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Abstract—Pervasive computing environments are composed of 
numerous smart entities (objects and human alike) which are 
interconnected through contextual links in order to create a 
Web of physical objects. The contextual links can be based on 
matching context attribute-values (e.g., co-location) or social 
connections. We call such a Web of smart physical objects as 
context map. Context maps can be used for context-aware 
search and browse of the physical world. However, changes of 
dynamic context values over time may render a context map 
inconsistent. So, it is important to update contextual links with 
changes in specific context values. Given the asynchronous 
nature of pervasive environments, it is non-trivial to detect 
events generated by contextual changes in real time. We 
propose two algorithms for instantaneous and periodic 
detection of events with concurrent timing relations. Our 
algorithms have low time complexity and they can address the 
needs of different types of pervasive computing applications. 
We have evaluated our proposed algorithms through 
simulations as well as testbed experiments. 

Keywords- Context map; Concurrent event detection; 
Searching and browsing physical world. 

I.  INTRODUCTION  
Rapid developments in embedded sensing technologies, 

wireless communications, and mobile computing, are 
transforming our physical world into a smart space. Physical 
objects (including people) embedded with sensing, 
computing, and communication capabilities are being 
contextually interconnected to form an Internet of physical 
objects, not much unlike the traditional Internet. We call 
such a novel structure, a context map, where contextual links 
between pairs of objects are created based on their matching 
contextual attributes (e.g., location, ownership, social 
connections, etc). Context attributes can be static or dynamic 
depending on whether their value changes with time. Let us 
consider the following intelligent office example to illustrate 
the idea. 

Example 1. Tom enters his office PQ821 at 9:00 am with 
a laptop borrowed from the office IT services for presenting 
at the Annual General Meeting scheduled from 11:00 am. He 
calls his project partner Bob who arrives at 9:45 am to take 
a look at his PPT slides. Leaving Bob there Tom goes to the 
canteen at 10:30 am for breakfast and finally enters meeting 
room PQ 304 at 10:50 am. He finds that Bob has arrived 
there at 10:45 am and has setup the laptop for presentation. 

There are three smart objects - Tom, Bob and Laptop. All 
three have a location (Loc) context attribute and the laptop 

has an additional user attribute. The timing diagram in Fig. 1 
shows the change of context attribute values with time and 
Fig. 2 shows the corresponding contextual links in the 
context map and the time through which they are active. If 
necessary, inactive previous links can also be stored to track 
the past contextual relationships of an object. Like the Web 
search and browse over the Internet, context map enables 
users to search for a physical object based on its current 
context values and to browse through the present and past 
contextual links between objects. Creation and maintenance 
of contextual links, however, requires correct and timely 
detection of contextual events generated by change of values 
of dynamic context attributes.  

 
P1.Loc = PQ821

TOM (P1)

P2.Loc = PQ821
BOB (P2)

P1.Loc = 
Canteen P1.Loc = PQ304

P2.Loc = PQ304

9:00 10:00 11:00

9:00 10:00 11:00

P3.Loc = PQ821

9:00 10:00 11:00
Laptop 

(P3)

P3.Loc = PQ304

12:00

12:00

12:00

P2.Loc = QR503

 
Figure 1.  Timing Diagram of Example 1  

A context map represents global snapshot of the physical 
world including multiple smart physical objects and people, 
and the variations of contextual relations among them with 
respect to time. A global snapshot should contain one local 
state from each participating entity. Using a common time 
axis, a global state can be specified as occurring at the same 
time instant in each entity (or, concurrent). Example 2 shows 
the concurrent temporal relations. 

user
loc user

loc

loc us
erloc

loc

us
er

loc us
er

loc

user
loc

loc

 
Figure 2.  Context Map for Example 1 
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Example 2. From Example 1, concurrency of location 
context of Tom, Bob and the Laptop can be represented as 
(Tom.Loc = Bob.Loc = Laptop.Loc). 

Incorrect detection of afore-mentioned events will 
certainly introduce contextual inconsistency in the context 
map. Moreover, due to the predominantly wireless nature of 
communication in pervasive computing environments, event 
reporting by smart objects often suffer from finite but 
unbounded delays. So, the consistent and timely maintenance 
of context map in a dynamic and asynchronous pervasive 
computing environment is non-trivial. 

