
Context Map for Navigating the Physical World

Vaskar Raychoudhury
Dept. of E&CE, IIT

Roorkee, India & Dept. of
Computing, Hong Kong
Polytechnic University

vaskar@ieee.org

Jiannong Cao
Dept. of Computing,

Hong Kong Polytechnic
University, Hong Kong

csjcao@comp.polyu.edu.hk

Weiping Zhu
Dept. of Computing, Hong

Kong Polytechnic
University, Hong Kong

csweizhu@comp.polyu.edu.hk

Ajay D. Kshemkalyani
Dept. of Computer Science,
Univ. of Illinois at Chicago,

Chicago, IL 60607-7053
ajay@uic.edu

Abstract—Pervasive computing environments are composed of
numerous smart entities (objects and human alike) which are
interconnected through contextual links in order to create a
Web of physical objects. The contextual links can be based on
matching context attribute-values (e.g., co-location) or social
connections. We call such a Web of smart physical objects as
context map. Context maps can be used for context-aware
search and browse of the physical world. However, changes of
dynamic context values over time may render a context map
inconsistent. So, it is important to update contextual links with
changes in specific context values. Given the asynchronous
nature of pervasive environments, it is non-trivial to detect
events generated by contextual changes in real time. We
propose two algorithms for instantaneous and periodic
detection of events with concurrent timing relations. Our
algorithms have low time complexity and they can address the
needs of different types of pervasive computing applications.
We have evaluated our proposed algorithms through
simulations as well as testbed experiments.

Keywords- Context map; Concurrent event detection;
Searching and browsing physical world.

I. INTRODUCTION
Rapid developments in embedded sensing technologies,

wireless communications, and mobile computing, are
transforming our physical world into a smart space. Physical
objects (including people) embedded with sensing,
computing, and communication capabilities are being
contextually interconnected to form an Internet of physical
objects, not much unlike the traditional Internet. We call
such a novel structure, a context map, where contextual links
between pairs of objects are created based on their matching
contextual attributes (e.g., location, ownership, social
connections, etc). Context attributes can be static or dynamic
depending on whether their value changes with time. Let us
consider the following intelligent office example to illustrate
the idea.

Example 1. Tom enters his office PQ821 at 9:00 am with
a laptop borrowed from the office IT services for presenting
at the Annual General Meeting scheduled from 11:00 am. He
calls his project partner Bob who arrives at 9:45 am to take
a look at his PPT slides. Leaving Bob there Tom goes to the
canteen at 10:30 am for breakfast and finally enters meeting
room PQ 304 at 10:50 am. He finds that Bob has arrived
there at 10:45 am and has setup the laptop for presentation.

There are three smart objects - Tom, Bob and Laptop. All
three have a location (Loc) context attribute and the laptop

has an additional user attribute. The timing diagram in Fig. 1
shows the change of context attribute values with time and
Fig. 2 shows the corresponding contextual links in the
context map and the time through which they are active. If
necessary, inactive previous links can also be stored to track
the past contextual relationships of an object. Like the Web
search and browse over the Internet, context map enables
users to search for a physical object based on its current
context values and to browse through the present and past
contextual links between objects. Creation and maintenance
of contextual links, however, requires correct and timely
detection of contextual events generated by change of values
of dynamic context attributes.

P1.Loc = PQ821

TOM (P1)

P2.Loc = PQ821
BOB (P2)

P1.Loc =
Canteen P1.Loc = PQ304

P2.Loc = PQ304

9:00 10:00 11:00

9:00 10:00 11:00

P3.Loc = PQ821

9:00 10:00 11:00
Laptop

(P3)

P3.Loc = PQ304

12:00

12:00

12:00

P2.Loc = QR503

Figure 1. Timing Diagram of Example 1

A context map represents global snapshot of the physical
world including multiple smart physical objects and people,
and the variations of contextual relations among them with
respect to time. A global snapshot should contain one local
state from each participating entity. Using a common time
axis, a global state can be specified as occurring at the same
time instant in each entity (or, concurrent). Example 2 shows
the concurrent temporal relations.

user
loc user

loc

loc us
erloc

loc

us
er

loc us
er

loc

user
loc

loc

Figure 2. Context Map for Example 1

2012 20th Euromicro International Conference on Parallel, Distributed and Network-based Processing

978-0-7695-4633-9/12 $26.00 © 2012 IEEE

DOI 10.1109/PDP.2012.51

146

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:55:48 UTC from IEEE Xplore. Restrictions apply.

Example 2. From Example 1, concurrency of location
context of Tom, Bob and the Laptop can be represented as
(Tom.Loc = Bob.Loc = Laptop.Loc).

