
Solvability of Byzantine Fault-Tolerant
Causal Ordering Problems

Anshuman Misra and Ajay D. Kshemkalyani(B)

University of Illinois at Chicago, Chicago, IL 60607, USA
{amisra7,ajay}@uic.edu

Abstract. Causal ordering in an asynchronous setting is a fundamental
paradigm for collaborative software systems. Previous work in the area
concentrates on ordering messages in a faultless setting and on ordering
broadcasts under various fault models. To the best of our knowledge,
Byzantine fault-tolerant causal ordering has not been studied for unicasts
and multicasts in an asynchronous setting. In this paper we first show
that protocols presented in previous work fail for unicasts and multicasts
under Byzantine faults in an asynchronous setting. Then we analyze,
propose, and prove results on the solvability of the related problems of
causal unicasts, multicasts, and broadcasts in an asynchronous system
with one or more Byzantine failures.

Keywords: Byzantine fault-tolerance · Causal order · Broadcast ·
Causality · Asynchronous · Message-passing

1 Introduction

Causality is an important tool in reasoning about distributed systems [15]. The-
oretically causality is defined by the happens before [16] relation on the set of
events. In practice, logical clocks [17] are used to timestamp events (messages as
well) in order to capture causality. If message m1 causally precedes m2 and both
are sent to pi, then m1 must be delivered before m2 at pi to enforce causal order
[2]. Causal ordering ensures that causally related updates to data occur in a valid
manner respecting that causal relation. Applications of causal ordering include
distributed data stores, fair resource allocation, and collaborative applications
such as social networks, multiplayer online gaming, group editing of documents,
event notification systems, and distributed virtual environments.

The only work on causal ordering under the Byzantine failure model is the
recent result by Auvolat et al. [1] which considered Byzantine-tolerant causal
broadcasts, and the work in [11,12,25] which relied on broadcasts. To our knowl-
edge, there has been no work on Byzantine-tolerant causal ordering of unicasts
and multicasts. It is important to solve this problem under the Byzantine failure
model as opposed to a failure-free setting because it mirrors the real world.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M.-A. Koulali and M. Mezini (Eds.): NETYS 2022, LNCS 13464, pp. 87–103, 2022.
https://doi.org/10.1007/978-3-031-17436-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17436-0_7&domain=pdf
http://orcid.org/0000-0003-2451-7306
https://doi.org/10.1007/978-3-031-17436-0_7

88 A. Misra and A. D. Kshemkalyani

Table 1. Solvability of Byzantine causal unicast, broadcast, and multicast in a fully
asynchronous setting. Results for multicasts are the same as for unicasts, see Sect. 7.
FIP = Full-Information Protocol.

Problem Model Liveness

+ Weak safety

Weak safety

− Liveness

Strong safety

+ Liveness

Strong safety

− Liveness

Unicast No signatures (1) no (2) yes (3) no (4) no

Sect. 5 Theorem 1 Theorem 2 Theorem 3 Theorem 4

w/ signatures (5) noa (6) yes (7) no (8) no

Theorem 5 implied by Theorem 2 Theorem 6 Theorem 7

FIP (9) yes (10) yes (11) no (12) no

Sect. 8 implied by Theorem 2 Sect. 8 Sect. 8

Broadcast No signatures (13) yes (14) yes (15) no (16) no

Sect. 6 algorithm in [1] algorithm in [1] Theorem 8 Theorem 9

w/signatures (17) yes (18) yes (19) no (20) no

implied by (13) implied by (14) Theorem 10 Theorem 11

FIP (21) yes (22) yes (23) no (24) no

implied by (13) implied by (14) Sect. 8 Sect. 8
a This is “yes” if the Byzantine processes are rational, see Sect. 8.

The main contributions of this paper are as follows:

1. The RST algorithm [23] provides an abstraction of causal ordering of point-
to-point and multicast messages, and all other (more efficient) algorithms can
be cast in terms of this algorithm. We describe an attack on liveness, that we
call the artificial boosting attack, that can force all communication to stop
when running the RST algorithm.

2. We prove that causal ordering of unicasts and multicasts in an asynchronous
system with even one Byzantine node is impossible because liveness cannot
be guaranteed. We define weak safety and strong safety and prove that if
liveness is to be guaranteed, then weak safety cannot be guaranteed. Further,
we prove that strong safety cannot be guaranteed. We also prove these results
assuming digital signatures are allowed.

3. We prove that for causal ordering of broadcasts under Byzantine faults, if
liveness is to be guaranteed, then weak safety can be guaranteed. Further, we
prove that strong safety cannot be guaranteed. We also prove these results
assuming digital signatures are allowed.

4. We show that for unicasts, multicasts, and broadcasts, a Full-Information Pro-
tocol (FIP) [2,9] can provide liveness + weak safety, but no strong safety. We
also show that for rational processes, which act Byzantine only if they cannot
be detected/suspected, the unsolvability results remain except for liveness +
weak safety for unicasts and multicasts, with digital signatures.

Table 1 summarizes the main results about the solvability of the related prob-
lems of unicast, broadcast, and multicast in an asynchronous system with Byzan-
tine faults.

Solvability of Byzantine Fault-Tolerant Causal Ordering Problems 89

2 Previous Work

Algorithms for causal ordering of point-to-point messages under a fault-free model
have been described in [23,24]. These point-to-point causal ordering algorithms
extend to implement causal multicasts in a failure-free setting [6,7,13,14,22]. The
RST algorithm [23] is a canonical algorithm for causal ordering.

