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Abstract. Flooding is a fundamental concept in distributed computing.
In flooding, typically, a node forwards a message to its neighbors for the
first time when it receives a message. Later if the node receives the same
message again, it simply ignores the message and does not forward it.
The nodes store a “message record” to ensure that the same message is
not forwarded again.

Hussak and Trehan [STACS’20] introduced amnesiac flooding where
nodes do not require to keep the message record. They established a
surprising result that the amnesic flooding of a single (k = 1) message
starting from some source node always terminates in bipartite graphs
in e rounds and in non-bipartite graphs in e < j ≤ e + D + 1 rounds,
where e is the eccentricity of the source node and D is the diameter of
the graph. Recently, Hussak and Trehan [arXiv’20] introduced dynamic
amnesiac flooding initiated in possibly multiple rounds with possibly
multiple (k > 1) messages from possibly multiple source nodes. They
showed that the partial-send case where a node only sends a message to
neighbours from which it did not receive any message in the previous
round and the ranked full-send case where a node sends some highest
ranked message to all neighbors from which it did not receive that mes-
sage in the previous round, both terminate. However, they showed that
the unranked full-send case, where a node sends some random message
(not necessarily the highest ranked message) to all the neighbors from
which it did not receive that message in the previous round, does not
terminate.

In this paper, we show that the unranked full-send case also termi-
nates, provided that diameter D is known to graph nodes. We further
show that the termination time is D · (2k− 1) rounds in bipartite graphs
and (2D + 1) · (2k − 1) rounds in non-bipartite graphs.

1 Introduction

Flooding is one of the fundamental and most useful primitives in distributed
computing. In flooding, the task is to disseminate message(s) from source nodes
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to all the nodes of the network. Suppose a distinguished source node has a
message θ initially. The goal is to disseminate θ to all the nodes of the network. In
a synchronous, round-based distributed network, flooding is typically performed
as follows: In the first round, the distinguished source node sends θ to all its
neighbors. From the next round onwards, when a node receives θ for the first
time, it sends a copy of θ to its neighbors (except the neighbors from which it
receives θ). If it receives θ again, it doesn’t do anything. This essentially requires
each node in the network to maintain a “message record” of θ to indicate whether
that node has seen θ in some previous round. If a node receives θ and it has
a record that it has seen θ before, then it does not forward θ. This ensures
that the node never floods θ twice. It is well-known that this classic flooding
process always terminates and the number of rounds until termination is D + 1,
the diameter of the network. The message record is of size at least 1 bit for a
message.

Moving from single message flooding to multiple message flooding, the flood-
ing approach for a single message has to be applied to each of the messages
separately. Therefore, each node has to have the message record of at least 1
bit per message, i.e., Ω(k) bits for k > 1 messages, which may be a problem for
resource-constrained devices [23,24].

Hussak and Trehan [11] asked an interesting question for the single message
flooding starting from a distinguished source node: What will happen if nodes do
not keep the record of the message θ? Will the flooding process still terminate?
Not keeping a record means that message travels on its own without depending
on a message record. Not having a message record simplifies client-server appli-
cation design as well as makes it scalable due to the fact that servers do not
need to keep track of session information [25]. It will also provide fault tolerance
even when network nodes crash.

Intuitively, if the nodes do not keep any record, they may forward the message
again and again when received in subsequent rounds. Thus, the absence of a
message record raises the possibility that θ may be circulated infinitely. Hussak
and Trehan [11] formally studied flooding without the message record, calling
it amnesiac flooding, and showed that the single message (k = 1) flooding that
starts from a distinguished source node terminates in bipartite graphs in e rounds
and in non-bipartite graphs in e < j ≤ e + D + 1 rounds, where e is eccentricity
of the source node. Using two rounds to initiate flooding with the second round
dependant on the first, termination time was improved to e + 1 rounds in any
(non-bipartite) network by Turau [24], reducing the e+D+1 rounds of [11] by D
rounds. However, the dependency on the first two rounds makes the result from
Turau [24] not truly amnesiac compared to Hussak and Trehan [11]. Interestingly,
the result of Turau [24] matches the termination time of classic flooding, since
e ≤ D, and the termination time of classic flooding is D+1 rounds. In the recent
followup work, Hussak and Trehan [12] showed that the same termination time
of e rounds in bipartite graphs and e ≤ j ≤ e + D + 1 rounds in non-bipartite
graphs can be achieved for a single message θ starting from multiple source nodes
concurrently. Essentially, Hussak and Trehan [12] showed that the proofs of [11]
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for the single source case carry over with simple modifications mainly to the
definitions for the multiple source case. Turau [25] gave an alternative detailed
proof.