Context consistency detection has been studied in [1][2] 
[3][4] for contexts belonging to the same snapshot of time. 
On the other hand, [5] has proposed inconsistency detection 
assuming an inherently asynchronous pervasive computing 
environment. However, example applications in [5] 
considered contextual events occurring at the same or close-
by locations. This situation does not introduce delay in event 
reporting and hence, it is not readily evident whether solution 
proposed in [5] works effectively for real-life applications. 

In this paper, we classify pervasive computing 
applications based on event reporting delay and the event 
processing interval at the central server and provide case by 
case solutions for each of them. Depending on the 
instantaneous or periodic detection of concurrent events at 
the central server, we propose two online centralized 
algorithms. 

The remainder of the paper is organized as follows. 
Section II discusses the related works. Section III gives our 
system model and classifies pervasive computing 
applications based on their requirements for event detection. 
Section IV presents two online algorithms for concurrent 
event detection. Section V presents our simulations 
experiments whereas Section VI describes the testbed 
deployment of a context map used in a smart logistics 
application. Finally, Section VII concludes this paper with 
the directions of future work. 

II. RELATED WORKS 
Contextually connecting smart objects is the key to many 

novel pervasive computing applications, such as, Internet of 
Things [6] or Real world search [7]. However, this requires 
capturing contextual events and relating them based on 
concurrency of occurrences.  

Context maps are studied in [8] and [9] with reference to 
wireless sensor networks (WSN). A map-based world model 
has been presented in [8] for WSN where a map is an 
aggregated view on the spatial and temporal distribution of a 
certain attribute (e.g., temperature) sensed by some sensor 
nodes. This approach has limited scope and does not aim to 
connect all physical objects. SENSID [9] is a situation 
detecting middleware for WSN which is used to capture 
spatial and temporal event patterns in WSN using 
conjunctive situation predicates.  

Event detection by specifying predicates is a commonly 
used policy and is being used in pervasive environments as 
well. Concurrent events are detected in [5] by tackling 
temporal inconsistency caused by message asynchrony in 
pervasive environment. They use a logical clock based 

approach for detecting concurrent events specified by 
conjunctive predicates. Later, an extension [10] was made to 
decide temporal ordering of contextual events generated by a 
user’s activity. In [11], algorithms are given to immediately 
detect conjunctive and relational predicates when they 
become true. 

Predicate detection in traditional distributed computing is 
an old research area. Detecting distributed predicates based 
on concurrent timing occurrences of intervals have been 
studied in [13], using logical time based [12] causality 
relationships. Detecting predicates based on relative timing 
constraints have been studied by us in [14]. 

III. SYSTEM MODEL AND EVENT DETECTION TECHNIQUES 
In this section we describe our system model and provide 

a classification of different event detection techniques.  

A. System Model 

We assume that a pervasive computing environment is 
composed of multiple smart entities connected wirelessly 
and they communicate through asynchronous message 
passing. Each entity has a set of context attributes whose 
values may change with time. We model these changes as 
the generation of a series of linearly ordered set of discrete 
events Ei by the execution of a process, Pi at each entity. The 
time duration between two successive events at a process 
identifies an interval during which the value of a context 
attribute holds (Fig. 1).  

 

 
Figure 3.  Different Sensors Sense Different Locations (event reporting 
delay is directly proportional to the distances of the locations from P0) 

Event streams from the processes report intervals to a 
central data fusion server (Fig. 3), P0, either periodically (in 
batch mode) or following a trigger-based approach (i.e., as 
and when the value of an attribute changes). Information 
about the reported intervals is “fused” at the server and 
examined to detect the concurrent temporal relations 
between intervals specified as a global predicate � that is 
satisfied by the current system state. The predicate � must be 
(i) explicitly defined on attribute values during intervals that 
are (ii) implicitly related using relative timing relationships. 
The context map is updated based on the truth value of �, in 
order to reflect global states of execution. 