Incorrect detection of afore-mentioned events will
certainly introduce contextual inconsistency in the context
map. Moreover, due to the predominantly wireless nature of
communication in pervasive computing environments, event
reporting by smart objects often suffer from finite but
unbounded delays. So, the consistent and timely maintenance
of context map in a dynamic and asynchronous pervasive
computing environment is non-trivial.

Context consistency detection has been studied in [1][2]
[3][4] for contexts belonging to the same snapshot of time.
On the other hand, [5] has proposed inconsistency detection
assuming an inherently asynchronous pervasive computing
environment. However, example applications in [5]
considered contextual events occurring at the same or close-
by locations. This situation does not introduce delay in event
reporting and hence, it is not readily evident whether solution
proposed in [5] works effectively for real-life applications.

In this paper, we classify pervasive computing
applications based on event reporting delay and the event
processing interval at the central server and provide case by
case solutions for each of them. Depending on the
instantaneous or periodic detection of concurrent events at
the central server, we propose two online centralized
algorithms.

The remainder of the paper is organized as follows.
Section II discusses the related works. Section III gives our
system model and classifies pervasive computing
applications based on their requirements for event detection.
Section IV presents two online algorithms for concurrent
event detection. Section V presents our simulations
experiments whereas Section VI describes the testbed
deployment of a context map used in a smart logistics
application. Finally, Section VII concludes this paper with
the directions of future work.

II. RELATED WORKS
Contextually connecting smart objects is the key to many

novel pervasive computing applications, such as, Internet of
Things [6] or Real world search [7]. However, this requires
capturing contextual events and relating them based on
concurrency of occurrences.

Context maps are studied in [8] and [9] with reference to
wireless sensor networks (WSN). A map-based world model
has been presented in [8] for WSN where a map is an
aggregated view on the spatial and temporal distribution of a
certain attribute (e.g., temperature) sensed by some sensor
nodes. This approach has limited scope and does not aim to
connect all physical objects. SENSID [9] is a situation
detecting middleware for WSN which is used to capture
spatial and temporal event patterns in WSN using
conjunctive situation predicates.

Event detection by specifying predicates is a commonly
used policy and is being used in pervasive environments as
well. Concurrent events are detected in [5] by tackling
temporal inconsistency caused by message asynchrony in
pervasive environment. They use a logical clock based

approach for detecting concurrent events specified by
conjunctive predicates. Later, an extension [10] was made to
decide temporal ordering of contextual events generated by a
user’s activity. In [11], algorithms are given to immediately
detect conjunctive and relational predicates when they
become true.

Predicate detection in traditional distributed computing is
an old research area. Detecting distributed predicates based
on concurrent timing occurrences of intervals have been
studied in [13], using logical time based [12] causality
relationships. Detecting predicates based on relative timing
constraints have been studied by us in [14].

III. SYSTEM MODEL AND EVENT DETECTION TECHNIQUES
In this section we describe our system model and provide

a classification of different event detection techniques.

A. System Model

We assume that a pervasive computing environment is
composed of multiple smart entities connected wirelessly
and they communicate through asynchronous message
passing. Each entity has a set of context attributes whose
values may change with time. We model these changes as
the generation of a series of linearly ordered set of discrete
events Ei by the execution of a process, Pi at each entity. The
time duration between two successive events at a process
identifies an interval during which the value of a context
attribute holds (Fig. 1).

Figure 3. Different Sensors Sense Different Locations (event reporting
delay is directly proportional to the distances of the locations from P0)

Event streams from the processes report intervals to a
central data fusion server (Fig. 3), P0, either periodically (in
batch mode) or following a trigger-based approach (i.e., as
and when the value of an attribute changes). Information
about the reported intervals is “fused” at the server and
examined to detect the concurrent temporal relations
between intervals specified as a global predicate � that is
satisfied by the current system state. The predicate � must be
(i) explicitly defined on attribute values during intervals that
are (ii) implicitly related using relative timing relationships.
The context map is updated based on the truth value of �, in
order to reflect global states of execution.

We consider both relational and conjunctive predicates.
Relational predicates (Example 2) can be true for any values

147

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:55:48 UTC from IEEE Xplore. Restrictions apply.

of the context attributes and cannot be evaluated locally.
Conjunctive predicates, on the other hand, can be locally
evaluated. They must be expressible in conjunctive form,
i.e., i

t
iΦΛ=Φ , which is a conjunct over the local predicates

�i, where timing relations between intervals are included in
the conjunction operation �t. The following example shows
a conjunctive predicate version of Example 2.

