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Abstract
Given an undirected, anonymous, port-labeled graph of n memory-less nodes, m edges, and degree
∆, we consider the problem of dispersing k ≤ n robots (or tokens) positioned initially arbitrarily on
one or more nodes of the graph to exactly k different nodes of the graph, one on each node. The
objective is to simultaneously minimize time to achieve dispersion and memory requirement at each
robot. If all k robots are positioned initially on a single node, depth first search (DFS) traversal
solves this problem in O(min{m, k∆}) time with Θ(log(k+∆)) bits at each robot. However, if robots
are positioned initially on multiple nodes, the best previously known algorithm solves this problem
in O(min{m, k∆} · log ℓ) time storing Θ(log(k + ∆)) bits at each robot, where ℓ ≤ k/2 is the number
of multiplicity nodes in the initial configuration. In this paper, we present a novel multi-source DFS
traversal algorithm solving this problem in O(min{m, k∆}) time with Θ(log(k + ∆)) bits at each
robot, improving the time bound of the best previously known algorithm by O(log ℓ) and matching
asymptotically the single-source DFS traversal bounds. This is the first algorithm for dispersion that
is optimal in both time and memory in arbitrary anonymous graphs of constant degree, ∆ = O(1).
Furthermore, the result holds in both synchronous and asynchronous settings.
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1 Introduction

Given an undirected, anonymous, port-labeled graph of n memory-less nodes, m edges,
and (maximum) degree ∆, we consider the problem of dispersing k ≤ n robots (or tokens)
positioned initially arbitrarily on one or more nodes of the graph to exactly k different nodes
of the graph, one on each node (which we call the Dispersion problem). This problem has
many practical applications, for example, in relocating self-driven electric cars (robots) to
recharge stations (nodes), assuming that the cars have smart devices to communicate with
each other to find a free/empty charging station [1, 18]. This problem is also important
because it has the flavor of many other well-studied robot coordination problems, such as
exploration, scattering, load balancing, covering, and self-deployment [1, 18, 22].

One of the key aspects of mobile-robot research is to understand how to use the resource-
limited robots to accomplish some large task in a distributed manner [12, 13]. In this paper,
we study trade-off between time and memory complexities to solve Dispersion on arbitrary
anonymous graphs. Time complexity is measured as the time duration to achieve dispersion
and memory complexity is measured as the number of bits stored in persistent memory
at each robot. The literature typically traded memory (or time) to obtain better time (or
memory) bounds (for example, compare memory and time bounds of the two algorithms
from [18] given in Table 1).
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30:2 Near-Optimal Dispersion on Arbitrary Anonymous Graphs

Algorithm Memory/robot Time Single-source/ Setting
(in bits) (in rounds/epochs) Multi-source

Lower bound Ω(log(k + ∆)) Ω(k) any Asynchronous
DFS Θ(log(k + ∆)) O(min{m, k∆}) Single-source Asynchronous
[18] O(k log ∆) O(min{m, k∆}) Multi-source Asynchronous
[18] Θ(log(k + ∆)) O(min{m, k∆} · ℓ) Multi-source Asynchronous
[19]† O(log n) O(min{m, k∆} · log ℓ)† Multi-source Synchronous
[31] Θ(log(k + ∆)) O(min{m, k∆} · log ℓ) Multi-source Synchronous

Th. 1 Θ(log(k + ∆)) O(min{m, k∆}) Multi-source Synchronous
Th. 2 Θ(log(k + ∆)) O(min{m, k∆}) Multi-source Asynchronous

Table 1 Algorithms solving Dispersion for k ≤ n robots on undirected, anonymous, port-labeled
graphs of n memory-less nodes, m edges, and (maximum) degree ∆. †[19] assumes m, k, and ∆
are known to the algorithm a priori. ℓ ≤ k/2 is the number of multiplicity nodes in the initial
configuration; Dispersion is already solved if there is no multiplicity node.

Recent studies [19, 31] focused on minimizing time and memory complexities simultan-
eously. More precisely, they tried to answer the following question: Can the time bound
of O(min{m, k∆}) be obtained keeping memory optimal Θ(log(k + ∆)) bits at each robot?
This question can be easily answered in the single-source case of all k ≤ n robots ini-
tially co-located on a node. The challenge is how to answer it in the multi-source case
of the robots initially on two or more nodes of the graph. For the multi-source case, the
algorithms in [19, 31] were successful in keeping memory bound optimal as in [18] and reduce
time bound to O(min{m, k∆} · log ℓ), an improvement of ℓ/ log ℓ factor compared to the
O(min{m, k∆} · ℓ) time bound of [18], where ℓ ≤ k/2 is the number of multiplicity nodes in
the initial configuration.

In this paper, we present a new algorithm for Dispersion that settles the question
completely, i.e., it obtains the time bound of O(min{m, k∆}) keeping memory optimal
Θ(log(k + ∆)) bits at each robot, first such result for the multi-source case. The time bound
is an improvement of O(log ℓ) factor compared to the best previously known algorithms
[19, 31]. Furthermore, the time and memory bounds match the respective bounds for
the single-source case. Thus, the proposed algorithm is the first for Dispersion that is
simultaneously optimal for arbitrary anonymous graphs of constant degree ∆ = O(1).

Overview of the Model and Results. We consider k ≤ n robots operating on an
undirected, anonymous (no node IDs), port-labeled graph G of n memory-less nodes, m

edges, and degree ∆. The ports (leading to incident edges) at each node have unique labels
from [0, δ − 1], where δ is the degree of that node. (∆ is the maximum over δ’s of all n

nodes.) The robots have unique IDs in the range [1, k]. In contrast to graph nodes which
are memory-less, the robots have memory to store information (otherwise the problem
becomes unsolvable). Finally, at any time, the robots co-located at the same node of G

can communicate and exchange information, if needed, but they cannot communicate and
exchange when located on different nodes. We call an initial configuration single-source if
all k robots are initially positioned on a single node of G, otherwise we call it multi-source.
Even in the multi-source initial configurations, the robots can only be on 1 < k′ < k nodes,
since for the case of k′ = k, the initial configuration is already a configuration that solves
Dispersion. In this paper, we establish the following theorem in the synchronous setting
where all robots are activated in a round, they perform their operations simultaneously in
synchronized rounds, and hence the time (of the algorithm) is measured in rounds (or steps).

▶ Theorem 1. Given any initial configuration of k ≤ n mobile robots on the nodes of an
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undirected, anonymous, port-labeled graph G of n memory-less nodes, m edges, and degree
∆, dispersion can be solved deterministically in O(min{m, k∆}) rounds in the synchronous
setting storing O(log(k + ∆)) bits at each robot.