We consider both relational and conjunctive predicates. 
Relational predicates (Example 2) can be true for any values 
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of the context attributes and cannot be evaluated locally. 
Conjunctive predicates, on the other hand, can be locally 
evaluated. They must be expressible in conjunctive form, 
i.e., i

t
iΦΛ=Φ , which is a conjunct over the local predicates 

�i, where timing relations between intervals are included in 
the conjunction operation �t. The following example shows 
a conjunctive predicate version of Example 2. 

Example 3. Conjunctive predicate: (Tom.Loc = PQ821 
& Bob.Loc = PQ821 & Laptop.Loc = PQ821). 

We assume synchronized clocks for all the smart entities. 
Many low-cost, high-accuracy clock synchronization 
protocols have been proposed for single and multi-hop 
wireless sensor networks [18][19][20]. The clock skew can 
be very small (� microsecs), relative to the rate of changes in 
the observed physical phenomena, like human and object 
movement. 

B. Classification of Event Detection Techniques 

Reporting local events to the central server by a smart 
entity incurs some message transmission delay (�). If � is 
negligible with respect to the time between two successive 
predicate evaluations at the server, then the event reporting is 
called instantaneous, otherwise it is asynchronous. 
Instantaneous reporting is feasible for small and bounded 
area, like home or office environment. Wide open areas, on 
the other hand, require considerable event reporting delays, 
as sensors are distributed across faraway locations, e.g., 
tsunami detection systems where sensory data from ground 
level and sea beds are combined, or wild-life monitoring in 
dense forests. However, in most pervasive computing 
applications, there is an inherent asynchrony caused by 
message sending delay at the sensors, message propagation 
delay, handling delay at the server, etc. Addressing the 
challenges associated with the asynchrony in event reporting 
is necessary for correct detection of �. 

TABLE I.  CLASSIFICATION OF EVENT DETECTION TECHNIQUES 

Event Reporting Delay 
Asynchronous 
(bounded by �) 

Instantaneous (� = 0)

 

Trigger-
based 

Highway accident 
detection, Damage 
detection in long 

distance  oil 
pipelines, Undersea 

cables, etc 

Safety-critical 
applications, (Air or 

Nuclear accident 
detection, Tsunami 
detection), Smart 
homes, office, etc 

 

Periodic 
(Batch) 

Wild-life / Habitat / 
Volcano monitoring 

Structure health 
monitoring 

 
 
Moreover, depending on the type of pervasive 

application, the server may choose to do predicate checking 
either periodically or using a trigger-based approach. In the 
periodic approach, the server stores the incoming events in a 
buffer and evaluates them periodically. The period of 
evaluation is called epoch. For trigger-based approach, 
whenever the value of an attribute changes in a process, it 

reports the event to the server for immediate processing. 
Depending on the event reporting delay and the predicate 
evaluation techniques at the server, four different cases can 
be specified. Table I summarizes the cases with examples. 

Here, we assume that the upper bound on event reporting 
delays is �. Since, temporal relations between event intervals 
are specified with predicates, we shall use event and 
predicate detection interchangeably for the rest of the paper. 
We propose two different online algorithms to address 
trigger-based and periodic detection of concurrent predicates 
considering asynchronous event reporting (see Section IV). 
In case �= 0, the event reporting is instantaneous and our 
algorithms can equally handle that. So, our proposed 
algorithms can address concurrent predicate detection for a 
wide array of pervasive computing applications hitherto 
unaccomplished by any other scheme. 

IV. CONTEXT MAP CREATION AND CONCURRENT 
PREDICATE DETECTION 

In this section, we first define the concurrent predicate 
detection problem (Concpred) and then present two algorithms 
for detecting concurrent predicates and creating context map. 

Problem Concpred. Given a set of processes P, such that, 
each process has a set of k attributes, A = {A1, A2, …, Ak}, 
each attribute can take up any value from a value set for the 
attribute, and the value of an attribute may change over time. 
Assume that a predicate � is specified over (Pi.aj, Pi P 

aj A). The objective is to identify in an online manner 
each set of intervals I = {I1; I2; . . . In}, where Ii is from 
process Pi, such that there is some instant of time that 
belongs within all these intervals at which � is true. 