Recently in [12], Hussak and Trehan considered dynamic amnesiac flooding
of multiple k > 1 messages, where the messages may be initiated in possibly
different rounds (i.e., not necessarily in the same first round) by different source
nodes in the graph. Dynamic flooding arises in different real-world applications.
One prominent example is disaster monitoring [25] where a distributed system
of sensors is deployed to monitor a disaster event. As soon as sensors detect
an event which may happen at different times for different sensors, they start
flooding this information in the network. Furthermore, one source node may
initiate multiple (different) messages (the source nodes may not be all different,
i.e., 1 ≤ k′ < k source nodes for k messages). They considered the following
three cases (problems) of dynamic amnesiac flooding in the synchronous message
passing setting where each node receives messages from neighbors, performs
internal computation, and sends messages to neighbors in synchronized rounds:

– partial-send: a node only sends a message to its neighbors from which it did
not receive any message in the previous round.

– ranked full-send: a node sends some highest ranked message to all neighbors
from which it did not receive that message in the previous round.

– unranked full-send: a node sends some random message (not necessarily the
higest ranked message) to all neighbors from which it did not receive that
message in the previous round.

Hussak and Trehan [12] showed that both the partial-send and ranked full-
send problems terminate, but the unranked full-send problem does not terminate.

In this paper, we establish that the unranked full-send problem also termi-
nates, provided that diameter D is known to network nodes. We further prove
the termination time for the unranked full-send problem in both bipartite and
non-bipartite graphs.

Overview of the Model and Results. Let the communication network be
modeled as an undirected and unweighted but connected graph G = (V,E),
where V is the network nodes and E ⊆ V × V is the edges of G. Every node is
assumed to have a unique identifier (e.g., its IP address). The nodes are allowed
to communicate through the edges of the graph G. We consider a synchronous
message passing1 network, where computation proceeds in synchronous rounds
with a node performing the following three tasks in each round: (i) receive mes-
sages from its neighbors, (ii) perform local computation, and (iii) send messages
to its neighbors. No message is lost in transit. The messages are assumed to have
unique IDs (which may not necessarily be consecutive and the smallest message
ID may not be 1). A message θ is called globally i-th ranked if and only if the
ID of θ is i-th largest among the IDs of all the messages in the set. The (global)

1 In the asynchronous message passing framework, it was shown by Hussak and Trehan
[11] that amnesiac flooding does not terminate.
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rank of the messages is not known to graph nodes (i.e., the unranked problem),
otherwise it becomes the ranked problem which terminates.

We prove the following theorem for the unranked full-send problem.

Theorem 1. (unranked full-send). Given a set {θ1, . . . , θk} of k > 1 mes-
sages positioned on 1 ≤ k′ ≤ k nodes of a network G initiated at possibly dif-
ferent rounds, the unranked full-send problem terminates in bipartite graphs in
D · (2k − 1) rounds and in non-bipartite graphs in (2D + 1) · (2k − 1) rounds2

with each node storing O(log(max{k,D})) bits, provided that the diameter D is
known to the graph nodes.

Theorem 1 is interesting and important since it was shown in Hussak and
Trehan [12] that the unranked full-send problem does not terminate.

Comparison to Amnesiac and Classic Flooding. We first compare our
result to amnesiac flooding and then to classic (non-amnesiac) flooding. Nodes do
not need to store any information in the amnesiac flooding definition of Hussak
and Trehan [11]. However, the assumption of graph nodes knowing D in our
algorithm is a stronger condition than the amnesiac flooding definition of [11].
This is because knowing D requires each graph node to keep �log D� bits record
in memory. Therefore, the storage requirement for any algorithm knowing D is at
least Ω(log D) bits. The total storage O(log(max{k,D})) bits at each node in our
algorithm is due to the fact that it also uses a wait variable which needs O(log k)
bits. Therefore, our algorithm provides a trade-off between two parameters k and
D regarding memory; O(log D) bits when k = O(D) and O(log k) bits otherwise.
Nodes need to store record of each message in classic (non-amnesiac) flooding,
i.e., at least Ω(k) bits memory to flood k different messages. Therefore, the
memory requirement in our algorithm is a significant reduction on the memory
requirement at graph nodes compared to classic flooding when k > Ω(log D).

The above comparison to amnesiac and classic flooding shows that our algo-
rithm provides a ‘weak’ variant of amnesiac flooding, that is, it reduces storage
requirement of classic flooding but does not completely remove it as in amnesiac
flooding [11,24]. An interesting direction for future research is whether a weaker
assumption than D is enough to make the unranked full-send problem terminate.
Finally, we prove the termination time of our algorithm using the single message
termination time of [11]. One interesting property of our algorithm is that if
a better termination time is available for the single message flooding, then the
termination time improves proportionally.