Example 3. Conjunctive predicate: (Tom.Loc = PQ821
& Bob.Loc = PQ821 & Laptop.Loc = PQ821).

We assume synchronized clocks for all the smart entities.
Many low-cost, high-accuracy clock synchronization
protocols have been proposed for single and multi-hop
wireless sensor networks [18][19][20]. The clock skew can
be very small (� microsecs), relative to the rate of changes in
the observed physical phenomena, like human and object
movement.

B. Classification of Event Detection Techniques

Reporting local events to the central server by a smart
entity incurs some message transmission delay (�). If � is
negligible with respect to the time between two successive
predicate evaluations at the server, then the event reporting is
called instantaneous, otherwise it is asynchronous.
Instantaneous reporting is feasible for small and bounded
area, like home or office environment. Wide open areas, on
the other hand, require considerable event reporting delays,
as sensors are distributed across faraway locations, e.g.,
tsunami detection systems where sensory data from ground
level and sea beds are combined, or wild-life monitoring in
dense forests. However, in most pervasive computing
applications, there is an inherent asynchrony caused by
message sending delay at the sensors, message propagation
delay, handling delay at the server, etc. Addressing the
challenges associated with the asynchrony in event reporting
is necessary for correct detection of �.

TABLE I. CLASSIFICATION OF EVENT DETECTION TECHNIQUES

Event Reporting Delay
Asynchronous
(bounded by �)

Instantaneous (� = 0)

Trigger-
based

Highway accident
detection, Damage
detection in long

distance oil
pipelines, Undersea

cables, etc

Safety-critical
applications, (Air or

Nuclear accident
detection, Tsunami
detection), Smart
homes, office, etc

Periodic
(Batch)

Wild-life / Habitat /
Volcano monitoring

Structure health
monitoring

Moreover, depending on the type of pervasive

application, the server may choose to do predicate checking
either periodically or using a trigger-based approach. In the
periodic approach, the server stores the incoming events in a
buffer and evaluates them periodically. The period of
evaluation is called epoch. For trigger-based approach,
whenever the value of an attribute changes in a process, it

reports the event to the server for immediate processing.
Depending on the event reporting delay and the predicate
evaluation techniques at the server, four different cases can
be specified. Table I summarizes the cases with examples.

Here, we assume that the upper bound on event reporting
delays is �. Since, temporal relations between event intervals
are specified with predicates, we shall use event and
predicate detection interchangeably for the rest of the paper.
We propose two different online algorithms to address
trigger-based and periodic detection of concurrent predicates
considering asynchronous event reporting (see Section IV).
In case �= 0, the event reporting is instantaneous and our
algorithms can equally handle that. So, our proposed
algorithms can address concurrent predicate detection for a
wide array of pervasive computing applications hitherto
unaccomplished by any other scheme.

IV. CONTEXT MAP CREATION AND CONCURRENT
PREDICATE DETECTION

In this section, we first define the concurrent predicate
detection problem (Concpred) and then present two algorithms
for detecting concurrent predicates and creating context map.

Problem Concpred. Given a set of processes P, such that,
each process has a set of k attributes, A = {A1, A2, …, Ak},
each attribute can take up any value from a value set for the
attribute, and the value of an attribute may change over time.
Assume that a predicate � is specified over (Pi.aj, Pi P

aj A). The objective is to identify in an online manner
each set of intervals I = {I1; I2; . . . In}, where Ii is from
process Pi, such that there is some instant of time that
belongs within all these intervals at which � is true.

Events sent by different processes are checked pairwise
at the central server and when concurrent predicates are
satisfied for a pair of entities, a link is added between them
in the context map. So, context map creation and concurrent
predicate detection are carried out simultaneously in our
proposed algorithms.

A. Data Structure for Concpred Algorithms

We assume that there is a set of processes (one for each
smart entity), P, and each process has a set, A, of context
attributes. We also assume that |P| = p and |A| = a. Every
event (e) is identified by a quadruple (Pi, Aj, Val, ts), where Pi
is the identifier of process i, Aj is the attribute j of Pi, Val is
the value of attribute Aj, and ts is the timestamp of occurrence
of e. From Fig. 1, when Bob’s location changes from QR503
to PQ821, a new event is generated which is represented as
(P1, Loc, PQ821, 9:45 am). Similarly, every interval (I) is
identified by a triple (Val, ts, tf), where Val denotes the value
of a context attribute during interval I, which started at time
ts and continued till tf. The interval started by Bob’s location
change is represented as (PQ821, 9:45 am, 10:45 am). A
contextual link is represented with a quadruple (Aj, Val, ts, tf),
where Aj is a context attribute and Val is the value of Aj
during the time interval which started at time ts and
continued till tf. Contextual links are created between a pair
of processes iff a context attribute of one process is related to
a context attribute (matching or not) of the other process

148

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:55:48 UTC from IEEE Xplore. Restrictions apply.

through some user define function, f. E.g., co-
owned(U.owner=V.owner), means if the owner attributes of
U and V processes are same, then they satisfy the co-owned
function. Another type is ownership(U.owner = V.id), which
means that if the owner attribute of process U contains the
value of id attribute of process V, then U is owned by V and
they satisfy the ownership function.