Theorem 1 improves the time bound O(min{m, k∆} · log ℓ) of the best previously known
algorithms [19, 31] by a factor of O(log ℓ) keeping the memory optimal, where ℓ is the number
of nodes in the initial configuration with at least two robots co-located on them. Interestingly,
both time and memory bounds of Theorem 1 match asymptotically the O(min{m, k∆}) time
and O(log(k + ∆)) memory bounds for the single-source case, which is inherent for any DFS
traversal based algorithm for Dispersion. Finally, for constant-degree arbitrary anonymous
graphs, i.e., ∆ = O(1), our algorithm is asymptotically optimal w.r.t. both time and memory,
first such result for Dispersion (Table 1).

Furthermore, we extend Theorem 1 to the asynchronous setting where robots become
active and perform their operations in arbitrary duration, keeping the same time and memory
bounds. Here we measure time in epochs (instead of rounds) – an epoch represents the time
interval in which each robot becomes active at least once.

▶ Theorem 2. Given the setting as in Theorem 1, dispersion can be solved deterministically
in O(min{m, k∆}) epochs in the asynchronous setting storing O(log(k + ∆)) bits per robot.

Challenges. The single-source Dispersion can be solved in min{4m − 2n + 2, 4k∆} rounds
in any anonymous graph G having n memory-less nodes using the well-known DFS traversal
[6] storing O(log(k + ∆)) bits at each robot. The k-source Dispersion finishes in a single
round, since k robots are already on k different nodes solving Dispersion. Therefore, the
challenging case is k′-source Dispersion with 1 < k′ < k.

The early papers obtained better bounds on either time or memory, trading one for another.
The first algorithm of [18] obtained O(min{m, k∆}) time bound with memory O(k log ∆)
bits at each robot. The second algorithm of [18] kept memory optimal O(log(k + ∆)) bits
at each robot and established time O(min{m, k∆} · ℓ), where ℓ ≤ k′ < k is the number of
multiplicity nodes in the initial configuration. Their algorithm starts ℓ different single-source
DFS traversals in parallel from ℓ sources with multiple robots on them. Each DFS traversal
is given a unique ID, which is the smallest robot ID present on that source. Each DFS
traversal leaves a robot on each new node it visits. If no DFS traversals meet, then k robots
are on k different nodes and Dispersion is solved in time and memory bounds akin to the
single-source DFS bounds. In case of two (or more) DFS traversals meet, the higher ID DFS
traversal subsumes the lower ID DFS traversal. The problem here is that if the lower ID
DFS traversal meets the higher ID DFS traversal, in the subsumption process, the higher ID
DFS traversal may again visit all the nodes that the lower ID DFS traversal already visited.
Therefore, in the worst-case, the time becomes the multiplication of O(min{m, k∆}) rounds
for the single-source DFS traversal times ℓ parallel traversals, i.e., O(min{m, k∆} · ℓ) rounds.

Recent studies [19, 31] reduced the O(ℓ) factor in the time bound to O(log ℓ). Providing
m, k, and ∆ parameters to the algorithm beforehand, Kshemkalyani et al. [19] run ℓ-source
DFS traversals in passes of interval O(min{m, k∆}) rounds. After each pass, they guaranteed
that the ℓ-source DFS traversal reduces to ℓ/2-source DFS traversal. Therefore, in total
⌈log ℓ⌉ passes, the ℓ-source DFS traversal reduces to a single-source DFS traversal, which then
finishes in additional O(min{m, k∆}) rounds, giving in the worst-case, O(min{m, k∆} · log ℓ)
rounds time bound. The memory requirement is O(log n) bits at each robot, due to the
memory to store m ≤ n2 which dominates the memory to store k ≤ n and ∆ < n. Recently,
Shintaku et al. [31] established the same time bound as in [19] avoiding the requirement for
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the algorithm to know m, k, ∆ beforehand. Moreover, they improved the memory bound
O(log n) bits in [19] to optimal Θ(log(k + ∆)) bits at each robot.

Observing the techniques of [19, 31], the algorithms developed there subsume different
DFS traversals pairwise which helps in improving the sequential subsumption of the different
DFS traversals in the algorithm of [18]. The implication of the pairwise subsumption is only
a O(log ℓ) factor more cost is needed to subsume all ℓ parallel DFS traversals to obtain a
single DFS traversal. This O(log ℓ) factor is significantly better compared to the O(ℓ) factor
obtained due to the sequential subsumption.

Despite these benefits, the pairwise subsumption is not matching the single-source DFS
traversal time bound and, more importantly, it is not clear whether the O(log ℓ) factor arising
in the pairwise subsumption technique in [19, 31] can be removed from the time bound.
Therefore, a new set of ideas are needed, which we develop in this paper and they constitute
our main contribution.

Techniques. We use parallel multi-source DFS traversals as in [19, 31] but devise a novel
subsumption technique, leading to O(min{m, k∆}) time with O(log(k+∆)) bits at each robot,
removing the O(log ℓ) factor from the time bound of the best previously known algorithms
[19, 31] and matching the time and memory bounds for single-source DFS traversal. Each
DFS traversal constructs a DFS tree. Our technique executes subsumption on the two DFS
traversals that meet based on the size of the DFS traversal measured as the number of settled
robots with the same DFS tree ID. In fact, the larger size DFS traversal subsumes the smaller
size DFS traversal. The subsumed DFS traversal is collapsed to a single node, collecting all
the robots on that traversal at that node, and those robots are given to the subsuming DFS
traversal allowing it to extend its DFS traversal. The benefit is two-fold: (i) the size of the
subsumed traversal is smaller than the size of the subsuming traversal and hence the collapse
and merge of the subsumed traversal to the subsuming one can be done in time proportional
to the size of the subsumed traversal, and (ii) it avoids the need of revisiting the nodes of the
subsumed traversal more than once, a crucial aspect in removing the O(log ℓ) factor from the
time bound. Furthermore, one traversal always remains subsuming throughout the execution
of the algorithm.

This is in contrast to the technique used in the best previously known algorithms [19, 31]
that uses IDs of the DFS traversals (larger ID DFS traversal subsumes smaller ID DFS
traversal). The drawback of the subsumption based on DFS ID is that the algorithm cannot
limit the repeating traversal of the already built DFS tree, adding a Θ(log ℓ) factor in the
subsumption process, and hence leading to a O(min{m, k∆} · log ℓ) time bound.

We particularly tackle two major challenges: (i) how to execute the size-based subsumption,
and (ii) what to do when more than two DFS traversals meet at different nodes forming a
transitive chain or more generally, what we define as a meeting graph (Definition 4). The
first challenge is due to the fact that the exact size of the DFS traversal is only known by
its head node which is either the current node that has all not-yet-settled robots (if any,)
belonging to that DFS traversal or else the node on which last robot belonging to that DFS
traversal has settled. Therefore, it requires for the meeting traversal to traverse the met
DFS tree to reach its head node to find its size. Our technique of collapsing the subsumed
traversal successfully fulfills this requirement in time proportional to the size of the smaller
size DFS traversal.