Events sent by different processes are checked pairwise 
at the central server and when concurrent predicates are 
satisfied for a pair of entities, a link is added between them 
in the context map. So, context map creation and concurrent 
predicate detection are carried out simultaneously in our 
proposed algorithms. 

A. Data Structure for Concpred Algorithms 

We assume that there is a set of processes (one for each 
smart entity), P, and each process has a set, A, of context 
attributes. We also assume that |P| = p and |A| = a. Every 
event (e) is identified by a quadruple (Pi, Aj, Val, ts), where Pi 
is the identifier of process i, Aj is the attribute j of Pi, Val is 
the value of attribute Aj, and ts is the timestamp of occurrence 
of e. From Fig. 1, when Bob’s location changes from QR503 
to PQ821, a new event is generated which is represented as 
(P1, Loc, PQ821, 9:45 am). Similarly, every interval (I) is 
identified by a triple (Val, ts, tf), where Val denotes the value 
of a context attribute during interval I, which started at time 
ts and continued till tf. The interval started by Bob’s location 
change is represented as (PQ821, 9:45 am, 10:45 am). A 
contextual link is represented with a quadruple (Aj, Val, ts, tf), 
where Aj is a context attribute and Val is the value of Aj 
during the time interval which started at time ts and 
continued till tf. Contextual links are created between a pair 
of processes iff a context attribute of one process is related to 
a context attribute (matching or not) of the other process 
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through some user define function, f. E.g., co-
owned(U.owner=V.owner), means if the owner attributes of 
U and V processes are same, then they satisfy the co-owned 
function. Another type is ownership(U.owner = V.id), which 
means that if the owner attribute of process U contains the 
value of id attribute of process V, then U is owned by V and 
they satisfy the ownership function. 

Two different queues are maintained at the central server. 
One single queue of events (Q) holds a list of incoming 
events sorted with respect to ts. Another set of p*a queues, 
called interval queues (Q [i, j]), are maintained to capture the 
intervals generated by each attribute of each process. We 
assume that each such queue can hold at most � intervals, 
where � is the maximum number of intervals per attribute per 
process (for trigger-based predicate detection) or per 
attribute per epoch (for periodic predicate detection). 

B. Algorithm for Trigger-based Concpred Detection 

When a process identifies a change in value of a context 
attribute, it generates an event and sends it to the server. 
After a new event arrives at the server, it enqueues the event 
in Q and starts a timer for time � to capture all other events 
which occurred within (ts–�, ts) and is delayed during 
transmission. When the timer expires, the server transfers the 
event from the head of Q to the head of Q [i, j], removing the 
previous head element of Q [i, j]. So, the interval for the 
previous event is closed and a new interval is started for the 
attribute Aj of process Pi, and it will continue until the 
attribute value changes to generate a new event. Thus Q [i, j] 
always has at most one element at any time for all i and j. 

After a new interval is started at a Q [i, j], the attribute 
values of the intervals at the heads of all Q [i, j] are evaluated 
to check (i) whether any pair has matching attribute-values in 
which case a contextual link is added, and (ii) whether the 
predicate � is satisfied. Below, we shall elaborate the 
process using the Example 1. 

 

Algorithm1: Online Algorithm for Trigger-based Concpred 

Event: (Pi, Aj, Val, ts) 
Interval: (Val, ts, tf) 
Initialize:  

queue of events: Q = < >  
queue of intervals: ( p a) Q [p, a] � enqueue (default, t, ) 

On receiving an event e from process Pi at P0 due to change of attribute Ai 
(1) Enqueue e = (Pi, Aj, Val, ts) in sorted Q and start timer for (ts+�) 
When timer pops at t� 
(2) e = (Pi, Aj, Val, ts) � Dequeue (Q) 
(3) Dequeue (Q [i, j]) 
(4) Enqueue ((Val, ts, ), Q [i, j])) 
(5) for all a in A do 
(6)     m,n P   
(7)           if(f(m.a = n.a)) 
(8)                  add a link L(Aj, Val, ts, ) in the context map between m, n 
(9)           else  
(10)               close any existing link with current time stamp: L(Aj, Val, ts, tf) 
between m, n 
(11) if  � (( p a) head (Q [p, a]).Val) = TRUE then 
(12)   set ALARM 