Techniques. Suppose all messages are initiated in the beginning of round 1.
Knowing D, the proposed algorithm asks messages to start their flooding process
in the interval of (2D + 1) rounds, i.e., at rounds 1, (2D + 1) + 1, 2 · (2D + 1) +
1, . . . , (k−1)·(2D+1)+1. Suppose the source nodes of k > 1 messages θ1, . . . , θk

2 If eccentricity e1, e2, . . . , ek′ of the k′ source nodes is known instead of D, then the
bounds translate to emax · (2k − 1) in bipartite graphs and (2emax + 1) · (2k − 1)
in non-bipartite graphs with memory O(log(max{k, emax})) bits, where emax :=
max1≤l≤k′ el.
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know the rank (ID) of all the messages, say, 1, . . . , k, with message θi having
rank i. Let us call this rank order as global rank. Knowing the global rank, θi

can immediately decide how long to wait before starting the flooding process.
Since it is known that a single message θi finishes flooding in (2D + 1) rounds
[11] (e ≤ D), all k messages finish flooding by k · (2D + 1) rounds. That is, the
ranked full-send problem terminates in k · (2D + 1) rounds.

The challenge to overcome is when the source nodes do not know the global
rank of the messages (the unranked problem). We devise an algorithm that takes
into account local ranks of the messages (i.e., the positions in the ranks of the
messages at a node) in deciding the wait time for the messages. Except the
globally lowest ranked message, the wait time assigned at round 1 may not be
equal to its wait time knowing its global rank. The algorithm asks locally lowest
ranked messages to start amnesiac flooding at round (κ − 1) · (2D + 1) + 1,
κ ≥ 1 following the single message algorithm of Hussak and Trehan [11]. If the
message that starts flooding at round (κ − 1) · (2D + 1) + 1, κ ≥ 1, is globally κ
ranked, we show that it terminates by round κ · (2D + 1); otherwise during the
round between (κ − 1) · (2D + 1) + 2 and κ · (2D + 1) + 1 (inclusive), it finds
that its global rank is higher than κ and starts waiting increasing its wait time
proportional to its local rank at that time. We will also show that the wait time
update stops at round (κ′ −1) · (2D)+1 for the globally κ′ ranked message. This
altogether guarantees that the algorithm terminates in k · (2D + 1) rounds for
k > 1 messages.

Finally, we show that this approach extends to the case of messages initiated
at different rounds with termination time at most (2k−1)·(2D+1). For bipartite
graphs, the only change is replacing (2D+1) with D so that the bound becomes
(2k − 1) · D.

Related Work. Hussak and Trehan [11] were the first to consider amnesiac
flooding. They showed that amnesiac flooding of a single message θ starting from
a distinguished source node in the beginning of round 1 terminates in e rounds
in bipartite graphs and in e + D + 1 rounds in non-bipartite graphs, e ≤ D.
They showed in [12] that this result also holds even when a single message θ
starts flooding in the beginning of round 1 from multiple source nodes. In the
asynchronous setting, they showed that amnesiac flooding does not terminate
even for a single message starting from a source node. Recently, Hussak and
Trehan [12] introduced dynamic amnesiac flooding initiated in multiple rounds
by possibly multiple source nodes with possibly multiple messages. They showed
that the partial-send and ranked full-send problems terminate but the unranked
full-send problem does not terminate. In this paper, we show that the unranked
full-send problem also terminates, provided that D is known.

Turau [24] improved the result of Hussak and Trehan [11] such that the
amnesiac flooding terminates in e+1 rounds, even in non-bipartite graphs. This
result is interesting since this termination time matches the classic flooding ter-
mination time of D + 1, since e ≤ D. This result also applies to the single
message starting flooding from multiple source nodes in the beginning of round
1. However, the assumption behind this result – the second round depending on
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the first – makes this result not truly amnesiac. Turau [24] also proved that the
problem of selecting κ source nodes with minimal termination time is NP-hard.
Particularly, Turau showed that unless NP = P there is no approximation algo-
rithm for amnesiac flooding with approximation ratio 3/2− ε. For asynchronous
systems, Turau proved that deterministic amnesiac flooding is only possible if a
large enough part of the message can be updated by each node. Very recently,
Turau [25] provided an alternative detailed proof for the single message flooding
starting from multiple source nodes in the beginning of round 1. Specifically,
Turau showed that, for every non-bipartite graph G and every set V ′ of source
nodes that start flooding simultaneously, there exists a bipartite graph G(V ′)
such that the execution of amnesiac flooding on both graphs G and G(V ′) is
strongly correlated and termination times coincide. This led to bounds that are
independent of the diameter as well as it allowed to determine source nodes
for which amnesiac flooding terminates in minimal time. Turau also gave tight
lower and upper bounds for the time complexity in special cases of |V ′| = 1 and
|V ′| > 1. In fact, the case of |V ′| > 1 was reduced to the case of |V ′| = 1.

Flooding is a fundamental concept used in solving a diverse set of funda-
mental problems in distributed computing, e.g., leader election [14,15], span-
ning tree construction [2,13,16,17,21], shortest paths computation [9,10,20],
aggregation [5], routing [18], etc. Flooding of multiple messages is a must in
many distributed applications, e.g., k-information dissemination or gossiping
[1,3–5,7,16,17,19,22].

Amnesiac flooding uses the most recent edges from which the message is
received to a node to decide which neighboring edges of that node are used to
flood the message from that node. This concept finds applications and uses in
social networks [6], broadcasting [8], and client-server application design [25].
More details in [11,12,23–25].
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