The second challenge is due to the fact that if not synchronized carefully, different DFS
traversals in the transitive chain or meeting graph might run into a deadlock situation. We
devise a technique that partitions the DFS traversals in the meeting graph such that in each
partition, one DFS traversal subsumes the others without introducing any deadlock and in
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time proportional to the size of the DFS traversals that were subsumed and collapsed.
Through these techniques, we finally show that one DFS traversal (among those that meet

in the meeting graph) always grows bigger and the total cost remains proportional to the
total size of the DFS traversals that are subsumed by the DFS traversal, giving our claimed
time bound. Interestingly, the process is executed keeping the memory at an (asymptotically)
optimal number of bits per robot.

Related Work. Augustine and Moses Jr. [1] proved a memory lower bound of Ω(log n) bits
at each robot and a time lower bound of Ω(D) (Ω(n) in arbitrary graphs) for any deterministic
algorithm for Dispersion on graphs. They then provided deterministic algorithms using
O(log n) bits at each robot to solve Dispersion on lines, rings, and trees in O(n) time. For
arbitrary graphs, they gave one algorithm using O(log n) bits at each robot with O(mn) time
and another using O(n log n) bits at each robot with O(m) time.

Kshemkalyani and Ali [18] provided an Ω(k) time lower bound for arbitrary graphs for
k ≤ n. They then provided three deterministic algorithms for Dispersion in arbitrary
graphs: (i) The first algorithm using O(k log ∆) bits at each robot with O(min{m, k∆})
time, (ii) The second algorithm using O(D log ∆) bits at each robot with O(∆D) time (D
is diameter of graph), and (iii) The third algorithm using O(log(k + ∆)) bits at each robot
with O(min{m, k∆} · ℓ) time. Kshemkalyani et al. [19] provided an algorithm for arbitrary
graph with O(min{m, k∆} · log ℓ) time using O(log n) bits memory at each robot, with the
algorithm knowing m, k, ∆ beforehand. The same time bound and improved memory bound
of O(log(k+∆)) bits were obtained in [31], without the need of the algorithm knowing m, k, ∆
beforehand. For grid graphs, Kshemkalyani et al. [21] provided an algorithm that runs in
O(min{k,

√
n}) time using O(log k) bits memory at each robot. Randomized algorithms were

presented in [24, 8] mainly to reduce the memory requirement at each robot.
Recently, Kshemkalyani et al. [20] provided an algorithm for arbitrary graphs with

time O(min{m, k∆}) when all robots can communicate and exchange information in every
round (that is even the non-co-located can communicate and exchange information, which is
called the global communication model). The global model comes handy while dealing with
subsuming the multiple DFS traversals that meet in the transient chain or meeting graph.
The information each robot can have allows the head node of the highest ID DFS traversal
(satisfying a certain property) in the transient chain/meeting graph to ask the head nodes
of the rest of the DFS traversals to stop growing their DFS tree. This makes sure that one
DFS traversal always grows and others stop as soon as they find that they were met by the
DFS traversal that is of higher ID then theirs. The result presented in this paper is different
since only the co-located robots can communicate and it is called the local communication
model. In the local model, it is not possible to extend the idea that is developed for the
global model. For grid graphs, Kshemkalyani et al. [21] provided a O(

√
k) time algorithm

with O(log k) bits at each robot in the global model.
Dispersion in anonymous dynamic (undirected) graphs was considered in [22] where

the authors provided some impossibility, lower, and upper bound results. Dispersion under
crash faults was considered in [27] and under Byzantine faults was considered in [25, 26]
establishing a spectrum of interesting results.

The related problem of exploration has been quite heavily studied in the literature for
specific as well as arbitrary graphs, e.g., [2, 4, 9, 15, 14, 17, 23]. It was shown that a robot can
explore an anonymous graph using Θ(D log ∆)-bits memory; the runtime of the algorithm is
O(∆D+1) [15]. In the model where graph nodes also have memory, Cohen et al. [4] gave two
algorithms: The first algorithm uses O(1)-bits at the robot and 2 bits at each node, and the
second algorithm uses O(log ∆) bits at the robot and 1 bit at each node. The runtime of both
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algorithms is O(m) with preprocessing time of O(mD). The trade-off between exploration
time and number of robots is studied in [23]. The collective exploration by a team of robots
is studied in [14] for trees. The dual of the Dispersion problem is gathering, which has been
extensively studied, e.g., [10, 16]. Another problem related to Dispersion is the scattering
of k robots on graphs. This problem has been mainly studied for rings [11, 30] and grids
[3]. Recently, Poudel and Sharma [28, 29] provided improved time algorithms for uniform
scattering on grids. Furthermore, Dispersion is related to the load balancing problem,
where a given load at the nodes has to be (re-)distributed among several processors (nodes).
This problem has been studied quite heavily in graphs, e.g., see [7]. We refer readers to
[12, 13] for other recent developments in these topics.

Roadmap. We discuss model details in Section 2. We discuss the single-source DFS traversal
in Section 3. We then present our (synchronous) multi-source DFS traversal algorithm in
Section 4. We prove the correctness, time, and memory complexity of our algorithm in
Section 5 (i.e., Theorem 1). We then discuss the extensions to the asynchronous setting,
proving Theorem 2. Finally, we conclude in Section 6 with a short discussion.

2 Model

Graph. Let G = (V, E) be a connected, unweighted, and undirected graph of n nodes, m

edges, and maximum degree ∆. G is anonymous – nodes do not have identifiers but, at any
node, its incident edges are uniquely identified by a port number in the range [0, δ − 1], where
δ is the degree of that node. (∆ is the maximum among the degree δ of the nodes in G.) We
assume that there is no correlation between two port numbers of an edge. Any number of
robots are allowed to move along an edge at any time (i.e., unlimited edge bandwidth). The
graph nodes are memory-less (do not have memory).

Robots. Let R = {r1, r2, . . . , rk} be the set of k ≤ n robots residing on the nodes of G. No
robot can reside on the edges of G, but one or more robots can occupy the same node of
G, which we call co-located robots. In the initial configuration, we assume that all k robots
in R can be in one or more nodes of G but in the final configuration there must be exactly
one robot on k different nodes of G. Suppose robots are on k′ ≤ k nodes of G in the initial
configuration. We denote by ℓ ≤ k′ the number of nodes in the initial configuration which
have at least two robots co-located on them.

Each robot has a unique ⌈log k⌉-bit ID taken from the range [1, k]. When a robot moves
from node u to node v in G, it is aware of the port of u it used to leave u and the port of v

it used to enter v. We do not restrict time duration of local computation of the robots. The
only guarantee is that all this happens in a finite cycle of “Communicate-Compute-Move”
(defined below) and we measure time with respect to the number of cycles until Dispersion
is achieved. Furthermore, it is assumed that each robot is equipped with memory. The
robots do not experience fault.

Communication Model. This paper considers the local communication model where only
co-located robots at a graph node can communicate and exchange information. This model
is in contrast to the global communication model where even non-co-located robots (i.e., at
different graph nodes) can communicate and exchange information.