 

From Fig. 4, when a new interval is started when P2.Loc 
changes from QR503 to PQ821, a new event is sent by 
process P2 and comparison is done between the location 
attribute of the three entities, Tom, Bob, and Laptop and 
contextual links are created between them (Fig. 2(b) and 
2(c)). At the same time, the relational predicate shown in 
Example 2 and the conjunctive predicate shown in Example 
3 are also satisfied. Similarly, when P1.Loc changes from 
PQ821 to canteen, new event is sent by P1 to the server and 
the context map is updated to the new state as shown in Fig. 
2(d). Again, at 10:45 am, two events are concurrently 
generated at P2 and P3 (both P2.Loc and P3.Loc change from 
PQ821 to PQ304) and they are detected by the Algorithm1 
and updated in the context map (Fig. 2(e)). Finally, P1.Loc 
changes from canteen to PQ304 and concurrency is detected 
between the location attributes of the three process and the 
context map is updated to the one in Fig. 2(f). In this case 
also, the predicates specified in Example 2 and Example 3 
are satisfied. Context maps can store the old contextual links 
to track the past locations and users of the laptop (“where the 
laptop was at 10:35 am and who was using it?”). 

 

 
Figure 4.  Generation of Events in Example 1  

Analysis of worst case time complexity: The enqueue 
operation to insert incoming events in the sorted Q takes 
log(p*a*�) time. Lines 5-10 maintain the context map by 
pair-wise comparison of the heads of Q [i, j]. The complexity 
of this operation is (p*a)*(p*a-1)/2. The predicate evaluation 
in line 11 has a complexity of O(f(�)) where � is the 
predicate function. So, the worst case time complexity of 
Algorithm1 is: O((p*a*�)(log(p*a*�)+O(f(�)+(p*a)*(p*a - 
1)/2))). 

C. Algorithm for Periodic Concpred Detection 

Algorithm2 is a centralized algorithm for periodically 
evaluating concurrent predicates considering asynchrony in 
event reporting. All events which occur during an epoch of 
period t (i.e., for events with ts<t) are captured considering a 
maximum event reporting delay of �, and stored in the 
interval queue Q [i, j]. If an event, which arrives during 
(t+�), has ts>t, then it is made to wait in the event queue, Q, 
before finally placing it in Q [i, j], pending the predicate 
evaluation for the current period. 
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When an epoch ends at (t+�), the server temporarily 
closes the last queued intervals in Q [i, j] with the current 
time stamp, t, and then evaluates the attribute values of the 
intervals at the heads of all Q [i, j] to detect (i) whether any 
pair has matching attribute-values in which case a contextual 
link is added, and (ii) whether the predicate � is satisfied. 
After the first round of evaluation, some intervals are deleted 
from the heads of some of the Q [i, j] and another round of 
comparison is carried out among the updated heads of Q [i, 
j]. This process is repeated (line 9-24) until heads of all Q [i, 
j] are the latest intervals for the current epoch. 

 

Algorithm2: Online Algorithm for Periodic Concpred 

Event: (Pi, Aj, Val, ts) 
Interval: (Val, ts, tf) 
Initialize:  

queue of events: Q = < >  
queue of intervals: ( p a) Q [p, a]  � enqueue (default, t, ) 

Procedure ENQUEUE (e)  
(1) tail (Q [p, a]).tf  � ts 
(2) Enqueue (Val, ts, ) in Q [p, a] 

On receiving an event e from process Pi at P0 during epoch 
     (3) ENQUEUE (e); 
When epoch ends at t 

(4) wait � 
(5) for each e that arrived in [t, t+�] do 
(6)      if (e.ts < t) then ENQUEUE (e) 
(7)      else ENQUEUE (e) after processing events in the current epoch 
(8) ( p a) tail (Q [p, a]).tf � ts 