There has been some work on causal broadcasts under various failure mod-
els. Causal ordering of broadcast messages under crash failures in asynchronous
systems was introduced in [2]. This algorithm required each message to carry
the entire set of messages in its causal past as control information. The algo-
rithm in [21] implements crash fault-tolerant causal broadcast in asynchronous
systems with a focus on optimizing the amount of control information piggy-
backed on each message. An algorithm for causally ordering broadcast messages
in an asynchronous system with Byzantine failures is proposed in [1]. There has
been recent interest in applying the Byzantine fault model to implement causal
consistency in distributed shared memory and replicated databases [11,12,25].
These rely on broadcasts, e.g., on Byzantine reliable broadcast [3] in [12] and
on PBFT (total order broadcast) [5] in [11]. To the best of our knowledge, no
paper has examined the feasibility of or solved causal ordering of unicasts and
multicasts in an asynchronous system with Byzantine failures.

3 System Model

The distributed system is modelled as an undirected graph G = (P,C). Here
P is the set of processes communicating asynchronously over a geographically
dispersed network. Let |P | = n. C is the set of communication channels over
which processes communicate by message passing. The channels are assumed
to be FIFO. G is a complete graph. For a message send event at time t1, the
corresponding receive event occurs at time t2 ∈ [t1,∞). A correct process behaves
exactly as specified by the algorithm whereas a Byzantine process may exhibit
arbitrary behaviour including crashing at any point during the execution. A
Byzantine process cannot impersonate another process or spawn new processes.
Besides authenticated channels and use of signatures, we do not consider the use
of other cryptographic primitives.

Let exi , where x ≥ 0, denote the x-th event executed by process pi. In order to
deliver messages in causal order, we require a framework that captures causality
as a partial order on a distributed execution. The happens before [16] relation,
denoted →, is an irreflexive, asymmetric, and transitive partial order defined
over events in a distributed execution that captures causality.

90 A. Misra and A. D. Kshemkalyani

Definition 1. The happens before relation on events consists of the following
rules:

1. Program Order: For the sequence of events 〈e1i , e2i , . . .〉 executed by process
pi, ∀ k, j such that k < j we have eki → eji .

2. Message Order: If event exi is a message send event executed at process pi
and eyj is the corresponding message receive event at process pj, then exi → eyj .

3. Transitive Order: Given events e and e′′ in execution trace α, if ∃ e′ ∈ α
such that e → e′ ∧ e′ → e′′ then e → e′′.

Next, we define the happens before relation → on the set of all application-level
messages R.

Definition 2. The happens before relation on messages consists of the following
rules:

1. The set of messages delivered from any pi ∈ P by a process is totally ordered
by →.

2. If pi sent or delivered message m before sending message m′, then m → m′.
3. If m → m′ ∧ m′ → m′′ then m → m′′.

Definition 3. The causal past of message m is denoted as CP (m) and defined
as the set of messages in R that causally precede message m under →.

We require an extension of the happens before relation on messages to accom-
modate the possibility of Byzantine behaviour. We present a partial order on
messages called Byzantine happens before, denoted as B−→, defined on S, the set
of all application-level messages that are both sent by and delivered at correct
processes in P .

Definition 4. The Byzantine happens before relation consists of the following
rules:

1. The set of messages delivered from any correct process pi ∈ P by any correct
process is totally ordered by B−→.

2. If pi is a correct process and pi sent or delivered message m (to/from another
correct process) before sending message m′, then m

B−→ m′.
3. If m

B−→ m′ ∧ m′ B−→ m′′ then m
B−→ m′′.

The Byzantine causal past of a message is defined as follows:

Definition 5. The Byzantine causal past of message m, denoted as BCP (m),
is defined as the set of messages in S that causally precede message m under B−→.

The correctness of a Byzantine causal order unicast/multicast/broadcast is
specified on (R,→) and (S,

B−→). We now define the correctness criteria that a
causal ordering algorithm must satisfy. Ideally, strong safety and liveness should
be satisfied because, as we show for application semantics, strong safety is desir-
able over weak safety.

Solvability of Byzantine Fault-Tolerant Causal Ordering Problems 91

Definition 6. Weak Safety: ∀m′ ∈ BCP (m) such that m′ and m are sent to
the same correct process(es), no correct process delivers m before m′.

Definition 7. Strong Safety: ∀m′ ∈ CP (m) such that m′ and m are sent to
the same correct process(es), no correct process delivers m before m′.

Definition 8. Liveness: Each message sent by a correct process to another
correct process will be eventually delivered.

When m
B−→ m′, then all processes that sent messages along the causal chain

from m to m′ are correct processes. This definition is different from m →M m′

[1], where M was defined as the set of all application-level messages delivered at
correct processes, and MCP (m′) could be defined as the set of messages in M
that causally precede m′. When m →M m′, then all processes, except the first,
that sent messages along the causal chain from m to m′ are correct processes. Our
definition of B−→ (Definition 4) allows for the purest notion of safety – weak safety
(Definition 6) – which we show as result (2) in Table 1 that can be guaranteed to
hold under unicasts and multicasts. The equivalent safety definition, that could
be defined on MCP instead of BCP, would not be guaranteed under unicasts
and multicasts, but is satisfied under broadcasts [1]. Our definition of B−→ and
→M [1] both make the assumption that from the second to the last process that
send messages along the causal chain from m to m′, are correct processes.

4 Attacks Due to Byzantine Behaviour

All existing algorithms for implementing causal order for point-to-point messages
in asynchronous systems use some form of logical timestamps. This principle is
abstracted by the RST algorithm [23]. Each message m sent to pi is accompanied
by a logical timestamp in the form of a matrix clock providing information about
send events in the causal past of m. This is to ensure that all messages m′ ∈
CP (m) whose destination is pi are delivered at pi before m. The implementation
is as follows:

1. Each process pi maintains (a) a vector Deliveredi of size n with Deliveredi[j]
storing a count of messages sent by pj and delivered by pi, and (b) a matrix
Mi of size n × n, where Mi[j, k] stores the count of the number of messages
sent by pj to pk as known to pi.