Time Cycle. An active robot ri performs the “Communicate-Compute-Move” (CCM) cycle
as follows. Communicate: Let ri be on node vi. For each robot rj ∈ R that is co-located at
vi, ri can observe the memory of rj , including its own memory; Compute: ri may perform an
arbitrary computation using the information observed during the “communicate” portion of
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that cycle. This includes determination of a (possibly) port to use to exit vi, the information
to carry while exiting, and the information to store in the robot(s) rj that stays at vi; Move:
ri writes new information (if any) in the memory of a robot rj at vi, and exits vi using the
computed port to reach to a neighbor node of vi.

Robot Activation. In the synchronous setting, every robot is active in every CCM cycle.
In the asynchronous setting, there is no common notion of time and no assumption is made
on the number and frequency of CCM cycles in which a robot can be active. The only
guarantee is that each robot is active infinitely often.

Time and Memory Complexity. For the synchronous setting, time is measured in rounds.
Since a robot in the asynchronous settings could stay inactive for an indeterminate but finite
time, we bound a robot’s inactivity introducing the idea of an epoch. An epoch is the smallest
interval of time within which each robot is guaranteed to be active at least once [5]. Let ti

be the time at which a robot ri ∈ R starts its CCM cycle. Let tj be the time at which the
last robot finishes its CCM cycle. The time interval tj − ti is an epoch. Another important
parameter is memory – the number of bits stored in persistent memory at each robot.

3 DFS traversal of a Graph (Algorithm DFS(k))

We describe here a single-source DFS traversal algorithm, DFS(k), that disperses all k robots
in the set R(v) situated at a node v initially to exactly k nodes of G, solving Dispersion.
DFS(k) will be heavily used in Section 4 as a basic building block.

Each robot ri stores in its memory five variables. (i) parent (initially assigned ⊥), for a
settled robot denotes the port through which it first entered the node it is settled at; (ii)
child (initially assigned −1), for an unsettled robot ri stores the port that it has last taken
(while entering/exiting the node). For a settled robot, it indicates the port through which
the other robots last left the node except when they entered the node in forward mode for
the second or subsequent time; (iii) treelabel (initally assigned min{R(v)}) stores the ID of
the smallest ID robot the tree is associated with; (iv) state ∈ {forward, backtrack, settled}
(initially assigned forward). DFS(k) executes in two phases, forward and backtrack [6];
(v) rank (initialized to 0), for a settled robot indicates the serial number of the order in
which it settled in its DFS tree. The algorithm pseudo-code is shown in Algorithm 1. The
robots in R(v) move together in a DFS, leaving behind the highest ID robot at each newly
discovered node. They all adopt the ID of the lowest ID robot in R(v) which is the last to
settle, as their treelabel. The algorithm executes in forward and backtrack modes.

▶ Theorem 3 ([19]). Algorithm DFS(k) solves Dispersion for k ≤ n robots initially
positioned on a single node of an arbitrary anonymous graph G of n memory-less nodes, m

edges, and degree ∆ in min{4m − 2n + 2, 4k∆} rounds using O(log(k + ∆)) bits at each robot.

4 The Algorithm

The root of a DFS i (which equals the identifier (treelabel)) is the node where the first robot
settles. This is the settled robot having rank = 1. The head of a DFS i is the node where
the unsettled robots (if any) of that DFS are currently located at, or else it is the node where
the last robot of that DFS settled. Node root(i) is reachable by following parent pointers;
node head(i) is reachable by following child pointers.

In the initial configuration, if robots are at k′ < k nodes (k′ = k solves Dispersion in
the first round without any robot moving), k′ DFS traversals are initiated in parallel. A
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Algorithm 1 Algorithm DFS(k) for DFS traversal of a graph by k robots from a rooted
initial configuration. Code for robot i. r is robot settled at the current node.

1 Initialize: child← −1, parent←⊥, state← forward, treelabel← min{R(v)}, rank ← 0
2 for round = 1 to min{4m− 2n + 2, 4k∆} do
3 child← port through which node is entered
4 if state = forward then
5 if node is free then
6 rank ← rank + 1
7 if i is the highest ID robot on the node then
8 state← settled, i settles at the node (does not move henceforth),

parent← child, treelabel← lowest ID robot at the node
9 else

10 child← (child + 1) mod δ, r.child← child

11 if child = parent of robot settled at node then
12 state← backtrack

13 else
14 state← backtrack

15 else if state=backtrack then
16 child← (child + 1) mod δ, r.child← child

17 if child ̸= parent of robot settled at node then
18 state← forward

19 move out through child

DFS i meets DFS j if the robots of DFS i arrive at a node x where a robot from DFS j is
settled. Node x is called a junction node of head(i). If robots from multiple DFSs/nodes
arrive at a node where there is no settled robot, a robot from the DFS with the highest ID
settles in that round and the other DFSs are said to meet this DFS. If DFS i has met DFS j,
we define head(i) to be blocked, else we define head(i) to be free.

The size di of a DFS i is the number of settled robots in that DFS. When DFS i meets
DFS j, the first task is to determine whether di > dj or dj > di, where we define a total
order (>) by using the DFS IDs as tiebreakers if the number of settled robots is the same.
di is known to robots of DFS i at head(i) by reading rank of DFS tree i. The unsettled
robots at head(i) traverse DFS j to head(j) in an exploration to determine dj . If they reach
head(j) without encountering a node with rank greater than di, then di > dj . The junction
head(j) is defined to be locked by i if DFS i’s robots are the first to reach head(j) in such an
exploration (and at this time, j’s exploratory robots have yet to return to head(j)). However,
if the exploratory robots of DFS i encounter a node with rank greater than di before reaching
head(j), they return to head(i) as dj > di. A key advantage of this mechanism is that
di > dj can be determined in time proportional to min{di, dj}.

Knowing the sizes, the general idea is that if di is greater, DFS j is subsumed by DFS i

and DFS j collapses by having all its robots collected to the head(i) to continue DFS i. This
collapse however cannot begin immediately because j’s robots may be exploring the DFS
l it has met and they must return to head(j) before j starts its collapse. (The algorithm
ensures there are no such cyclic waits to prevent deadlocks.) However, if dj is greater, DFS
i gets subsumed, i.e., DFS j subsumes DFS i. The free robots of i exploring j return to
head(i), DFS i collapses by having all its robots collected to head(i), and then they all move
to head(j) to continue DFS j. Now, these above policies regarding which DFS collapses and
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Algorithm 2 Algorithm Exploration to explore parent(i) component on reaching junction
head(i) by DFS of component i.

1 explorers move to root(parent(i)) leaving retrace pointers for return path. Then they follow
child pointers from root(parent(i)) to head(parent(i)). There are 4 possibilities.

