intervals X at Pi and Y at Pj

is not equal to ri,j , then either X or Y is removed from the queue.

Proof. We use contradiction. Assume relation R(X, Y) (�= ri,j(X, Y)) is true for
intervals X and Y . From Lemma 2, the only time neither X nor Y will be deleted
is when R �∈ H(ri,j) and R−1 �∈ H(rj,i). From Lemma 1, it can be inferred that
R � ri,j and R−1 � rj,i. As r−1

i,j = rj,i, we get R � ri,j and R−1 � r−1
i,j .

This is a contradiction as by Theorem 1, R being unequal to ri,j , R � ri,j ⇒

814 A.D. Kshemkalyani

R−1 �� r−1
i,j . Hence R ∈ H(ri,j) or R−1 ∈ H(rj,i) or both; so one or both of X

and Y can be deleted. �	
Lemma 3 guarantees progress; when two intervals are checked, if the desired

relationship is not satisfied, at least one of them can be discarded. Further, it is
possible that both the intervals being tested are discarded.

Example: We want to detect X and Y , where ri,j(X, Y) = f . If R(X, Y) = o,
we have that o �� f ; hence o(X, Y) will not allow f(X, Y ′) to be true for any Y ′.
Hence X must be deleted. Further, ob �� fb and hence ob(Y, X) will not allow
fb(Y, X ′) to be true for any X ′. Hence, Y must also be deleted.

Theorem 2. Problem Predicate Rel is solved by the algorithm in Figure 5.

Proof. The algorithm implements Lemma 2 which allows queues to be pruned
correctly. An interval gets deleted only if it cannot be part of the solution.
Specifically, interval X gets deleted if R(X, Y) ∈ H(ri,j) and R �= ri,j (lines
13,14,17). Similarly, Y is deleted if R(Y, X) ∈ H(rj,i) and R �= ri,j (lines 15-17).
Further, each interval gets examined unless a solution is found using one of its
predecessors. Lemma 3 guarantees that if R(X, Y) �= ri,j , then either interval X
or interval Y is deleted. Hence, if every queue is non-empty and its head cannot
be pruned, then the set of intervals at the head of each queue forms a solution.

The set updatedQs stores the indices of all the queues whose heads get up-
dated. In each iteration of the while loop, the indices of all the queues whose
heads satisfy Lemma 2 are stored in set newUpdatedQs (lines (13)-(16)). In lines
(17) and (18), the heads of all these queues are deleted and indices of the updated
queues are stored in the set updatedQs. Observe that only interval pairs which
were not compared earlier are compared in subsequent iterations of the while
loop. The loop runs until no more queues can be updated. If all the queues are
now non-empty, then a solution is found (Lemma 3), where for the intervals X
= head(Qi) and Y = head(Qj), R(X, Y) = ri,j . �	

Theorem 3. The algorithm in Figure 5 has the following complexities.

1. The total message space complexity is 2np. (proved in Section 2)
2. The total space complexity at process P0 is 2np. (follows from (1))
3. The time complexity at P0 is O((n − 1)pn)).

Proof. The time complexity is the product of the number of steps needed to
determine a relationship (O(1), follows trivially from Figure 2) and the number
of relations determined. For each interval considered from one of the queues in
updatedQs (lines (6)-(12)), the number of relations determined is n − 1. Thus
the number of relations determined for each iteration of the while loop is (n −
1)|updatedQs|. But

∑
|updatedQs| over all iterations of the while loop is less

than the total number of intervals over all the queues. Thus, the total number
of relations determined is less than (n − 1) · x, where x = pn is the upper bound
on the total number of intervals over all the queues. As the time required to
determine a relationship is O(1), the time complexity is O((n − 1)np). �	

Predicate Detection Using Event Streams in Ubiquitous Environments 815

queue of Log: Q1, Q2, . . . Qn =⊥
set of int: updatedQs, newUpdatedQs = {}
On receiving interval from process Pz at P0

1: Enqueue the interval onto queue Qz

2: if (number of intervals on Qz is 1) then
3: updatedQs = {z}
4: while (updatedQs is not empty)
5: newUpdatedQs={}
6: for each i ∈ updatedQs
7: if (Qi is non-empty) then
8: X = head of Qi

9: for j = 1 to n
10: if (Qj is non-empty) then
11: Y = head of Qj

12: Test for R(X,Y) using interval timestamps (Fig. 2)
13: if (R(X, Y) ∈ H(ri,j)) and R �= ri,j then
14: newUpdatedQs = {i} ∪ newUpdatedQs
15: if (R(Y, X) ∈ H(rj,i)) and R �= rj,i then
16: newUpdatedQs = {j} ∪ newUpdatedQs
17: Delete heads of all Qk where k ∈ newUpdatedQs
18: updatedQs = newUpdatedQs
19 if (all queues are non-empty) then
20: Heads of queues identify intervals that form the solution.