(9) repeat  
(10)    for all a in A do  
 (11)       m,n P  
 (12)             if (f(m.a = n.a))  
(13)                  add a link L(Aj, Val, ts, ) in the context map between m, n
(14)             else  
(15)               close any existing link with current time stamp: L(Aj, Val, 
ts, tf) between m, n 
(16)   if  �(( p a) head (Q [p, a]).Val) = TRUE then 
(17)        set ALARM ( max

,ap
(head (Q [p, a]).ts), min

,ap
(head (Q [p, a]).tf)) 

(18)   tx � min
,ap

 (head (Q [p, a]).tf) 

(19)   if (tx < t) then 
(20)        ( p a) | head (Q[p, a]).tf =  tx, delete head (Q [p, a]) 
(21)        stop � FALSE 
(22)   else 
(23)        stop � TRUE 
(24) until stop 

 
Deletion of intervals also helps to prevent overflow of a 

Q [i, j], which can hold up to � intervals per process per 
epoch. We observe that the interval which has finished first 
among the intervals at the heads of all Q [i, j] cannot overlap 
with any successor intervals and hence, no concurrency will 
be possible among them. So, we detect such interval(s) with 
earliest finish time at the heads of all Q [i, j], and delete it (or 
them) (line 18-23). 

When a predicate is satisfied, our algorithm can detect 
the period of concurrency, i.e., the overlapping time of the 
intervals (TOLAP in Fig. 4) over which � is defined. This is 

achieved by subtracting ts of the interval with latest start time 
from the tf of the interval with earliest finish time (line 17). 

Analysis of worst case time complexity: The function 
ENQUEUE(e) which enqueues incoming events has a time 
complexity of O(p*a). The repeat loop which spans lines 9-
24 can be executed at most O(p*a*(�-1)) time. Lines 10-15 
maintain the context map based on pair-wise comparison of 
the heads of Q [i, j]. The complexity of this operation is 
(p*a)*(p*a - 1)/2. The predicate evaluation in line 16 has a 
complexity of O(f(�)) where � is the predicate function. 
Evaluating period of concurrency in line 17 has no extra 
cost. Each of the operations for detecting and removing time 
intervals (line 18-23) requires O(p*a) time. So, worst case 
time complexity of the Algorithm2 is: O((p*a*(�-1))(p*a + 
O(f(�)+(p*a)*(p*a - 1)/2))). 

D. General Notes on Concpred Algorithms 

With a maximum of � events per attribute per process, we 
are stepping through O(p*a*�) states. To generate each state 
from the previous one in Algorithm2, it takes p*a time. In 
Algorithm1, each state is created in O(1) cost by merging the 
received event information with the state information of 
other attributes / processes. 

To maintain a context map, we have to monitor multiple 
predicates. Algorithm1 can achieve that by simply repeating 
lines (5-12) – in a loop, iterating through the predicates.  

Though we have assumed synchronized process clocks, 
in practice it is impossible to achieve complete clock 
synchronization and some skew always remains. Our 
algorithms can detect concurrent predicates considering 
skew between the clocks of different processes using the 
methods explained in [15]. However, in that case, we need to 
assume that the predicates hold unchanged for at least 2�, 
where � is the skew between different process clocks. 

The authors in [15] have proposed two algorithms that 
can detect unstable predicates which retain their truth value 
for at least 2�, where � is the skew between different process 
clocks. The first algorithm aims to detect a global predicate 
at a predetermined clock value T. The second one is a 
centralized algorithm for global predicate detection where 
individual processes detect local predicates and then send the 
intervals, through which the predicate holds, to a central 
server which then detects global predicates.  

V. PERFORMANCE EVALUATION 
We have carried out extensive simulations to evaluate the 

performance of our proposed algorithms. We have 
considered creating context map based on the dynamic 
location context attribute as it quickly changes with time and 
the context map needs to be updated frequently. 

A. Simulation Setup and Metrics 

The network nodes are randomly scattered in a square 
territory. The total number of nodes is varied to examine the 
effect of system scale on the performance. For message 
routing, we have implemented a simple protocol based on 
the “least hops” policy, which is adopted in many classical 
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routing protocols in ad hoc networks. A routing table is 
proactively maintained at each node. 