2 if dparent(i) > di, i.e., rank > di is encountered, implying explorers do not reach
head(parent(i)) (possibly the next junction) then

3 return to head(i) junction
4 if head(i) is not locked then
5 Collapse_Into_P arent(i)
6 else if head(i) is locked by j then
7 Collapse_Into_Child(i, j)

8 else if dparent(i) < di, implying head(parent(i)) is reached (possibly next junction) then
9 lock head(parent(i))

10 traverse parent(i) informing each node (a) that parent(i) is locked and will be
collapsing, and also (b) value of dparent(i), and return to head(parent(i))

11 wait until parent(i)’s explorers return from parent(parent(i))
12 follow action (Collapse_Into_Child(parent(i), i)) which will be determined on their

return (if head(parent(i)) is not junction, execute Collapse_Into_Child(parent(i), i))
13 else if exploring robots find parent(i) is collapsing or learn that parent(i) is locked and will

be collapsing then
14 P arent_Is_Collapsing

15 else if explorers E’s path meets another explorers F ’s path then
16 wait until F return
17 if parent(i) is collapsing then
18 P arent_Is_Collapsing

19 else if parent(i) is not collapsing then
20 continue E’s exploration

gets subsumed by which other have to be adapted to the following fact – due to concurrent
actions in different parts of G, a DFS j may be met by different other DFSs, and DFS j

may in turn meet another DFS concurrently. Further, transitive chains of such meetings can
occur concurrently. This leads us to formalize the notion of a meeting graph.

▶ Definition 4. (Meeting graph.) The directed meeting graph G′ = (V ′, E′) is defined as
follows. V ′ is the set of concurrently existing DFS IDs. There is a (directed) edge in E′ from
i to j if DFS i meets DFS j.

For an edge (i, j) in the meeting graph, DFS j is defined to be parent(i) and DFS i is
defined to be child(j). The size of a node in the meeting graph is defined to be the size
of the DFS for that node. Nodes in V ′ have an arbitrary in-degree (< k′) but out-degree
at most 1. There may also be a cycle in each connected component of G′. Henceforth, we
focus on a single connected component of G′ by default; other connected components are
dealt with similarly. The algorithm implicitly partitions a connected component of G′ into
(connected) sub-components such that each sub-component is defined to have a master node
M into which all other nodes of that sub-component are subsumed, directly or transitively.
In this process, the at most one cycle in any connected component of G′ is also broken. In
each sub-component, the master node M has the highest value of d and the other smaller
(or equal sized) nodes, i.e., DFSs, get subsumed. The pseudo-code is given in Algorithm 2
and in Algorithm 3. In Algorithm 2, j is explored by robots from i to determine if di > dj
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Algorithm 3 Algorithms Collapse_Into_Child, Collapse_Into_Parent, and Par-
ent_Is_Collapsing.

1 Collapse_Into_Child(i,j)
2 explorers of i go from head(i) locked by j to root(i)
3 explorers of i do i’s DFS tree traversal collecting all robots to collapse path (root(i) to

head(j)) marked by retrace pointers, waiting until collapsing_children = 0 at each node
4 from root(i) collect all robots accumulated on collapse path to j’s junction head(j)
5 collapsed robots change ID treelabel to j

6 if head(j) is locked by l then
7 Collapse_Into_Child(j, l)
8 else if head(j) is not locked then
9 continue j’s DFS

10 Collapse_Into_Parent(i)
11 robot at head(i) increments collapsing_children

12 explorers of i go from head(i) to root(i) leaving collapse pointers
13 explorers of i do i’s DFS tree traversal collecting all robots to collapse path (root(i) to

head(i)) marked by collapse pointers, waiting until collapsing_children = 0 at each node
14 from root(i) collect all robots accumulated on collapse path to i’s junction head(i)
15 robot at head(i) decrements collapsing_children

16 collapsed robots change ID treelabel to parent(i)
17 explorers and collapsed robots go to head(parent(i)) by following child pointers
18 if parent(i) along the way is found to be collapsing then
19 collapse with it; break()
20 if head(parent(i)) is free then
21 continue parent(i)’s DFS
22 else if head(parent(i)) is blocked and possibly also locked then
23 wait until parent(i) collapses (and collapse with it) or becomes unblocked (and continue

parent(i)’s action)
24 Parent_Is_Collapsing
25 retrace path to head(i) junction
26 if di < dparent(i) and head(i) junction is not locked then
27 Collapse_Into_P arent(i)
28 else if di > dparent(i) and head(i) junction is not locked and remains unlocked until

parent(i)’s collapse reaches head(i) then
29 unsettled robots get absorbed in parent(i) during its collapse
30 else if head(i) junction of i (is locked by j) or (gets locked by j before parent(i)’s collapse

reaches head(i) and di > dparent(i)) then
31 Collapse_Into_Child(i, j)

(therefore, we sometimes call Algorithm 2 Exploration), and the appropriate procedures for
collapsing and collecting are given in Algorithm 3 (therefore, we sometimes call Algorithm 3
various procedures invoked).

For any given node i ∈ V ′, its master node is given as per Algorithm 4. Note that this
algorithm is not actually executed and the master node of a node need not be known – it is
given only to aid our understanding and in the complexity proof. If master(j) gets invoked
directly or transitively in the invocation of master(i) for any i, then i must be subsumed and
its robots collected completely before j gets subsumed and its robots are collected completely.

A path in G′ is an increasing (decreasing) path if the node sizes along the path are increas-
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Algorithm 4 Algorithm Determine_Master(i) to identify master component in which
component i will collapse.

1 master(i)
2 if dparent(i) > di then
3 t1 ← time when explorers of i return to head(i) from parent(i)
4 t2 (initialized to ∞) ← the time, if any, when first child j locks head(i)
5 if t1 < t2 then w ← parent(i)
6 else if t1 > t2 then w ← j

7 return(master(w))
8 else
9 if ∃ a first child j to lock head(i) then return(master(j))

10 else return(i)

ing (decreasing). For a master node M , the nodes x in its sub-component of G′ that directly
and transitively participate in only Collapse_Into_Parent and no Collapse_Into_Child

until collapsing into M form the set X(M). Whereas the (other) nodes y in the sub-component
that directly and transitively invoke at least one Collapse_Into_Child until they collapse
into M belong to the set Y (M). The component C(M) = X(M) ∪ Y (M) ∪ {M}.

A component C(M) is acyclic. For an edge (i, j), i is the child and j is the parent.
Nodes in the set X have an increasing path to the master node. They collapse into and get
subsumed by the master node (possibly transitively) by executing Collapse_Into_Parent.
Nodes in the set Y are reachable from the master node on a decreasing path – such nodes
are termed Y _trunk nodes, or have a increasing path to a Y _trunk node – such nodes
are termed Y _branch nodes. Nodes in Y (i.e., in Y _trunk and Y _branch) collapse into
and get subsumed by the master node, possibly transitively. First, the Y _branch nodes
collapse into and get subsumed by their ancestors on the increasing path ending in a
Y _trunk node by executing Collapse_Into_Parent; then the Y _trunk nodes collapse
and get subsumed into their child nodes along Y _trunk and then into the master node by
executing Collapse_Into_Child.