Two different queues are maintained at the central server.
One single queue of events (Q) holds a list of incoming
events sorted with respect to ts. Another set of p*a queues,
called interval queues (Q [i, j]), are maintained to capture the
intervals generated by each attribute of each process. We
assume that each such queue can hold at most � intervals,
where � is the maximum number of intervals per attribute per
process (for trigger-based predicate detection) or per
attribute per epoch (for periodic predicate detection).

B. Algorithm for Trigger-based Concpred Detection

When a process identifies a change in value of a context
attribute, it generates an event and sends it to the server.
After a new event arrives at the server, it enqueues the event
in Q and starts a timer for time � to capture all other events
which occurred within (ts–�, ts) and is delayed during
transmission. When the timer expires, the server transfers the
event from the head of Q to the head of Q [i, j], removing the
previous head element of Q [i, j]. So, the interval for the
previous event is closed and a new interval is started for the
attribute Aj of process Pi, and it will continue until the
attribute value changes to generate a new event. Thus Q [i, j]
always has at most one element at any time for all i and j.

After a new interval is started at a Q [i, j], the attribute
values of the intervals at the heads of all Q [i, j] are evaluated
to check (i) whether any pair has matching attribute-values in
which case a contextual link is added, and (ii) whether the
predicate � is satisfied. Below, we shall elaborate the
process using the Example 1.

Algorithm1: Online Algorithm for Trigger-based Concpred

Event: (Pi, Aj, Val, ts)
Interval: (Val, ts, tf)
Initialize:

queue of events: Q = < >
queue of intervals: (p a) Q [p, a] � enqueue (default, t,)

On receiving an event e from process Pi at P0 due to change of attribute Ai
(1) Enqueue e = (Pi, Aj, Val, ts) in sorted Q and start timer for (ts+�)
When timer pops at t�
(2) e = (Pi, Aj, Val, ts) � Dequeue (Q)
(3) Dequeue (Q [i, j])
(4) Enqueue ((Val, ts,), Q [i, j]))
(5) for all a in A do
(6) m,n P
(7) if(f(m.a = n.a))
(8) add a link L(Aj, Val, ts,) in the context map between m, n
(9) else
(10) close any existing link with current time stamp: L(Aj, Val, ts, tf)
between m, n
(11) if � ((p a) head (Q [p, a]).Val) = TRUE then
(12) set ALARM

From Fig. 4, when a new interval is started when P2.Loc
changes from QR503 to PQ821, a new event is sent by
process P2 and comparison is done between the location
attribute of the three entities, Tom, Bob, and Laptop and
contextual links are created between them (Fig. 2(b) and
2(c)). At the same time, the relational predicate shown in
Example 2 and the conjunctive predicate shown in Example
3 are also satisfied. Similarly, when P1.Loc changes from
PQ821 to canteen, new event is sent by P1 to the server and
the context map is updated to the new state as shown in Fig.
2(d). Again, at 10:45 am, two events are concurrently
generated at P2 and P3 (both P2.Loc and P3.Loc change from
PQ821 to PQ304) and they are detected by the Algorithm1
and updated in the context map (Fig. 2(e)). Finally, P1.Loc
changes from canteen to PQ304 and concurrency is detected
between the location attributes of the three process and the
context map is updated to the one in Fig. 2(f). In this case
also, the predicates specified in Example 2 and Example 3
are satisfied. Context maps can store the old contextual links
to track the past locations and users of the laptop (“where the
laptop was at 10:35 am and who was using it?”).

Figure 4. Generation of Events in Example 1

Analysis of worst case time complexity: The enqueue
operation to insert incoming events in the sorted Q takes
log(p*a*�) time. Lines 5-10 maintain the context map by
pair-wise comparison of the heads of Q [i, j]. The complexity
of this operation is (p*a)*(p*a-1)/2. The predicate evaluation
in line 11 has a complexity of O(f(�)) where � is the
predicate function. So, the worst case time complexity of
Algorithm1 is: O((p*a*�)(log(p*a*�)+O(f(�)+(p*a)*(p*a -
1)/2))).