TABLE II.  SIMULATION PARAMETERS 

Parameters Values 
Number of nodes, (N) 50, 100, 150, 200 
Territory scale (m2) 1500 
Mean link delay (ms) 5 
Max link delay (ms) 100 
Transmission radius (m) 100  
Routing Policy     Least hops 
Mobility model Random Waypoint 
Node speed V (in m/s) 5, 10 
Pause time (ms) 10, 50 
Period of Predicate Evaluation (ms) 100 

 
We assume that, every node has an id and a location 

attribute which is represented by its co-ordinates in the 2D 
simulation territory. Node 0 is the central server which keeps 
track of the location of other nodes and constructs the 
context graph. The territory is divided into 3x3 square grids 
which are considered as enclosed physical areas, like rooms. 
Nodes in the same grid are considered as co-located and they 
are linked with a co-location relation. When nodes moves 
across grids, the co-location relations change to trigger an 
event and the context map is updated accordingly. Our 
simulation parameters have been listed in Table II. 

In this experiment, we measure the time delay in 
updating the context map using our two proposed algorithms 
with the help of the following metrics. 

UD (Update Delay): It is the average time delay in 
milliseconds between the time a node changes location and 
the time the context map is updated. 

We run each simulation for 20 simulation minutes and 
each point is obtained by averaging over 10 different runs. 
We do not consider node failure during the experiment. 

B. Analysis of Performance Results 

We plot the results of delay in updating context map for 
algorithms 1 and 2 for varied node speeds and pause times. 
Fig. 5 plots UD by varying N while keeping the node pause 
time as 10 ms.  

 

 
Figure 5.  N vs. UD (Pause time = 10 ms) 

We observe that for both the algorithms, UD increases 
with N and for the same N, UD increases with the node 

speed. UD increases with N as the central server needs to 
manage more events generated by higher number of nodes. 
For the same reason, at higher node speed, the nodes 
frequently move across grid boundaries and many new 
events are triggered. For the Algorithm 2, the observations 
are similar with a marked difference in the values of UD 
which is generally quite high. Since the update is periodic, 
the location changes occurring just after an update needs to 
wait till the completion of the period. This process increases 
the average updated delay of the context map.  

Fig. 6 plots UD for varied N while the node pause time is 
50 ms. The general trends of the graphs remain same in Fig. 
5 and Fig. 6 However, the higher node pause time in Fig. 6 
results in less UD for the same values of N and node speeds. 
This is because, the higher pause time means that the nodes 
move across grid boundaries less frequently resulting in 
lower number of event generations. 

 
Figure 6.  N vs. UD (Pause time = 50 ms)  

In the next section, we have verified our simulation 
results by implementing the two algorithms on a wireless 
sensor networks testbed system. 

VI. TESTBED SYSTEM FOR CONTEXT MAP 
We have developed a ubiquitous searching and browsing 

framework (USBF) which uses context map for a demo 
application of a smart logistics network. In Logistics, it is 
always necessary to keep track of the goods being carried as 
well as the available infrastructure, like vehicles, personnel, 
etc. In this application, we consider that a logistic company 
(ABC Logistics Co.) divides its operating area (e.g., a city) 
into four delivery zones and the entire area is covered with a 
wireless sensor network. Sensor nodes can track the logistic 
vehicles collaboratively. We use our intelligent traffic system 
testbed (Fig. 7(a)) for this application. 

In this demo, we use four smart cars (as logistic vehicles) 
embedded with sensor nodes, a smart mobile phone (Nokia 
XpressMusic 5800) with attached NokiaTM uSD card [22], 
and many sensor nodes attached to our intelligent traffic 
system testbed (Fig. 7(b)). Nokia uSD cards enable direct 
interfacing between mobile phones and sensor nodes. We 
assume that each car carries one driver, one laborer and a 
number of deliverable goods in separate packages. All the 
objects (cars, personnel and packages) are smart and have 
embedded sensing and communication capabilities. Each 
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goods package has a RFID tag attached with it and contains 
sender’s name and address, receiver’s name and address, 
delivery due date, etc. Together the smart entities form a 
context map as shown in Fig. 7(c). While two cars of the 
company are linked as co-owned, the drivers, laborers, and 
packages in the car are linked with that car as carried entities. 
All the drivers and laborers are connected as colleagues. All 
these relationships are static as they do not change with time. 