After nodes in C(M) get subsumed in M , the master node grows again until involved in
more meetings and new meeting graphs are formed. Thus the meeting graph is dynamic. We
define a related notion of a meeting tree that represents which nodes (DFSs) have met and
been subsumed by which master node, in which meeting sequence number of meetings for
each such node.

▶ Definition 5. (Meeting tree.) The k′ initial DFSs i form the k′ leaf nodes (i, 0) at level
0. When α nodes (ai, hi) for i ∈ [1, α] meet in a component and get subsumed by the master
node with DFS identifier M of the meeting graph, a node (M, h), where h = 1 + maxi∈[1,α] hi,
is created in the meeting tree as the parent of the child nodes (ai, hi), for i ∈ [1, α].

For a node (M, h), h is the length of the longest path from some leaf node to that node. We
now formally define X(M, h), Y (M, h), and C(M, h).

▶ Definition 6. (Component C(M, h).)
1. X(M, h) is the set of child nodes in the meeting tree that directly and transitively participate

only in Collapse_Into_Parent until collapsing into (M, h).
2. Y (M, h) is the set of child nodes in the meeting tree that directly and transitively participate

in at least one Collapse_Into_Child until collapsing into (M, h).
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3. C(M, h) = X(M, h) ∪ Y (M, h) ∪ {(M, prev(h))}, where for any z ∈ C(M, h), z =
(a, prev(h)) and prev(h) is defined as the highest value less than h for which node
(a, prev(h)) has been created.

For any node (i, h), we also define next(h) as the value h′ such that (i, h) ∈ C(M, h′) for
some M . If such a h′ does not exist, we define it to be k′.

We omit h in (i, h) and C(M, h) in places where it is understood or not required.

5 Analysis of the Algorithm

In our algorithm, a common module is to traverse an already identified DFS component
with nodes having the same treelabel. This can be achieved by going to root(i) and doing
a (new) DFS traversal of only those nodes (using a duplicate set of variables state and
parent for DFS); if you reach a node which has no settled robot or a settled robot having
a different treelabel, one simply backtracks along that edge. Such a DFS traversal occurs
in (i) Algorithm Exploration when di > dparent(i) and i locks head(parent(i)) junction, (ii)
procedure Collapse_Into_Child, and (iii) procedure Collapse_Into_Parent, and can be
executed in 4∆di steps. In (ii) and (iii), a settled robot not on the collect path gets unsettled
and gets collected in the DFS traversal to the collect path when the DFS backtracks from
the node where the robot was settled.

The time complexity of Algorithms 2 and 3 is as follows.
1. Algorithm 2 takes time bounded by 8di∆ + 3di. The derivation is as follows.

a. min{di, dparent(i)} to go from head(i) to root(parent(i)).
b. 4 min{di, dparent(i)}∆ to go then to head(parent(i)).
c. if dparent(i) > di, then 2di to return to head(i) via root(parent(i)).
d. if dparent(i) < di and i locks head(parent(i)), then 4dparent(i)∆ + 2dparent(i) for DFS

traversal of parent(i) component from root(parent(i)) plus to root(parent(i)) from
head(parent(i)) and back.

If explorers E’s path meets explorers F ’s path, the explorers E wait until F ’s return.
This delay is analyzed later.

2. In Algorithm 3,
a. Collapse_Into_Child takes 4di∆ + 2di.

Time di to go from head(i) to root(i); 4∆di for a DFS traversal of i component from
root(i); and di to collect the accumulated robots from root(i) to head(j) along the
collapse path.

b. Collapse_Into_Parent takes 4di∆ + 2di + 4dparent(i)∆.
Time di to go from head(i) to root(i); 4∆di for a DFS traversal of i component from
root(i); di to collect the accumulated robots from root(i) to head(i); and 4dparent(i)∆
to then go to head(parent(i)).

c. The cost of Parent_Is_Collapsing is min{di, dparent(i)} but is subsumed in the cost
of Algorithm 2.
This cost is to return to head(i) from the exploration point in parent(i) component
where it is invoked.

The contributions to this time complexity by the various nodes in C(M) are as follows.
(The cost is the sum of Algorithm Exploration plus appropriate invoked procedure costs.)
1. Each x ∈ X executes Collapse_Into_Parent after Exploration, as it is part of an

increasing path. So it contributes the sum of the two contributions, giving 12dx∆ + 5dx +
4dparent(x)∆.
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The 4dparent(x)∆ is for traversing to head(parent(x)) after x collapses to head(x), and
this can be done concurrently by multiple x that are children of the same parent. As each
x can be thought of as the parent of another element in X, so the cost of subsuming the
X set is

∑
x∈X 16dx∆ + 5dx + (if X ̸= ∅, 4dM ∆).

2. Each y ∈ Y _branch executes Collapse_Into_Parent after Exploration, as it is part of
an increasing path. So it contributes the sum of the two contributions, giving 16dy∆+5dy.
Each y ∈ Y _trunk executes Collapse_Into_Child after Exploration, as it is part
of a decreasing path. So it contributes the sum of the two contributions, giving
12dy∆ + 5dy, plus it potentially acts as a parent of a node on a Y _branch that executed
Collapse_Into_Parent so it contributes an added 4dy∆, giving a total of 16dy∆ + 5dy.

3. Node M will contribute in Algorithm Exploration 4 min{dM , dparent(M)}∆ + min{dM ,-
dparent(M)}, plus 4dparent(M)∆ + 2dparent(M) as parent(M) is smaller. Thus, a total of
8dparent(M)∆+3dparent(M). This can be counted towards a contribution by parent(M) =
y ∈ Y , thus the contribution of each y ∈ Y can be bounded by 24dy∆ + 8dy with M

contributing nil.
There is another source of time overhead contributed by nodes in Y _trunk ∪{M}. Nodes

y, i.e., head(y) ∈ G, for y ∈ Y _trunk, are locked by their child. Before this can happen,
other children of y may be exploring y by leaving retrace pointers. However, due to the
O(log(k + ∆)) bits bound on memory at each robot, a retrace pointer at a node in y can
be left by only O(1) children, not by O(k′) children. Therefore in Algorithm 2, if explorers
E path meets another explorers F path, they wait at the meeting node until F return. If
they learn that the y is collapsing, they retrace to their head nodes else if they learn y is not
collapsing, they continue their exploration towards head(y) but may be blocked again if their
path meets another explorers’ path. This waiting due to concurrently exploring children
introduces delays.

A child of y outside Y _trunk may be either locked (l) or unlocked (u) and is also smaller
(S) or larger (L) than y. Thus, there are 4 classes of such children.
1. Su-type children belong to Y _branch and their introduced delays are already accounted

for above.
2. Each Lu-type and Ll-type child does not contribute any delay. This is because even

though these children are larger than y, they are not the child in Y who succeeds in
locking y; the child in Y who locks y does so before such L∗-type children try to explore
y and try to lock y. Such L∗-type children learn that y is collapsing.