C. Algorithm for Periodic Concpred Detection

Algorithm2 is a centralized algorithm for periodically
evaluating concurrent predicates considering asynchrony in
event reporting. All events which occur during an epoch of
period t (i.e., for events with ts<t) are captured considering a
maximum event reporting delay of �, and stored in the
interval queue Q [i, j]. If an event, which arrives during
(t+�), has ts>t, then it is made to wait in the event queue, Q,
before finally placing it in Q [i, j], pending the predicate
evaluation for the current period.

149

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:55:48 UTC from IEEE Xplore. Restrictions apply.

When an epoch ends at (t+�), the server temporarily
closes the last queued intervals in Q [i, j] with the current
time stamp, t, and then evaluates the attribute values of the
intervals at the heads of all Q [i, j] to detect (i) whether any
pair has matching attribute-values in which case a contextual
link is added, and (ii) whether the predicate � is satisfied.
After the first round of evaluation, some intervals are deleted
from the heads of some of the Q [i, j] and another round of
comparison is carried out among the updated heads of Q [i,
j]. This process is repeated (line 9-24) until heads of all Q [i,
j] are the latest intervals for the current epoch.

Algorithm2: Online Algorithm for Periodic Concpred

Event: (Pi, Aj, Val, ts)
Interval: (Val, ts, tf)
Initialize:

queue of events: Q = < >
queue of intervals: (p a) Q [p, a] � enqueue (default, t,)

Procedure ENQUEUE (e)
(1) tail (Q [p, a]).tf � ts
(2) Enqueue (Val, ts,) in Q [p, a]

On receiving an event e from process Pi at P0 during epoch
 (3) ENQUEUE (e);
When epoch ends at t

(4) wait �
(5) for each e that arrived in [t, t+�] do
(6) if (e.ts < t) then ENQUEUE (e)
(7) else ENQUEUE (e) after processing events in the current epoch
(8) (p a) tail (Q [p, a]).tf � ts

(9) repeat
(10) for all a in A do
 (11) m,n P
 (12) if (f(m.a = n.a))
(13) add a link L(Aj, Val, ts,) in the context map between m, n
(14) else
(15) close any existing link with current time stamp: L(Aj, Val,
ts, tf) between m, n
(16) if �((p a) head (Q [p, a]).Val) = TRUE then
(17) set ALARM (max

,ap
(head (Q [p, a]).ts), min

,ap
(head (Q [p, a]).tf))

(18) tx � min
,ap

 (head (Q [p, a]).tf)

(19) if (tx < t) then
(20) (p a) | head (Q[p, a]).tf = tx, delete head (Q [p, a])
(21) stop � FALSE
(22) else
(23) stop � TRUE
(24) until stop

Deletion of intervals also helps to prevent overflow of a

Q [i, j], which can hold up to � intervals per process per
epoch. We observe that the interval which has finished first
among the intervals at the heads of all Q [i, j] cannot overlap
with any successor intervals and hence, no concurrency will
be possible among them. So, we detect such interval(s) with
earliest finish time at the heads of all Q [i, j], and delete it (or
them) (line 18-23).

When a predicate is satisfied, our algorithm can detect
the period of concurrency, i.e., the overlapping time of the
intervals (TOLAP in Fig. 4) over which � is defined. This is

achieved by subtracting ts of the interval with latest start time
from the tf of the interval with earliest finish time (line 17).

Analysis of worst case time complexity: The function
ENQUEUE(e) which enqueues incoming events has a time
complexity of O(p*a). The repeat loop which spans lines 9-
24 can be executed at most O(p*a*(�-1)) time. Lines 10-15
maintain the context map based on pair-wise comparison of
the heads of Q [i, j]. The complexity of this operation is
(p*a)*(p*a - 1)/2. The predicate evaluation in line 16 has a
complexity of O(f(�)) where � is the predicate function.
Evaluating period of concurrency in line 17 has no extra
cost. Each of the operations for detecting and removing time
intervals (line 18-23) requires O(p*a) time. So, worst case
time complexity of the Algorithm2 is: O((p*a*(�-1))(p*a +
O(f(�)+(p*a)*(p*a - 1)/2))).

D. General Notes on Concpred Algorithms

With a maximum of � events per attribute per process, we
are stepping through O(p*a*�) states. To generate each state
from the previous one in Algorithm2, it takes p*a time. In
Algorithm1, each state is created in O(1) cost by merging the
received event information with the state information of
other attributes / processes.

To maintain a context map, we have to monitor multiple
predicates. Algorithm1 can achieve that by simply repeating
lines (5-12) – in a loop, iterating through the predicates.