Each driver has a mobile phone in which they can see a 
map of the entire testbed. Each entity can be clicked and 
their attributes can be studied. The context map can be 
browsed by clicking an entity and following their contextual 
hyperlinks. When a car suffers a breakdown, the driver can 
use the context map to find out which other car of his 
company is in the same delivery zone concurrently with him. 
The concurrency relation can be specified using a 
conjunctive predicate. Assuming that driver of car1 
(currently in zone1) wants to find whether car2 owned by his 
employer is also in zone1, by using the following 
conjunctive predicate:  

(Car1.Owner = ABC Logistics & Car1.Loc = Zone1) & 
(Car2.Owner = ABC Logistics & Car2.Loc = Zone1). 

 

 
(a) 

(b)

(d) 
 

(c) 

Figure 7.  (a) Snapshot of our Smart Traffic System testebed, (b) Smart car, 
smart phone with uSD card, and sensor mote, (c) Context map for the 

logistic application, (d) Logistic vehicle tracking (using an area map of the 
testbed) through the mobile phone (vehicle shown with red circle and arrow) 

 
If this predicate is satisfied, the context map will show a 

co-location link between car1 and car2 and this is a dynamic 
link. Similarly, other predicates can be specified comprising 
more than two cars and many other attributes. After the 
driver receives a list of logistic vehicles present in the same 
delivery zone, he can browse through them to get detailed 

information regarding the contents of the vehicle, delivery 
location, available space, driver contacts, etc. A video demo 
of the above application is available in [23]. 

In our testbed, the predicate detection and context map 
creation and maintenance is done in the following way. All 
the sensor nodes and the uSD card are pre-synchronized with 
negligible skew. The location attribute is updated by the 
smart car every time it changes, by sending a message to the 
central server. Whenever a new event (generated by location 
change of a car) arrives in the server, it runs Algorithm1 to 
detect location concurrency specified by the drivers. Cars 
which are concurrently in the same delivery zone are linked 
with a co-location relation in the context map. We have also 
tested for Algorithm2 by moving the cars continuously. The 
algorithm waits for a period of 5 seconds before evaluating 
the predicates and updating the context map. When using 
Algorithm2, the context map still contains old information 
even if many new events have occurred and refreshes the 
map after every 5 seconds. This observation is similar to the 
one obtained in simulation where the context map update 
delay is higher for Algorithm2. Algorithm1 also incurs some 
delay in updating the context map if the cars frequently move 
across zone boundaries, in which case the dynamic links are 
required to be updated. Otherwise, Algorithm1 performs well.   

VII. CONCLUSION AND FUTURE WORKS 
In this paper we presented a context map structure which 

is a graph showing contextual interconnection between 
several smart physical objects and people of our surrounding 
environment. Contextual links are added between smart 
objects based on multiple context-based relations, such as, 
co-location (‘located in the same room’), or colleague 
(‘employed by the same company’), etc. Since, the dynamic 
context attributes (e.g., location) of an object may change 
with time, the contextual links may also be created or deleted 
with changes in context values. Tracking these changes and 
updating the contextual links in a timely and consistent 
manner is non-trivial in asynchronous pervasive computing 
environments. To resolve this problem, we proposed two 
centralized algorithms for online concurrency detection of 
contextual events. While one algorithm detects concurrent 
events as and when it happens, the other one periodically 
executes concurrency detection operation. Our proposed 
algorithms have low time complexity and can be applicable 
to a wide range of pervasive applications. We have evaluated 
our algorithms through extensive simulations and also 
through testbed experiments.  

In future, we want to develop decentralized algorithm for 
detecting contextual events which can maintain context map 
through autonomous coordination of smart objects. We also 
want to carry out more experiments to verify our algorithms.  
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