2. When pi sends message m to pj , m has a piggybacked matrix timestamp Mm,
which is the value of Mi before the send event. Then Mi[i, j] = Mi[i, j] + 1.

3. When message m is received by pi, it is not delivered until the following
delivery condition is met: ∀k, Mm[k, i] ≤ Deliveredi[k].

4. After delivering a message m, pi merges the logical timestamp associated with
m with its own matrix clock, as ∀j, k, Mi[j, k] = max(Mi[j, k],Mm[j, k]).

A Byzantine process may fabricate values in the matrix timestamp in order
to disrupt the causal ordering of messages in an asynchronous execution. The
attacks are described in the following subsections.

92 A. Misra and A. D. Kshemkalyani

4.1 Artificial Boosting Attack

A Byzantine process pj may increase values of Mj [x, ∗] beyond the number of
messages actually sent by process x to one or more processes. When pj sends
a message with such a Byzantine timestamp to any correct process pk, it will
result in pk recording Byzantine values in its Mk matrix. These Byzantine values
will get propagated across correct processes upon further message passing. This
will finally result in correct processes no longer delivering messages from other
correct processes because they will be waiting for messages to arrive that have
never been sent.

As an example, consider a single malicious process pj . pj forges values in
its Mj matrix as follows: if pj knows that pi (where i may be j) has sent x
messages to pl, it can set Mj [i, l] = (x + d), d > 0. When pk delivers a message
from pj , it sets Mk[i, l] = (x + d). Finally, when pk sends a message m to pl,
pl will wait for messages to arrive from pi (messages that pi has never sent)
before delivering m. This is because (Deliveredl[i] ≤ x) ∧ (Mm[i, l] = x + d)
=⇒ (Deliveredl[i] < Mm[i, l]). Therefore, pl will never be able to deliver m. A
single Byzantine process pj has effectively blocked all communication from pk to
pl. This attack can be replicated for all pairs of processes by pj . Thus, a single
Byzantine process can block all communication (including between each pair of
correct processes), thus mounting a liveness attack.

4.2 Safety Violation Attack

A Byzantine process pj may decrease values of Mm[∗, k] to smaller values than
the true causal past of message m and send it to a correct process pk. This
may cause m to get delivered out of order at pk resulting in a causal violation.
Furthermore, if pj decreases the values of Mm[∗, ∗] to smaller values than the
true causal past of message m then, once m is delivered to pk and pk sends a
message m′ to correct process pl, there may be a further causal violation due to
a lack of transitive causal data transfer from m to pk prior to sending m′. These
potential causal violations are a result of the possibility of a message getting
delivered before messages in its causal past sent to a common destination.

As an example, consider a single malicious process pj . pj forges values in the
Mm matrix as follows: if pj knows that pi has sent x messages to pk, pj can
set Mm[i, k] = x − 1 and send m to pk. If m is received at pk before the xth

message m′ from pi is delivered, m may get delivered before m′ resulting in a
causal violation of strong safety at pi. In another attack, if pj knows that pi
has sent y messages to pl, it can reduce Mm[i, l] = y − 1 and send m to pk.
Assume pk delivers m and sends m′ to pl. If m′ arrives at pl before m′′, the yth

message from pi to pl, arrives at pl, m′ may get delivered before m′′ resulting in a
causal violation of strong safety at pl. In this way, a malicious process may cause
violations of strong safety (but not weak safety) at multiple correct processes by
sending a single message with incorrect causal control information.

Solvability of Byzantine Fault-Tolerant Causal Ordering Problems 93

5 Results for Unicasts

Causal order of messages can be enforced by either: (a) performing appropri-
ate actions at the receiver’s end, or (b) performing appropriate actions at the
sender’s end.

To enforce causal ordering at the receiver’s end, one needs to track causality,
and some form of a logical clock is required to order messages (or events) by
utilizing timestamps at the receiving process. Traditionally, logical clocks use
transitively collected control information attached to each incoming message for
this purpose. The RST abstraction [23] (refer Sect. 4) is used. However, in case
there is a single Byzantine node pj in an asynchronous system, it can change the
values of Mj at the time of sending m to pi. This may result in safety or liveness
violations when pi communicates with a third process pk as explained in Sect. 4.
Lemma 1 proves that transitively collected control information by a receiver can
lead to liveness attacks in asynchronous systems with Byzantine nodes.

As it is not possible to ensure causal delivery of messages by actions at
the receiver’s end, therefore, constraints on when the sending process can send
messages need to be enforced to maintain causal delivery of messages. Each
sender process would need to wait to get an acknowledgement from the receiver
before sending the next message. Messages would get delivered in FIFO order at
the receiver. While waiting for an acknowledgment, each process would continue
to receive and deliver messages. This is important to maintain concurrency and
avoid deadlocks. This can be implemented by using non-blocking synchronous
sends, with the added constraint that all send events are atomic with respect
to each other. However, Lemma 2 proves that even this approach would fail
in the presence of one or more Byzantine nodes. Theorem 1 puts these results
together and proves that it is impossible to causally order unicast messages in
an asynchronous system with one or more Byzantine nodes.

Lemma 1. A single Byzantine process can execute a liveness attack when con-
trol information for causality tracking is transitively propagated and used by a
receiving process for enforcing causal order under weak safety of unicasts.

Proof. Transitively propagated control information for causality tracking,
whether by explicitly maintaining the counts of the number of messages sent
between each process pair, or by maintaining causal barriers, or by encoding the
dependency information optimally or by any other mechanism, can be abstracted
by the causal ordering abstraction [23], described in Sect. 4. Each message m sent
to pk is accompanied with a logical timestamp in the form of a matrix clock pro-
viding an encoding of CP (m). The encoding of CP (m) effectively maintains an
entry to count the number of messages sent by pi to pj , ∀pi, pj ∈ P . Such an
encoding will consist of a total of n2 entries, n entries per process. Therefore,
in order to ensure that all messages m′ ∈ CP (m) whose destination is pk are
delivered at pk before m, the matrix clock M whose definition and operation
was reviewed in Sect. 4 is used to encode CP (m).