Though we have assumed synchronized process clocks,
in practice it is impossible to achieve complete clock
synchronization and some skew always remains. Our
algorithms can detect concurrent predicates considering
skew between the clocks of different processes using the
methods explained in [15]. However, in that case, we need to
assume that the predicates hold unchanged for at least 2�,
where � is the skew between different process clocks.

The authors in [15] have proposed two algorithms that
can detect unstable predicates which retain their truth value
for at least 2�, where � is the skew between different process
clocks. The first algorithm aims to detect a global predicate
at a predetermined clock value T. The second one is a
centralized algorithm for global predicate detection where
individual processes detect local predicates and then send the
intervals, through which the predicate holds, to a central
server which then detects global predicates.

V. PERFORMANCE EVALUATION
We have carried out extensive simulations to evaluate the

performance of our proposed algorithms. We have
considered creating context map based on the dynamic
location context attribute as it quickly changes with time and
the context map needs to be updated frequently.

A. Simulation Setup and Metrics

The network nodes are randomly scattered in a square
territory. The total number of nodes is varied to examine the
effect of system scale on the performance. For message
routing, we have implemented a simple protocol based on
the “least hops” policy, which is adopted in many classical

150

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:55:48 UTC from IEEE Xplore. Restrictions apply.

routing protocols in ad hoc networks. A routing table is
proactively maintained at each node.

TABLE II. SIMULATION PARAMETERS

Parameters Values
Number of nodes, (N) 50, 100, 150, 200
Territory scale (m2) 1500
Mean link delay (ms) 5
Max link delay (ms) 100
Transmission radius (m) 100
Routing Policy Least hops
Mobility model Random Waypoint
Node speed V (in m/s) 5, 10
Pause time (ms) 10, 50
Period of Predicate Evaluation (ms) 100

We assume that, every node has an id and a location

attribute which is represented by its co-ordinates in the 2D
simulation territory. Node 0 is the central server which keeps
track of the location of other nodes and constructs the
context graph. The territory is divided into 3x3 square grids
which are considered as enclosed physical areas, like rooms.
Nodes in the same grid are considered as co-located and they
are linked with a co-location relation. When nodes moves
across grids, the co-location relations change to trigger an
event and the context map is updated accordingly. Our
simulation parameters have been listed in Table II.

In this experiment, we measure the time delay in
updating the context map using our two proposed algorithms
with the help of the following metrics.

UD (Update Delay): It is the average time delay in
milliseconds between the time a node changes location and
the time the context map is updated.

We run each simulation for 20 simulation minutes and
each point is obtained by averaging over 10 different runs.
We do not consider node failure during the experiment.

B. Analysis of Performance Results

We plot the results of delay in updating context map for
algorithms 1 and 2 for varied node speeds and pause times.
Fig. 5 plots UD by varying N while keeping the node pause
time as 10 ms.

Figure 5. N vs. UD (Pause time = 10 ms)

We observe that for both the algorithms, UD increases
with N and for the same N, UD increases with the node

speed. UD increases with N as the central server needs to
manage more events generated by higher number of nodes.
For the same reason, at higher node speed, the nodes
frequently move across grid boundaries and many new
events are triggered. For the Algorithm 2, the observations
are similar with a marked difference in the values of UD
which is generally quite high. Since the update is periodic,
the location changes occurring just after an update needs to
wait till the completion of the period. This process increases
the average updated delay of the context map.

Fig. 6 plots UD for varied N while the node pause time is
50 ms. The general trends of the graphs remain same in Fig.
5 and Fig. 6 However, the higher node pause time in Fig. 6
results in less UD for the same values of N and node speeds.
This is because, the higher pause time means that the nodes
move across grid boundaries less frequently resulting in
lower number of event generations.

Figure 6. N vs. UD (Pause time = 50 ms)

In the next section, we have verified our simulation
results by implementing the two algorithms on a wireless
sensor networks testbed system.

VI. TESTBED SYSTEM FOR CONTEXT MAP
We have developed a ubiquitous searching and browsing

framework (USBF) which uses context map for a demo
application of a smart logistics network. In Logistics, it is
always necessary to keep track of the goods being carried as
well as the available infrastructure, like vehicles, personnel,
etc. In this application, we consider that a logistic company
(ABC Logistics Co.) divides its operating area (e.g., a city)
into four delivery zones and the entire area is covered with a
wireless sensor network. Sensor nodes can track the logistic
vehicles collaboratively. We use our intelligent traffic system
testbed (Fig. 7(a)) for this application.

