
Brief Announcement: Two Classes of Communication Patterns 

Ajay D. Kshemkalyani 
EECS Dept., University of Illinois at Chicago 

Chicago, IL 60607, USA 

A distributed computation is viewed as a partial order 
on the events that occur at participating processes. Ana- 
lyzing the structure of a distributed computation can lead 
to a better design of distributed applications, algorithms, 
and systems. To this end, this paper identifies two classes 
of communication patterns that occur in every distributed 
computation and examines their properties [2]. 

The first class of patterns consists of local patterns, termed 
IO and OI intervals, that occur at processes. These local 
patterns are specified in terms of messages sent and messages 
received by a process, and are distinguished by the order in 
which a pair of messages is sent and received by a process. 
Specifically, an IO interval corresponds to a receive event 
followed by a send event, and an 01 interval corresponds to 
a send event followed by a receive event. (Likewise, there are 
II and 00 intervals corresponding to two receive events, and 
two send events, respectively.) Clearly, there are numerous 
IO and 01 intervals at each process in the computation. At 
each process there are also application-specific distinguished 
events, which define the durations between successive such 
events. An IO or 01 interval of interest to an application 
is one that satisfies a certain application-specific relation- 
ship on the durations in which the send and receive events 
identifying the interval occur. 

Application-specific predicates can be defined on how an 
IO or 01 interval at one process is related to an IO or 01 
interval at another process. The use of such predicates on 
IO and 01 intervals at different processes allows IO and 
01 intervals to be used as building blocks to formulate the 
second class of patterns, which is comprised of two global 
patterns, termed segments and paths. These two global pat- 
terns occur across processes in a distributed computation 
and signify the flow of information and coupling among the 
events at different processes. Segments and paths are gen- 
eralizations of causal chains. While a causal chain captures 
only the causality relation, certain other message sequences 
in a distributed computation also play a significant role in 
the analysis of a distributed computation. By controlling 
the predicates on how IO and 01 intervals at different pro- 
cesses are used to define segments and paths, different types 
of segments and paths can be defined. 

Several key concepts and structures characterizing dis- 
tributed computations are special cases of and can be ex- 

Mukesh Singhal 
National Science Foundation 
Arlington, VA 22230, USA 

pressed using these global patterns. Some examples are 
listed next. 

(I) Measures of concurrency in a distributed computa- 
tion can be expressed as functions of the length and number 
of the paths and segments in the computation. (II) It has 
been shown that computations using asynchronous commu- 
nication can be realized under synchronous communication 
if and only if a certain graph structure called a crown does 
not exist in the computation. A crown can be expressed 
compactly using paths and segments in the computation. 
(III) Knowledge in a distributed system provides a formal 
method for reasoning about distributed protocols when dif- 
ferent runs of the same protocol can yield different equiva- 
lent computations. Knowledge also plays a significant role in 
the evaluation of global predicates, debugging, monitoring, 
and establishing breakpoints and triggers. Paths and seg- 
ments provide a means of identifying the extent of knowledge 
transfer in a distributed computation. (IV) Checkpointing 
is widely used in fault-tolerant computing and in parallel 
and distributed debugging. In order to optimize the num- 
ber of checkpoints taken, it is useful to determine whether a 
certain local checkpoint could possibly be a part of a global 
checkpoint. It has been shown that a local checkpoint can- 
not be part of any global checkpoint if it is part of a “Z- 
cycle”. However, a “Z-cycle” is just another term for a spe- 
cific type of path/segment. (V) Specific types of segments 
and paths have already been used to define a deadlock in dis- 
tributed systems [l]. Such a definition of deadlock is useful 
because prior definitions made the oversimplifying assump- 
tion of a global observer and a common clock. Consequently, 
several distributed deadlock detection algorithms based on 
these prior definitions were incorrect. The definition of dead- 
lock using segments and paths overcame this drawback and 
clearly characterized the dynamics under which a deadlock 
forms and is resolved. 

By controlling the predicates on how IO and 01 inter- 
vals at different processes are used to define segments and 
paths, different types of segments and paths can be defined 
to capture key concepts and structures in other application 
areas also. See [2] for a full version of this announcement. 

References 

[I] A. D. Kshemkalyani, M. Singhal, Characterization and 
Correctness of Distributed Deadlock Detection, Jour- 
nal of Parallel and Distributed Computing, 22(2): 44-59, 
July 1994. 

[2] A. D. Kshemkalyani, M. Singhal, Universal Constructs 
in Distributed Computations, Technical Report 29.2136, 
IBM Research Triangle Park, March 1996. 

277 