Let m′ B−→ m, where m′ and m are sent by pi and pj , respectively, to common
destination pk. The value Mi[i, k] after sending m′ propagates transitively along

94 A. Misra and A. D. Kshemkalyani

the causal chain of messages to pj and then to pk. But before pj sends m to
pk, it has received a message m′′ (transitively) from a Byzantine process px in
which Mm′′

[y, k] is artificially inflated (for a liveness attack using Mm′′
[y, k]).

This inflated value propagates on m from pj to pk as Mm[y, k]. To enforce
weak safety between m′ and m, pk implements the delivery condition in rule 3
of the RST abstraction (Sect. 4), and will not be able to deliver m because of
px’s liveness attack wherein Mm[y, k] �≤ Deliveredk[y]. pk uniformly waits for
messages from any process(es) that prevent the delivery condition from being
satisfied and thus waits for Mm[y, k] − Deliveredk[y] messages from py, which
may never arrive if they were not sent. (If pk is not to keep waiting for delivery
of the arrived m, it might try to flush the channel from py to pk by sending a
probe to py and waiting for the ack from py. This approach can be seen to violate
liveness, e.g., when px attacks pk via pi on Mm′

[j, k] and via pj on Mm[i, k].
Morever, py may never reply with the ack if it is Byzantine, and pk has no means
of differentiating between a slow channel to/from a correct py and a Byzantine
py that may never reply. So pk waits indefinitely.) Therefore, the system is open
to liveness attacks in the presence of a single Byzantine node. �
Lemma 2. A single Byzantine process can execute a liveness attack even if a
sending process sends a message only when the receiving process is guaranteed
not to be subject to a weak safety attack, i.e., only when it is safe to send the
message and hence its delivery at the receiver will not violate weak safety, on
causal order of unicasts.

Proof. The only way that a sending process pi can ensure weak safety of a
message m it sends to pj is to enforce that all messages m′ such that m

B−→ m′

and m′ is sent to pj will reach the (common) destination pj after m reaches pj .
Assuming FIFO delivery at a process based on the order of arrival, m will be
delivered before m′.

The only way the sender pi can enforce that m′ will arrive after m at pj is not
to send another message to any process pk after sending m until pi knows that
m has arrived at pj . pi can know m has arrived at pj only when pj replies with
an ack to pi and pi receives this ack. However, pi cannot differentiate between
a malicious pj that never replies with the ack and a slow channel to/from a
correct process pj . Thus, pi will wait indefinitely for the ack and not send any
other message to any other process. This is a liveness attack by a Byzantine
process pj . �
Theorem 1. It is impossible to guarantee liveness and weak safety while
causally ordering point-to-point messages in an asynchronous message passing
system with one or more Byzantine processes.

Proof. From Lemmas 1 and 2, no actions at a sender or at a receiver can prevent
a liveness attack (while maintaining weak safety). The theorem follows. �
Theorem 2. It is possible to guarantee weak safety without a liveness guaran-
tee while causally ordering point-to-point messages in an asynchronous message
passing system with one or more Byzantine processes.

Solvability of Byzantine Fault-Tolerant Causal Ordering Problems 95

Proof. The theorem that weak safety can be maintained without liveness guar-
antees was indirectly proved in the proofs of Lemma 1 and Lemma 2. �

Theorem 3. It is impossible to guarantee strong safety (while guaranteeing live-
ness) while causally ordering point-to-point messages in an asynchronous mes-
sage passing system with one or more Byzantine processes.

Proof. Consider m′ ∈ CP (m) sent to common destination pr, where m′ and m
are sent by pi and pk, respectively. If pi sends the next messages after m′ only
when it is safe to do so (as described in the proof of Lemma 2), an attack on
strong safety can be mounted because a Byzantine pi may not follow the above
rule; it may send a subsequent message before getting an ack for message m′, and
message m along the causal chain beginning with a subsequent message may be
delivered to the common destination pr before m′ is delivered. Thus, this option
cannot be used to guarantee strong safety while guaranteeing liveness.

The only other way for safe delivery of m is for pr to rely on transitively
propagated control information about CP (m). There exists a chain of messages
ordered by → from m′ to m and sent by processes along this path H. We use
the RST abstraction for the transmission of control information about CP (m).
Let Mi[i, r] be x when m′ is sent. A Byzantine process along H, that sends m′′,
can set Mm′′

[i, r] to a lower value x′ than x and thereby propagate x′ instead
of x along H. Mk[i, r] that is piggybacked on m as Mm[i, r] will be less than x.
Hence, a strong safety attack can be mounted at pr.

Thus, no action at the sender or at the receiver can prevent a strong safety
attack. �

Theorem 4. It is impossible1 to guarantee strong safety (even without guar-
anteeing liveness) while causally ordering point-to-point messages in an asyn-
chronous message passing system with one or more Byzantine processes.

Proof. The proof of Theorem 3 showed strong safety can never be satisfied.
This result was independent of liveness attacks. The same result holds even if
liveness attacks can be mounted, and Theorem 1 showed liveness attacks could be
mounted on weak safety requirements, which implies they can also be mounted
on strong safety requirements. �

5.1 Results for Unicasts Allowing Digital Signatures

Theorem 5. It is impossible to guarantee liveness while satisfying weak safety
using digital signatures while causally ordering point-to-point messages in an
asynchronous message passing system with one or more Byzantine processes.

Proof. Lemma 2 (sending a message only when a receiver is guaranteed not to
have a weak safety attack) can be seen to hold even with the use of digital

1 Here in Theorems 4, 7, 9, and 11, we rule out the trivial solution of not delivering
any messages to guarantee strong safety.