In this demo, we use four smart cars (as logistic vehicles)
embedded with sensor nodes, a smart mobile phone (Nokia
XpressMusic 5800) with attached NokiaTM uSD card [22],
and many sensor nodes attached to our intelligent traffic
system testbed (Fig. 7(b)). Nokia uSD cards enable direct
interfacing between mobile phones and sensor nodes. We
assume that each car carries one driver, one laborer and a
number of deliverable goods in separate packages. All the
objects (cars, personnel and packages) are smart and have
embedded sensing and communication capabilities. Each

151

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:55:48 UTC from IEEE Xplore. Restrictions apply.

goods package has a RFID tag attached with it and contains
sender’s name and address, receiver’s name and address,
delivery due date, etc. Together the smart entities form a
context map as shown in Fig. 7(c). While two cars of the
company are linked as co-owned, the drivers, laborers, and
packages in the car are linked with that car as carried entities.
All the drivers and laborers are connected as colleagues. All
these relationships are static as they do not change with time.

Each driver has a mobile phone in which they can see a
map of the entire testbed. Each entity can be clicked and
their attributes can be studied. The context map can be
browsed by clicking an entity and following their contextual
hyperlinks. When a car suffers a breakdown, the driver can
use the context map to find out which other car of his
company is in the same delivery zone concurrently with him.
The concurrency relation can be specified using a
conjunctive predicate. Assuming that driver of car1
(currently in zone1) wants to find whether car2 owned by his
employer is also in zone1, by using the following
conjunctive predicate:

(Car1.Owner = ABC Logistics & Car1.Loc = Zone1) &
(Car2.Owner = ABC Logistics & Car2.Loc = Zone1).

(a)

(b)

(d)

(c)

Figure 7. (a) Snapshot of our Smart Traffic System testebed, (b) Smart car,
smart phone with uSD card, and sensor mote, (c) Context map for the

logistic application, (d) Logistic vehicle tracking (using an area map of the
testbed) through the mobile phone (vehicle shown with red circle and arrow)

If this predicate is satisfied, the context map will show a

co-location link between car1 and car2 and this is a dynamic
link. Similarly, other predicates can be specified comprising
more than two cars and many other attributes. After the
driver receives a list of logistic vehicles present in the same
delivery zone, he can browse through them to get detailed

information regarding the contents of the vehicle, delivery
location, available space, driver contacts, etc. A video demo
of the above application is available in [23].

In our testbed, the predicate detection and context map
creation and maintenance is done in the following way. All
the sensor nodes and the uSD card are pre-synchronized with
negligible skew. The location attribute is updated by the
smart car every time it changes, by sending a message to the
central server. Whenever a new event (generated by location
change of a car) arrives in the server, it runs Algorithm1 to
detect location concurrency specified by the drivers. Cars
which are concurrently in the same delivery zone are linked
with a co-location relation in the context map. We have also
tested for Algorithm2 by moving the cars continuously. The
algorithm waits for a period of 5 seconds before evaluating
the predicates and updating the context map. When using
Algorithm2, the context map still contains old information
even if many new events have occurred and refreshes the
map after every 5 seconds. This observation is similar to the
one obtained in simulation where the context map update
delay is higher for Algorithm2. Algorithm1 also incurs some
delay in updating the context map if the cars frequently move
across zone boundaries, in which case the dynamic links are
required to be updated. Otherwise, Algorithm1 performs well.

VII. CONCLUSION AND FUTURE WORKS
In this paper we presented a context map structure which

is a graph showing contextual interconnection between
several smart physical objects and people of our surrounding
environment. Contextual links are added between smart
objects based on multiple context-based relations, such as,
co-location (‘located in the same room’), or colleague
(‘employed by the same company’), etc. Since, the dynamic
context attributes (e.g., location) of an object may change
with time, the contextual links may also be created or deleted
with changes in context values. Tracking these changes and
updating the contextual links in a timely and consistent
manner is non-trivial in asynchronous pervasive computing
environments. To resolve this problem, we proposed two
centralized algorithms for online concurrency detection of
contextual events. While one algorithm detects concurrent
events as and when it happens, the other one periodically
executes concurrency detection operation. Our proposed
algorithms have low time complexity and can be applicable
to a wide range of pervasive applications. We have evaluated
our algorithms through extensive simulations and also
through testbed experiments.

In future, we want to develop decentralized algorithm for
detecting contextual events which can maintain context map
through autonomous coordination of smart objects. We also
want to carry out more experiments to verify our algorithms.

ACKNOWLEDGEMENT
This work is partially supported by RGC GRF Grant

PolyU 5106/10E and China's Hi-Tech 973 project
Grant 2009CB320702.

152

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:55:48 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] C. Xu and S. C. Cheung, "Inconsistency detection and resolution for

context-aware middleware support," Proc. of ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(FSE), Lisbon, Portugal, Sep. 2005, pp. 336–345.