Fig. 5. On-line algorithm at P0 to solve Predicate Rel, based on [4, 5]

4 Conclusions and Discussion

This paper formulated the problem of detecting a global predicate in a (dis-
tributed) ubiquitous system assuming the presence of global time. Such ubiqui-
tous systems are becoming common due to the spread of embedded devices that
are networked together, sensor networks, and ad-hoc networks. The assumption
of an approximate global time axis is also becoming reasonable in an increasing
number of scenarios due to the spread and availability of GPS, and inexpensive
clock synchronization algorithms. The paper presented an algorithm based on
[4, 5] to detect a global predicate specified across the various locations, assuming
that event streaming from those locations to a central location is available. This
model is reasonable because the dynamic ambient network in the ubiquitous
environment connects each device to more powerful processing resources. The
proposed algorithm is highly scalable as it has low overhead.

We mention some limitations of the approach. Global time is at best an ap-
proximation. A common time axis will not be applicable when predicates based
on causality (i.e., happens before) relation [14] are specified. In such cases, the
algorithms presented in [3, 4] using the theory in [11, 12] can be used. Also, the
availability of global time in some scenarios with limited resources and/or con-
strained network topologies may not be practical.

The presented formalism assumed local discreteness which implied local interval
separation and no points. Variations can be handled by adapting this formalism

816 A.D. Kshemkalyani

(see [13]). For example, if local interval separation is relaxed, an interval can begin
at the same instant the previous interval at the same process ends. X ′

i would be a
successor of Xi if m(Xi, X

′
i) or p(Xi, X

′
i). In Table 2, H(m) would exclude f, fb, q,

and H(s), H(sb), H(q) would each exclude mb. In Table 3 for �, there would be
“1” for (f, m), (fb, m), (q, m), (mb, s), (mb, sb), (mb, q). Theorem 1 can be seen
to still hold. Other variations, such as allowing points (one point per clock tick),
and about clock properties and time density, can be similarly handled.

References

1. I. Akyildiz, W. Su, Y. Sankarasubramanian, E. Cayirci, Wireless sensor networks:
A survey, Computer Networks, 38(4): 393-422, 2002.

2. J. Allen, Maintaining knowledge about temporal intervals, Communications of the
ACM, 26(11): 832-843, 1983.

3. P. Chandra, A. D. Kshemkalyani, Detection of orthogonal interval relations, Proc.
9th High-Performance Computing Conference (HiPC), LNCS 2552, Springer, 323-
333, 2002.

4. P. Chandra, A. D. Kshemkalyani, Global predicate detection under fine-grained
modalities, Proc. ASIAN Computing Conference 2003 (ASIAN), LNCS 2896,
Springer, 91-109, Dec. 2003.

5. P. Chandra, A. D. Kshemkalyani, Causality-based predicate detection across space
and time, IEEE Transactions on Computers, 54(11): 1438-1453, 2005.

6. P. Chandra, A. D. Kshemkalyani, Global state detection based on peer-to-peer
interactions, Proc. IFIP Conf. on Embedded and Ubiquitous Computing (EUC),
LNCS, Springer, Dec. 2005.

7. K. M. Chandy, L. Lamport, Distributed snapshots: Determining global states of
distributed systems, ACM Trans. Computer Systems, 3(1): 63-75, 1985.

8. J. Elson, K. Romer, Wireless sensor networks: A new regime for time synchroniza-
tion, First Workshop on Hot Topics In Networks (HotNets-I), October 2002.

9. S. Ganeriwal, R. Kumar, M. Srivastava, Timing-sync protocol for sensor networks,
Proc. ACM Conf. Embedded Networked Sensor Systems, 138-149, Nov. 2003.

10. C. L. Hamblin, Instants and intervals, in “The Study of Time,” pp. 324-332,
Springer-Verlag New York/Berlin, 1972.

11. A. D. Kshemkalyani, Temporal interactions of intervals in distributed systems,
Journal of Computer and System Sciences, 52(2): 287-298, April 1996.

12. A. D. Kshemkalyani, A fine-grained modality classification for global predicates,
IEEE Trans. Parallel and Distributed Systems, 14(8): 807-816, August 2003.

13. A. D. Kshemkalyani, Predicate detection using event streams in ubiquitous envi-
ronments, UIC Technical Report UIC-CS-02-05, 2005.

14. L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, 21(7): 558-565, July 1978.

15. T. Logsdon, The Navstar Global Positioning System, Van Nostrand/Reinhold, New
York, 1992.

16. D. Mills, Internet time synchronization: the Network Time Protocol, IEEE Trans.
on Communications, 39(10): 1482-1493, October 1991.

17. K. Romer, Time synchronization in ad-hoc networks, Proc. ACM MobiHoc, 2001.
18. B. Sundararaman, U. Buy, A. D. Kshemkalyani, Clock synchronization for wireless

sensor networks: A survey, Ad-Hoc Networks, 3(3): 281-323, May 2005.
19. S. Tilak, N. Abu-Ghazaleh, W. Heinzelman, A taxonomy of wireless micro-sensor

models, ACM Mobile Computing & Communications Review, 6(2), April 2002.

	Introduction
	Outline of the Algorithm
	Algorithm Predicate_Rel
	Conclusions and Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