96 A. Misra and A. D. Kshemkalyani

signatures. So the only remaining option to guarantee liveness (while satisfying
weak safety) is to try to use transitively received control information.

In the RST abstraction, a sending process pi will sign its row of Mm whereas
row s (∀s ∈ P) is signed by ps. This allows the receiver process pj to do the max
of its row Mj [s, ∗] and Mm[s, ∗] (∀s ∈ P), both of which were signed by Ps, and
update its Mj matrix.

The same liveness attack (while satisfying weak safety), as shown in the proof
and scenario in Lemma 1, can be mounted when y = x (i.e., using Mm′′

[y = x, k]
in that proof), even with the use of digital signatures. This is because a Byzantine
process px can always sign its inflated row x entries of Mx. Although this allows
the receiver to be reassured that entries in the xth row of Mm were not forged
by anyone, it does not help in avoiding the indefinite wait of the liveness attack
mounted by px.

Thus, liveness cannot be guaranteed while satisfying weak safety despite
using digital signatures. �

Theorem 6. It is impossible to guarantee strong safety while satisfying liveness
using digital signatures while causally ordering point-to-point messages in an
asynchronous message passing system with one or more Byzantine processes.

Proof. Consider m′ ∈ CP (m) sent to common destination pr, where m′ and m
are sent by pi and pk, respectively. If pi relies on sending the next messages
after m′ only when it is safe to do so (as described in the proof of Lemma 2), a
Byzantine pi can cause strong safety to be violated by not following the above
rule, as shown in the proof of Theorem 3. Thus, this option cannot be used.

The only other way for safe delivery of m while satisfying liveness is for pr
to rely on transitively propagated control information about CP (m); for this we
assume the RST abstraction. Consider the following sequence: correct process
pi sends a message m′ to pr, then sends a (signed) message m′′ (containing
the rows of Mi as Mm′′

, where row s is signed by ps) to pj . pj , a Byzantine
process, delivers message m′′, acts on the message, and then sends a message
m1 to pk. However, on receiving the message m′′ from pi, pj does not update
Mj [i, ∗] with the most recently signed row Mm′′

[i, ∗] received but uses an older
row, also signed (earlier) by pi, pretending as though pi’s message m′′ had never
been delivered and processed. pk uses this (older) row of Mj [i, ∗] received on m1

as Mm1 [i, ∗] and sets Mk[i, ∗] to this older value which does not get replaced by
pi’s signed row that was piggybacked on m′′. pk now forwards this older row,
signed by pi, as part of Mm it piggybacks on m it sends to pr. pr can deliver
m even if m′ from pi has not been received. Here, pi, pk, and pr are all correct
processes and m′ (sent by pi to pr) → m (sent by pk to pr), yet pr may deliver
m before m′, thus violating strong safety. The use of digital signatures does not
help in preventing such a violation. Hence, a strong safety attack can be mounted
at pr. �

Theorem 7. It is impossible (see footnote 1) to guarantee strong safety (even
without guaranteeing liveness) using digital signatures while causally ordering

Solvability of Byzantine Fault-Tolerant Causal Ordering Problems 97

point-to-point messages in an asynchronous message passing system with one or
more Byzantine processes.

Proof. The proof of Theorem 6 showed strong safety can never be satisfied even
using digital signatures. This result was independent of liveness attacks. This
same result holds even if liveness attacks can be mounted, and Theorem 5 showed
liveness attacks could be mounted on weak safety requirements, which implies
they can also be mounted on strong safety requirements. �

6 Results for Broadcasts

Byzantine Reliable Broadcast (BRB) has traditionally been defined based on
Bracha’s Byzantine Reliable Broadcast (BRB) [3,4]. For this algorithm to work,
it is assumed that less then n/3 processes are Byzantine. When a process does a
broadcast, it invokes br broadcast() and when it is to deliver such a message,
it executes br deliver(). In the discussion below, it is implicitly assumed that
a message is uniquely identified by a (sender ID, sequence number) tuple. BRB
satisfies the following properties.

– Validity: If a correct process br delivers a message m from a correct process
ps, then ps must have executed br broadcast(m).

– Integrity: For any message m, a correct process executes br deliver at most
once.

– Self-delivery: If a correct process executes br broadcast(m), then it eventu-
ally executes br deliver(m).

– Reliability (or Termination): If a correct process executes br deliver(m),
then every other correct process also (eventually) executes br deliver(m).

As causal broadcast is an application layer property, it runs on top of the BRB
layer. Byzantine Causal Broadcast (BCB) is invoked as BC broadcast(m) which
in turn invokes br broadcast(m′) to the BRB layer. Here, m′ is m plus some
control information appended by the BCB layer. A br deliver(m′) from the
BRB layer is given to the BCB layer which delivers the message m to the appli-
cation via BC deliver(m) after the processing in the BCB layer. The control
information is abstracted by the causal barrier [1,10] which tracks the immedi-
ate or direct dependencies and is bounded by O(n). In addition to the BCB-layer
counterparts of the properties satisfied by BRB, BCB must satisfy safety and
liveness. Liveness and weak safety can be satisfied as given by the protocol in
[1]. Next, we analyze the possibility of strong safety and liveness, and all four
combinations (refer Table 1) if digital signatures can be used.

Theorem 8. It is impossible to guarantee strong safety and liveness while
causally ordering broadcast messages in an asynchronous message passing system
with one or more Byzantine process.

Proof. Strong safety (along with liveness) cannot be ensured by requiring the
sender to wait for acknowledgements ack1 to its broadcast that the message has

98 A. Misra and A. D. Kshemkalyani

been BC delivered, and for receivers to wait for an ack ack2 from the sender
that the message has been BC delivered to all recipients, before broadcasting
further messages. This is because a Byzantine process px may read a message m
before it is br delivered, and broadcast m1 without waiting for ack2. A third
correct process py may then br deliver and BC deliver m1 before m. So no
action at the sender can enforce strong safety.