3. Each Sl-type child node b contributes delay 4db∆ + 3db. The sum of such delays at y is
denoted ty(M,h). Later, we show how to bound the sum of such delays across multiple M ,
h and y.
Similar reasoning can be used for M delaying its children in X due to explorations of

other children z ̸∈ X. Specifically, (1) type Su child z of M : ̸ ∃ child z ̸∈ X. (2) type L∗
child z of M : ̸ ∃ such a child z. If it existed, it would have succeeded in locking M and M

would not be master. (3) Each type Sl child z contributes delay 4dz∆ + 3dz, whose sum for
all z is denoted by t(M,prev(h)). Later, we show how to bound the sum of such delays across
multiple M and h.

Note that for any x ∈ X, (1) each type Su child belongs to X and the delay is already
accounted for in Collapse_Into_Parent executed by x. (2) each type Sl child and type L∗
child does not contribute any delay beyond that of Collapse_Into_Parent executed by x and
already accounted for. (The type L∗ child does not succeed in locking head(x) and learns
that x is collapsing into its parent.)

Thus far, the size di of node i referred to the number of settled robots in it, and is
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henceforth referred to as ds
i . More specifically, ds

i,h will refer to the number of settled robots
up until just before the next(h) meeting of i. The number of unsettled robots in i up until
just before the next(h) meeting of i is referred to as du

i,h. Let T (M, h) denote the time to
settle DFS M up until meeting at depth h of the meeting tree, and from then on until the
next meeting (next(h)) for M . The collapse and collection time to head(M) has components
c(M, h) and g(M, h). c(M, h) has a upper bound factor of (24∆ + 8) for x ∈ X and y ∈ Y

as derived above. The time for dispersion/settling after collection and until the next(h)
meeting is s(M, h). These are defined as follows.

c(M, h) =


0 if h = 0
(24∆ + 8)(

∑
x∈X(M,h) ds

x +
∑

y∈Y (M,h) ds
y) if h > 0

(+4∆(ds
M,prev(h)) if X(M, h) ̸= ∅)

(1)

s(M, h) =


4∆(ds

M,h − ds
M,prev(h)) if next(h) < k′

4∆(
∑

x∈X(M,h) ds
x +

∑
y∈Y (M,h) ds

y otherwise
+

∑
x∈X(M,h) du

x +
∑

y∈Y (M,h) du
y

+du
M,prev(h))

(2)

g(M, h) =
{

0 if h = 0∑
y∈Y (M,h) ty + t(M,prev(h)) if h > 0 (3)

This process of collapsing and collecting for instance (M, h) began at the very latest
(since the start of the algorithm) at the time at which the latest of the x nodes, x′, got
blocked. Thus,

T (M, h) ≤
f(M,h)︷ ︸︸ ︷

c(M, h) + s(M, h) +g(M, h) + T (x′, prev(h)),
x′ = argmaxx | (x,prev(h))∈X(M,h)∪{(M,prev(h))}T (x, prev(h)),

c(∗, 0) = 0, g(∗, 0) = 0, s(∗, 0) = ds
∗,0. (4)

We break T (M, h) into two series, and bound them separately. The two series are:

S1 = f(M, h) + f(x′(M, h), prev(h))
+f(x′(x′(M, h), prev(h)), prev(prev(h))) + · · · + f(∗, 0)

S2 = g(M,h) + g(x′(M,h),prev(h)) + · · · + (g(∗, 0) = 0)

=
∑

y∈Y (M,h)

ty +
∑

y∈Y (x′(M,h),prev(h))

ty + · · · + (
∑

y∈Y (∗,0)

ty = 0)

+t(M,prev(h)) + t(x′(M,h),prev(prev(h))) + · · · + (t(∗,prev(0)) = 0) (5)

▶ Lemma 7. The sum in the series S1 is O(k∆).

Proof. We consider levels of the meeting tree from level 1 upwards to h (≤ k′ − 1). Let
η DFS components collapse and merge into one of them, and let the size (i.e., number of
settled robots) of each component be d. We consider two extreme cases and show for each
that the lemma holds.
1. Case 1: At each level when components collapse and collect in a master component,

immediately afterwards (before the collected unsettled robots can settle) the master
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component meets another component at the next level, and the collapse and collection
happen at the next level. Again, immediately afterwards, the (new) master component
meets another component at the yet next higher level, and so on till level h. This case
assumes s(i, ∗) = 0.
a. At level 1, η components of size d each merge into one of size d in O(ηd∆) time, leading

to a total of ηd robots in the master component.
b. At level 2, η components of size d each merge into one of size d in O(ηd∆) time, leading

to a total of η2d robots in the master component.
c. At level h, η components of size d each merge into one of size d in O(ηd∆) time,

leading to a total of ηhd robots in the master component.
ηhd is at most the maximum number of robots k. Solving k = ηhd, h = logη

k
d . Therefore

the maximum total elapsed time until the h-th level meeting and collapse takes place is

Max. elapsed time is O(h(ηd∆)) = O(ηd∆ logη

k

d
)

This maximum elapsed time is O(k∆), considering both extreme cases (a) ηd = O(1) and
(b) ηd = O(k).

2. Case 2: At each level when components collapse and collect in a master component, the
collected robots (almost) fully disperse after which the master component meets another
component at the next level, and the collapse and collection happen at the next level.
Again, the robots collected by the (new) master component (almost) fully disperse after
which the master component meets another component at the yet next higher level, and
so on till level h. This case assumes ∀j, s(i, j) satisfies next(j) ̸< k′.
a. At level 1, η components of size d each merge into one of size ηd in O(ηd∆) time,

leading to a total of ηd robots in the master component.
b. At level 2, η components of size ηd each merge into one of size η2d in O(η2d∆) time,

leading to a total of η2d robots in the master component.
c. At level h, η components of size ηh−1d each merge into one of size ηhd in O(ηhd∆)

time, leading to a total of ηhd robots in the master component.
ηhd is at most the maximum number of robots k. Solving k = ηhd, h = logη

k
d . Therefore

the maximum total elapsed time until the h-th level meeting and collapse/dispersion
takes place is

O(∆(ηd + η2d + η3d + . . . + ηhd)) = O(∆ηd
ηh − 1
η − 1 )

= O( ∆ηd

η − 1(ηlogη
k
d − 1))

= O( ∆ηd

η − 1(k

d
− 1))

= O(k∆)

There is also a special case in which a single component M , each time (∀h′), grows
and meets other fully dispersed component(s) that collapse (transitively) in to it and no
component meets M . Here, ∀h′, X(M, h′) = ∅ as all subsumed components belong to
Y (M, h′) sets. Observe that

∑
h′ c(M, h′) =

∑
h′ s(M, h′) = O(k∆).

The lemma follows. ◀

▶ Lemma 8. The sum in the series S2 is O(k∆).