[2] C. Xu, S. C. Cheung, and W. K. Chan, "Incremental consistency
checking for pervasive context," Proc. of Int’l Conf. on Software
Engineering (ICSE), Shanghai, China, May 2006, pp. 292–301.

[3] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, and J. Lu, "Managing quality of
context in pervasive computing," Proc. of Int’l Conf. on Quality
Software (QSIC), Beijing, China, Oct. 2006, pp. 193–200.

[4] Y. Bu, S. Chen, J. Li, X. Tao, and J. Lu, "Context consistency
management using ontology based model," Proc. of Current Trends
in Database Technology (EDBT), Munich, Mar. 2006, pp. 741–755.

[5] Y. Huang, X. Ma, J. Cao, X. Tao, and J. Lu, "Concurrent Event
Detection for Asynchronous consistency checking of pervasive
context," Proc. of IEEE International Conference on Pervasive
Computing and Communications, 2009.

[6] N. Gershenfeld, R. Krikorian, and D. Cohen, "The Internet of
Things," Scientific American, vol. 291, 2004, pp. 76-81.

[7] H. Wang, C. C. Tan, Q. Li, "Snoogle: A Search Engine for Pervasive
Environments," IEEE Trans. on Parallel and Distributed Systems,
vol. 21, no. 8, pp. 1188-1202, Aug. 2010.

[8] A. Khelil, F. K. Sheikh., B. Ayari, N. Suri, "MWM: A Map-based
World Model for Event-driven Wireless Sensor Networks" Proc. of
2nd ACM International Conference on Autonomic Computing and
Communication Systems (AUTONOMICS) 2008.

[9] M. Kranz, "SENSID: A situation detector for sensor networks,"
Honours Thesis, School of Computer Science and Software
Engineering, University of Western Australia, 2005.

[10] Y. Huang, J. Yu, J. Cao, X. Ma, X. Tao, and J. Lu, "Checking
Behavioral Consistency Constraints for Pervasive Context in
Asynchronous Environments," arXiv:0911.0136.

[11] A.D. Kshemkalyani, “Immediate Detection of Predicates in Pervasive
Environments, Journal of Parallel and Distributed Computing,”
(2011), doi:10.1016/j.jpdc/2011.09.004.

[12] L. Lamport, "Time, Clocks, and the Ordering of Events in a
Distributed System," Comm. ACM, vol. 21, no. 7, pp. 558-565, 1978.

[13] P. Chandra and A. D. Kshemkalyani, "Causality-based Predicate
Detection across Space and Time, " IEEE Trans. on Computers,
54(11): 1438-1453, November 2005.

[14] V. Raychoudhury, A. D. Kshemkalyani, and J. Cao, "Querying
Context Maps using Relative Timing Predicates in Pervasive
Environments," Accepted for Publication in Proc. of 6th International
Workshop on Middleware Tools, Services and Run-time Support for
Networked Embedded Systems (MidSens) to be held with Middleware
2011 Conference, December 12-16, 2011, Lisbon, Portugal.

[15] J. Mayo and P. Kearns, "Global predicates in rough real time," Proc.
of 7th IEEE Symposium on Parallel and Distributed Processing,
1995.

[16] J. Allen, "Maintaining Knowledge about Temporal Intervals," Comm.
ACM, vol. 26, no. 11, pp. 832-843, 1983.

[17] C. L. Hamblin, “Instants and Intervals,” The Study of Time, pp. 324-
332. Springer-Verlag, 1972.

[18] M. L. Sichitiu and C. Veerarittiphan, "Simple, accurate time
synchronization for wireless sensor networks," IEEE Wireless
Communications and Networking (WCNC), March 2003.

[19] N. Kyoung-lae, E. Serpedin, and K. Qaraqe, "A New Approach for
Time Synchronization in Wireless Sensor Networks: Pairwise
Broadcast Synchronization," IEEE Trans. Wireless Communications,
vol. 7, no. 9, pp.3318-3322, September 2008.

[20] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, "Clock
synchronization for wireless sensor networks: a survey," Ad Hoc
Networks, vol.3, Issue 3, Pages 281-323, May 2005.

[21] W. Su and I. Akyildiz, "Time-Diffusion Synchronization Protocol for
Sensor Networks," IEEE/ACM Trans. Networking, vol. 13, no. 2, pp.
384-397, 2005.

[22] http://www.usdcard.org/
[23] http://imc.comp.polyu.edu.hk/pvc/doku.php?id=demonstration

153

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:55:48 UTC from IEEE Xplore. Restrictions apply.