The only option left is for the receiver to use transitively propagated infor-
mation. So we assume the causal barrier abstraction for tracking (transitive)
dependencies for broadcasts. Consider a Byzantine process pj that reads mes-
sage m broadcast from a correct process pi while it is being processed by the
BRB layer before br delivery at pj , takes action based on it and broadcasts
m1 (thus, m → m1 semantically) but excludes m from the causal barrier of m1.
A correct process pk may BC deliver m1 before m. It then broadcasts m′ which
may be BC delivered by a correct process pl before m, thus violating strong
safety.

Effectively, by pj dropping m from the causal barrier of m1, the relation
m → m1 (and hence m → m′) was changed to m �→ m1 (and m �→ m′). As this
action of logically swapping the order of the semantic “BC deliver(m)” and
BC broadcast(m1) was solely under the local control of a Byzantine process,
no protocol can exist to counter this action. �

Examples of strong safety violations in real-world applications:

1. Social Media Posts: Correct processes may see post b by a Byzantine process,
whose contents depend on post a, before they see post a.

2. Multiplayer Gaming: A Byzantine process can cause strong safety violations
to get an advantage over correct processes in winning the game.

Theorem 9. It is impossible (see Footnote 1) to guarantee strong safety even
without liveness guarantees while causally ordering broadcast messages in an
asynchronous message passing system with one of more Byzantine process.

Proof. The proof of Theorem 8 showed strong safety can never be satisfied. This
result was independent of liveness attacks. So even if liveness attacks cannot be
mounted on broadcasts (refer algorithm in [1]), strong safety cannot be guaran-
teed. �
Theorem 10. It is impossible to guarantee strong safety (while satisfying live-
ness) using digital signatures while causally ordering broadcast messages in an
asynchronous message passing system with even one Byzantine processes.

Proof. The same proof of Theorem 8 applies because the action by a Byzantine
process that causes the strong safety attack is local to that process and signing
messages and/or causal barriers will not help because it only authenticates the
messages and/or causal barriers. �
Theorem 11. It is impossible (see Footnote 1) to guarantee strong safety (even
without satisfying liveness) using digital signatures while causally ordering broad-
cast messages in an asynchronous message passing system with even one Byzan-
tine processes.

Solvability of Byzantine Fault-Tolerant Causal Ordering Problems 99

Proof. The proof of Theorem 10 showed strong safety can never be satisfied even
using digital signatures. This result was independent of liveness attacks. So even
if liveness attacks cannot be mounted on broadcasts, strong safety cannot be
guaranteed. �

7 Byzantine Causal Multicast (BCM)

In a multicast, a send event sends a message to multiple destinations that form
a subset of the process set P . Different send events by the same process can be
addressed to different subsets of P . This models dynamically changing multicast
groups and membership in multiple multicast groups. There can exist overlap-
ping multicast groups. In the general case, there are 2|P | − 1 groups. Although
there are several algorithms for causal ordering of multicasts under dynamic
groups, such as [6,7,13,14,22], none consider the Byzantine failure model.

Byzantine Reliable Multicast (BRM) [18,19] has traditionally been defined
based on Bracha’s Byzantine Reliable Broadcast (BRB) [3,4]. For these algo-
rithms to work, it is assumed that in every multicast group G, less then
|G|/3 processes are Byzantine. When a process does a multicast, it invokes
br multicast() and when it is to deliver such a message, it executes
br deliver(). In the discussion below, it is assumed that a message is uniquely
identified by a (sender ID, sequence number) tuple. BRM satisfies the following
properties.

– Validity: If a correct process br delivers a message m from a correct process
ps, then ps must have executed br multicast(m).

– Integrity: For any message m, a correct process executes br deliver at most
once.

– Self-delivery: If a correct process executes br multicast(m), then it eventu-
ally executes br deliver(m).

– Reliability (or Termination): If a correct process executes br deliver(m),
then every other correct process in the multicast group G also (eventually)
executes br deliver(m).

As causal multicast is an application layer property, it runs on top of the BRM
layer. Byzantine Causal Multicast (BCM) is invoked as BC multicast(m) which
in turn invokes br multicast(m′) to the BRM layer. Here, m′ is m plus some
control information appended by the BCM layer. A br deliver(m′) from the
BRM layer is given to the BCM layer which delivers the message m to the
application via BC deliver(m) after the processing in the BCM layer. In addition
to the BCM-layer counterparts of the properties satisfied by BRM, BCM must
satisfy safety and liveness (Sect. 3).

All the existing algorithms for causal multicast use transitively collected con-
trol information about causal dependencies in the past – they vary in the size
of the control information, whether in the form of causal barriers as in [10,22]
or in the optimal encoding of the theoretically minimal control information as
in [6,7,13,14]. The RST algorithm still serves as a canonical algorithm for the

100 A. Misra and A. D. Kshemkalyani

causal ordering of multicasts in the BCM layer, and it can be seen that the same
liveness attack described in Sect. 4 can be mounted on the causal multicast algo-
rithms. Furthermore, all the results and proofs given in Sect. 5 for unicasts, and
summarized in Table 1, apply to multicasts with straightforward adaptations.
The intuitive reason is given below.