Proof is deferred to Appendix due to space constraints.
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▶ Theorem 9. Algorithm Exploration (Algorithm 2) in conjunction with Algorithm DFS(k)
correctly solves Dispersion for k ≤ n robots initially positioned arbitrarily on the nodes
of an arbitrary anonymous graph G of n memory-less nodes, m edges, and degree ∆ in
O(min{m, k∆}) rounds using O(log(k + ∆)) bits at each robot.

Proof. T (M, h) is the sum of the series S1 and S2 which are both O(k∆) by Lemmas 7 and 8.
So the time till termination of the Algorithms 1 (DFS), 2 (Exploration), and Algorithm 3
(various procedues invoked) is O(k∆). As k ≤ n, this is O(n∆). Now observe that in our
derivations (Lemmas 7 and 8), the ∆ factor is an overestimate. The actual upper bound is
O(

∑n
i=1 δi) which is O(m), the number of edges in the graph. This upper bound is better

when m < k∆ and hence the time complexity is O(min{m, k∆}).
The highest level node (i, h) in each tree in the final forest of the meeting graph represents

a master node that has never been subsumed and always alternated between growing and
subsuming other components, and growing again. The growth happens as per Algorithm 1
(DFS) which correctly solves Dispersion by Theorem 3. Whereas the subsuming of other
components merely collects the robots of the other components to the head node head(i)
(Algorithm Exploration) which subsequently get dispersed by the growing phases (Algorithm
DFS). Hence, Dispersion is achieved.

The retrace and collapse variable at each robot used in Algorithm 2 and 3 are O(log ∆).
collapsing_children takes O(log k) bits and a single bit each is required to track whether
the component is locked and whether it is collapsing. The space requirement of Algorithm 1
was shown in Theorem 3 to be (log(k + ∆)) bits. The theorem follows. ◀

Proof of Theorem 1. Follows from Theorem 9. ◀

Proof of Theorem 2. In the asynchronous setting, in every CCM cycle, each robot at a
node u determines x, the number of co-located robots, if any, that should be moving with
it to node v. It then moves as per its own schedule. On arriving at v, it does not start
its next CCM cycle until x robots have arrived from u. This essentially constitutes one
epoch and ensures that the robots that move together in a round in a synchronous setting
move together in one epoch in the asynchronous setting. With this simple modification, the
algorithm given for the synchronous setting works for the asynchronous setting. The space
and time complexities, as given in Theorem 1, carry over to the asynchronous setting. ◀

6 Concluding Remarks

In this paper, we have presented a deterministic algorithm that solves Dispersion, starting
from any initial configuration of k ≤ n robots positioned on the nodes of an arbitrary anonym-
ous graph G having n memory-less nodes, m edges, and degree ∆, in time O(min{m, k∆})
with O(log(k + ∆)) bits at each robot. This is the first algorithm that is simultaneously
optimal w.r.t. both time and memory in arbitrary anonymous graphs of constant degree,
i.e., ∆ = O(1). This algorithm improves the time bound established in the best previously
known results [19, 31] by an O(log ℓ) factor and matches asymptotically the time and memory
bound of the single-source DFS traversal. This algorithm uses a non-trivial approach of
subsuming parallel DFS traversals into single one based on their DFS tree sizes, limiting the
subsumption process overhead to the time proportional to the time needed in the single-source
DFS traversal. This approach might be of independent interest.

For future work, it will be interesting to improve the existing time lower bound of Ω(k) to
Ω(min{m, k∆}) or improve the time bound to O(k) removing the O(∆) factor. The second
interesting direction will be to consider faulty (crash and/or Byzantine) robots.
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Appendix

Proof of Lemma 8:

Proof. The series S2 is the sum of all the waits introduced by children a of a Y _trunk

node y and of M , that are of type Sl. Such a Sl child contributes delay up to 4da∆ + da

(≤ 4dy∆ + 3dy or ≤ 4dM ∆ + 3dM , respectively) and then collapses and gets subsumed by
the node b that has locked it. Thus Sl type children can occur at most k′ − 1 times in the
lifetime of the execution. Note also that db ≥ da as b to a is a decreasing path.

If all the Sl children were never involved in any meeting until now, then
∑

da ≤ k and
the lemma follows. However we need to also analyze the case where a Sl node gets subsumed
by another node b, and then the node b becomes a Sl node later. In this case, the robots
subsumed from a may be double-counted in the size of b when b later becomes a type Sl

node. This can happen at most k′ − 1 times.
Let η DFS components, including the Sl component, collapse and merge into one of them,

and let the size (i.e., number of settled robots) of each component be d. We consider two
extreme cases and show for each that the lemma holds.
1. Case 1: When components collapse and are collected, immediately afterwards (before

the collected unsettled robots can settle) the master component becomes a Sl-type node,
and the collapse and collection happen again. Again, immediately afterwards, the new
master component becomes a type Sl node, and so on.
a. The first time, η components of size d each merge into one of size d in O(ηd∆) time,

leading to a total of ηd robots in the master component.
b. The second time, η components of size d each merge into one of size d in O(ηd∆) time,

leading to a total of η2d robots in the new master component.
c. The j-th time, η components of size d each merge into one of size d in O(ηd∆) time,

leading to a total of ηjd robots in the master component.
ηjd is at most the maximum number of robots k. Solving k = ηjd, j = logη

k
d . Therefore

the total delay introduced in series S2 which is linearly proportional to ∆ times the sum
of sizes of the type Sl components, is O(η∆dj).

Sum of delays is O(η∆dj) = O(η∆d logη

k

d
)

This maximum elapsed time is O(k∆), considering both extreme cases (a) ηd = O(1) and
(b) ηd = O(k).

2. Case 2: When components collapse and are collected, the collected robots (almost) fully
disperse after which the master component becomes a type Sl node, and the collapse
and collection happen again. Again, the collected robots in the new master component
(almost) fully disperse after which the (new) master component becomes a type Sl node
and collapses and gets collected, and so on.
a. The first time, η components of size d each merge and settle into one of size ηd in

O(ηd∆) time, leading to a total of ηd robots in the master component.
b. The second time, η components of size ηd each merge and settle into one of size η2d in

O(η2d∆) time, leading to a total of η2d robots in the master component.
c. The j-th time, η components of size ηj−1d each merge and settle into one of size ηjd

in O(ηjd∆) time, leading to a total of ηjd robots in the master component.
ηjd is at most the maximum number of robots k. Solving k = ηjd, j = logη

k
d . Therefore

the total delay introduced in series S2 which is linearly proportional to ∆ times the sum
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of sizes of the type Sl components, is

O(∆(ηd + η2d + η3d + . . . + ηjd)) = O(∆ηd
ηh − 1
η − 1 )

= O( ∆ηd

η − 1(ηlogη
k
d − 1))

= O( ∆ηd

η − 1(k

d
− 1))

= O(k∆)

The lemma follows. ◀
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