A liveness attack is possible in the point-to-point model because a “future”
message m from pi to pj can be advertised by a Byzantine process px, i.e., the
dependency can be transitively propagated by px via px1 . . . pxy

to pj , without
that message m actually having been sent (created). When the advertisement
reaches pj it waits indefinitely for m. Had a copy of m also been transitively
propagated along with its advertisement, this liveness attack would not have
been possible. But in point-to-point communication, m must be kept private to
pi and pj and cannot be (transitively) propagated along with its advertisement.
The same logic holds for multicasts – pi can withold a multicast m to group Gx

but advertise it on a later multicast m′ to group Gy, even if using Byzantine
Reliable Multicast (BRM) which guarantees all-or-none delivery to members of
Gy. When a member of Gy receives m′, it also receives the advertisement “m
sent to pj(∈ Gx)”, which may get transitively propagated to pj which will wait
indefinitely. Therefore, results for unicasts also hold for multicasts.

In contrast, in Byzantine causal broadcast [1], the underlying Bracha’s
Byzantine Reliable Broadcast (BRB) layer which guarantees that a message
is delivered to all or none of the (correct) processes ensures that the message m
is not selectively withheld. This m propagates from pi to pj (directly, as well as
indirectly/transitively in the form of (possibly a predecessor of) entries in the
causal barriers) while simultaneously guaranteeing that m is actually eventually
delivered from pi to pj by the BRB layer. Thus a liveness attack is averted in
the broadcast model.

8 Discussion

On Broadcast vs. Unicast. Byzantine causal broadcast is solvable [1]. Then why
is Byzantine fault-tolerant causal order for point-to-point communication impos-
sible? The problem is that a single Byzantine adversary can launch a liveness
attack by artificial boosting. In Byzantine causal broadcast, all messages are sent
to every process in the system and the underlying Byzantine reliable broadcast
layer [3] ensures that every correct process receives the exact same set of mes-
sages. Upon receiving m, the receiving process simply waits for its logical clock
to catch up with m’s timestamp (each broadcast delivered will increment one
entry in the logical clock) and deliver m once it is safe to do so. After delivering
message m, the receiving processes’ logical clock is greater than or equal to m’s
timestamp. This means that a receiving process does not need to merge message
m’s timestamp into its own logical clock upon delivering m. Hence no amount of
artificial boosting can result in a liveness attack in Byzantine causal broadcast.
In case of causal ordering for unicasts and multicasts, every process receives a
different set of messages. When a process pi delivers message m, it means that

Solvability of Byzantine Fault-Tolerant Causal Ordering Problems 101

pi has delivered all messages addressed to it in the causal past of m. However,
it requires the timestamp attached to m to ascertain the messages in the causal
past of m that are not addressed to pi. Therefore, the receiving process needs to
merge the timestamp of the delivered message into its own logical clock so that
subsequent messages sent by it can be timestamped with their causal past.

Full-Information Protocols (FIP). The system model rules out full-information
protocols (FIP) [9] where the entire transitively collected message history is used
as control information – because (i) a message from pi to pj or to G needs to
be kept private to those two processes or to G, and (ii) a FIP obviates the
need for causal ordering. Encrypting messages from pi to pj or to G, on which
is superimposed the FIP, can provide (liveness + weak safety), but not strong
safety, for unicasts and multicasts – however, the cost of a FIP is prohibitively
high and as noted in (ii), a FIP obviates the need for causal ordering which
rules out this approach. Note, liveness (+ weak safety) can be provided because
a Byzantine process must send the messages contained in any inflated message
advertisement, in the message history. Also, strong safety cannot be provided
because attacks analogous to those in Theorems 3, 6 and 4, 7 proofs can be
mounted, wherein a Byzantine process selectively suppresses the message history.
A FIP can neither provide strong safety for broadcasts – using reasoning similar
to Theorems 8, 10 and 9, 11 proofs, it is seen that a Byzantine process has local
control over selectively suppressing message history.

Strong Safety vs. Weak Safety. It is impossible to guarantee strong safety for
broadcasts (and unicasts). The Byzantine causal broadcast algorithm in [1] pro-
vides only weak safety but this is not always useful in practice because it requires
B−→ to hold but correct processes cannot identify whether B−→ or just → holds
when processing an arrived message. In the absence of strong safety, the exam-
ples given after Theorem 8 demonstrate that a Byzantine causal broadcast algo-
rithm is not useful to users of certain applications. (Weak safety suffices to pre-
vent double-spending in the money-transfer algorithm [1] using BC broadcast,
because actually Byzantine causal order is not required for this application;
source order is sufficient [8] and weak safety does not violate source order.)

Rational vs. Irrational Byzantine Agents. A rational Byzantine agent will mount
an attack only if it is not detected/suspected. It can be seen that all impossibility
results for strong safety (cases in Table 1) hold even for rational agents because
deleting entries, whether signed or in a FIP or neither, from the causal past is
entirely local to the Byzantine agent and undetectable by others. Only Theorem 5
for liveness + weak safety under signed messages will not hold for rational agents
because in the proof of Lemma 1 on which it depends, the attacker px that
inflates Mm′′

[y, k] can do so only for y = x – as it cannot sign for py and can
sign only for py = px. The attack victim pk can suspect px when pk continues
waiting for the delivery condition to be satisfied (or does not receive the ack soon
enough). Note, in the proof of Lemma 1 (for Theorem 1), if pk does not get the
messages (or the ack to probe) from py in reasonable time, pk can suspect py (as
py may be Byzantine) and stop waiting for it, although Byzantine px mounted

102 A. Misra and A. D. Kshemkalyani

the attack and goes unsuspected. Further, in the proof of Lemma 2 on which
Theorems 1 and 5 depend, if the sender pi does not get an ack from receiver pj
in a reasonable amount of time, pi can suspect pj as being Byzantine; however,
Lemma 2 is essentially using some elements of synchronous communication and
so it cannot be said that a possibility result holds for rational agents in a truly
asynchronous system.

In view of the impossibility result of Theorem 1, algorithms for liveness +
weak safety in a stronger asynchrony model are given in [20].

References

1. Auvolat, A., Frey, D., Raynal, M., Täıani, F.: Byzantine-tolerant causal broadcast.
Theoret. Comput. Sci. 885, 55–68 (2021)

2. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures.
ACM Trans. Comput. Syst. (TOCS) 5(1), 47–76 (1987)

3. Bracha, G.: Asynchronous byzantine agreement protocols. Inf. Comput. 75(2),
130–143 (1987). https://doi.org/10.1016/0890-5401(87)90054-X

4. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
32(4), 824–840 (1985). https://doi.org/10.1145/4221.214134

5. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Seltzer, M.I., Leach,
P.J. (eds.) Proceedings of the Third USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pp. 173–186 (1999)

6. Chandra, P., Gambhire, P., Kshemkalyani, A.D.: Performance of the optimal causal
multicast algorithm: a statistical analysis. IEEE Trans. Parallel Distrib. Syst.
15(1), 40–52 (2004). https://doi.org/10.1109/TPDS.2004.1264784

7. Chandra, P., Kshemkalyani, A.D.: Causal multicast in mobile networks. In: 12th
International Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pp. 213–220 (2004). https://doi.org/
10.1109/MASCOT.2004.1348235

8. Collins, D., et al.: Online payments by merely broadcasting messages. In: 50th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN 2020, pp. 26–38 (2020)

9. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995). https://doi.org/10.7551/mitpress/5803.001.0001

10. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and
related problems. Technical report, 94-1425, Cornell University, p. 83 pages (1994)

11. Huang, K., Wei, H., Huang, Y., Li, H., Pan, A.: Byz-GentleRain: an efficient
byzantine-tolerant causal consistency protocol. arXiv preprint arXiv:2109.14189
(2021)

12. Kleppmann, M., Howard, H.: Byzantine eventual consistency and the fundamental
limits of peer-to-peer databases. arXiv preprint arXiv:2012.00472 (2020)

13. Kshemkalyani, A.D., Singhal, M.: An optimal algorithm for generalized causal mes-
sage ordering (abstract). In: Proceedings of the Fifteenth Annual ACM Symposium
on Principles of Distributed Computing, p. 87. ACM (1996). https://doi.org/10.
1145/248052.248064

14. Kshemkalyani, A.D., Singhal, M.: Necessary and sufficient conditions on infor-
mation for causal message ordering and their optimal implementation. Distrib.
Comput. 11(2), 91–111 (1998). https://doi.org/10.1007/s004460050044

https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1145/4221.214134
https://doi.org/10.1109/TPDS.2004.1264784
https://doi.org/10.1109/MASCOT.2004.1348235
https://doi.org/10.1109/MASCOT.2004.1348235
https://doi.org/10.7551/mitpress/5803.001.0001
http://arxiv.org/abs/2109.14189
http://arxiv.org/abs/2012.00472
https://doi.org/10.1145/248052.248064
https://doi.org/10.1145/248052.248064
https://doi.org/10.1007/s004460050044

Solvability of Byzantine Fault-Tolerant Causal Ordering Problems 103

15. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, Cambridge (2011). https://doi.org/10.
1017/CBO9780511805318

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

17. Liskov, B., Ladin, R.: Highly available distributed services and fault-tolerant dis-
tributed garbage collection. In: Proceedings of the Fifth Annual ACM Symposium
on Principles of Distributed Computing, pp. 29–39 (1986)

18. Malkhi, D., Merritt, M., Rodeh, O.: Secure reliable multicast protocols in a WAN.
In: Proceedings of the 17th International Conference on Distributed Computing
Systems, pp. 87–94 (1997). https://doi.org/10.1109/ICDCS.1997.597857

19. Malkhi, D., Reiter, M.K.: A high-throughput secure reliable multicast protocol. J.
Comput. Secur. 5(2), 113–128 (1997). https://doi.org/10.3233/JCS-1997-5203

20. Misra, A., Kshemkalyani, A.D.: Byzantine fault tolerant causal ordering. CoRR
abs/2112.11337 (2021). https://arxiv.org/abs/2112.11337

21. Mostefaoui, A., Perrin, M., Raynal, M., Cao, J.: Crash-tolerant causal broadcast
in o (n) messages. Inf. Process. Lett. 151, 105837 (2019)

22. Prakash, R., Raynal, M., Singhal, M.: An adaptive causal ordering algorithm suited
to mobile computing environments. J. Parallel Distrib. Comput. 41(2), 190–204
(1997)

23. Raynal, M., Schiper, A., Toueg, S.: The causal ordering abstraction and a simple
way to implement it. Inf. Process. Lett. 39(6), 343–350 (1991)

24. Schiper, A., Eggli, J., Sandoz, A.: A new algorithm to implement causal ordering.
In: Bermond, J.-C., Raynal, M. (eds.) WDAG 1989. LNCS, vol. 392, pp. 219–232.
Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51687-5 45

25. Tseng, L., Wang, Z., Zhao, Y., Pan, H.: Distributed causal memory in the presence
of byzantine servers. In: 2019 IEEE 18th International Symposium on Network
Computing and Applications (NCA), pp. 1–8 (2019)

https://doi.org/10.1017/CBO9780511805318
https://doi.org/10.1017/CBO9780511805318
https://doi.org/10.1109/ICDCS.1997.597857
https://doi.org/10.3233/JCS-1997-5203
https://arxiv.org/abs/2112.11337
https://doi.org/10.1007/3-540-51687-5_45

	Solvability of Byzantine Fault-Tolerant Causal Ordering Problems
	1 Introduction
	2 Previous Work
	3 System Model
	4 Attacks Due to Byzantine Behaviour
	4.1 Artificial Boosting Attack
	4.2 Safety Violation Attack

	5 Results for Unicasts
	5.1 Results for Unicasts Allowing Digital Signatures

	6 Results for Broadcasts
	7 Byzantine Causal Multicast (BCM)
	8 Discussion
	References

